Department of Mechanical
and Process Engineering

ETH:-urich

Version: 30.07.2020

About this Summary:

This summary should cover most topics from the
lecture and the exercises.

However, in the last days before the exam, there
may still be some minor changes; so be sure to
check back for new versions regularly on:
n.ethz.ch/~kiten/MAD

If you have any comments, corrections, or impro-
vements, please contact me at:
KITEN@ETHZ.CH

Thank Youl!

This summary was made in Spring 2020, building on the existing summary of
Pascal auf der Maur, as well as exercise sheets and lecture notes of the course.
Accuracy, completeness and correctness can not be guaranteed.

Special thanks to: Pascal Auf der Maur (initial version) and Radek Zenkl (PVK)!

D MAVT

0. Changelog and Versions

July 13, 2020
Initial Version

July 17, 2020

e Corrected typos in section 3.2 Cubic Splines — Tri-Diagonal
Matrix Algorithm:

— Changed c; to c2 in second row of TDMA

Ay_g=~Ag

— Corrected typo in b;: Changed b; = %
Ay 54y
to b; = —_— 13 g

(Thanks to Lucas for spotting the errors!)

e Changed section 4.9 Gauss Quadrature and added method
of undetermined coefficients

July 20, 2020
e Corrected error in section 6.6 Gradient Descent — Learning
parameter 7:
— (a) and (b) were wrongly switched in previous version
(Thanks to Irma for spotting the error!)
o Added definition of f’(z) to section 3.2 Cubic Splines
because the ©-sign might be a pitfall at the exam!
e Minor edits:
— Section 4.9 Gauss quadrature:
added integral bounds a and b to 2-point Gauss rule

— 4.12 Quadrature in multiple dimensions:
added clause "order of accuracy s”
(as opposed to order of error)

July 22, 2020

e Corrected error in section 2.3 Secant Method:
Tp—Tp—1
f(er)=F(op—1)"
F(ek)—F(2k—1) m

Tl — L1
(Big thank you to Eric for this!)

— Changed descent term to

Previously was

e Minor edits:

— Fixed numerous typos

— Now enforces single-spacing across all pages
(last page was not necessarily single-spaced before)

July 26, 2020

e Corrected error in section 4.8 Adaptive Quadrature:

— Changed recursion term from
INTEGRAL(a, m) + INTEGRAL(m, b)
to ADAPINT(a, m) + ADAPINT(m, b)
— else return now outputs more accurate I; (h/2)

(Thanks to Irma and Manuel for pointing this out!)

July 28, 2020

e Added more information in section 4.11 N-point Gauss rule:

— Quadrature points zj, as roots of Legendre polynomial

— Basic examples for Legendre polynomials and Bonnet's
recursion formula

July 29, 2020
e Minor Edit:

— Fixed typo in section 4.11 N-point Gauss rule:
Lagrange-polynomial P; = x previously missed =-sign

Thanks to Simon for this tip!

July 30, 2020
Added two things since | noticed that many people were
confused by it:
e Section 4.5 Newton-Cotes:
Added formula for integration over entire domain
(I from a to b) in addition to I; from z; to ;41

Section 4.11.1 N-point Gauss rule recipe:

Added a comprehensive recipe for Gauss integration.

For space reasons, it is on another page than the rest of
N-point Gauss rule (section 4.11.2).

This will probably be the last version before the exam.
Good luck!

mailto:kiten@ethz.ch
https://n.ethz.ch/~kiten/MAD

MAD Cheat Sheet
Klemens lten -
Pascal Auf der Maur -

Version: July 30, 2020

Current Version: |n.ethz.ch/~kiten/MAD|
ATEX-template: |n.ethz.ch/~robinfr

1.0 Cost Functions

L>-Norm (average):
lella = /Sy €2 = /SN, (i — £ ()2

L;-Norm (median):

llellr =

N N
i1 leil = 2521 |y — f (w4)]
Lo-Norm (maximum): and In general: p-Norm

1
N o\

lelloo = max|ei] = max |y = f (@), lelp = (SNe?)?

1.0 Data and Function Fitting

Data Points: {(z4, i)},

Fitted function: f(z;w) = 22/1:1 wi ek ()

where ¢ (z) are linear independent basis functions.

The functions can be non linear (ex: e”®) but the unknown
weights w must enter linearly. Usually M < N.

1.1 Linear Least Squares

Cost Function (L2-Norm):

| Bw) = 5, 2w) = X, (4 = £ (@isw)?

Goal: Find weights w* = arg miny E(w)
In Matrix Formulation and with case distinction:

AeRVN*M weRM and y e RN

1. M = N: unique solution, w = A~ 'y
2. M > N: underdetermined, infinitely many solutions
3. M < N: overdetermined, 0E/0w = 0 for w*:

‘ w* = argmin,, E(w) = (ATA)71ATy ‘

In Matrix Formulation:

E = el e=(y—Aw) (y — Aw)
= yTy—ZwTATy+'wTATAw
OE/ow = 0 = AT AW* = ATy, normal eq.

Inverse Matrix Formulas:

a b\7'_ 1 /d b
c d " ad—be \—¢ a

ei— fh ch—bi bf—ce
(R3*3)~1 Ty fg—di ai—cg cd—af
dh —eg bg—ah ae—bd

Formulas for linear case

P T2 Nb;i—Nt; DEibs T —
=—a— ot =
L NZt?—(Zti) 2

b= X1+ Xa(t—1)

NYtib;—Xt; 3b;
ML R R
NZt?—(Zti)

_ b _ X(tg—t)b;
i X2 = Sei—o?

Geometrical Interpretation
From normal equations (vector e* is orthogonal to A):

AT (y — Aw") = ATe* =0

w_ P=A(ATA)7" AT
M =T—A(ATA)"t AT
y=(P+M)y=Aw" +e*

o
o
column, = [ay. a5y, ay] o

Properties of the projection matrices:

1. symmetric: PT = P, MT = M

2. idempotent: P2=P M?>=M

3. P+ M =1
y=(P+M)y=Aw" +e*

1.2 Numerical Solutions

With computed weights W and error dw = w — W,
error in output is dy =y —y =y — Aw = Aw — Aw.

L5wl —1ppaplel _ Iyl
i < AT TAFRT = =(A) 57

The condition number

R(4) = [AlIATY] = Zmesty

Tmin (A

1< k(A) <o

e Tells us how stable a fit is: the smaller x, the better
e Used norm: Lo-norm
For our approach: (ATA) = r(A)2.

By solving the normal equation, the condition number gets
squared due to A being twice in the inverse.

e A more stable solution would be to apply a QR or SVD
decomposition where the inverse first gets normalized.

QR-Decomposition

A=QR=[Q1 Q][R 0T

Singular Value Decomposition
S 0 v
a=toe o] g o[V
Moore-Penrose Pseudo-Inverse of A:
At = v.xt.yT

] =uUxv’

Pseudo-Inverse of X:

st — +

(diag (01,02...,0)

= diag(afl,agl,...,o)

w =VsTUTy | k(A)=r(ZVT)

2. Nonlinear Systems

2.0 Preliminaries

Comparison between methods

Bisection Newton's Mthd. Secant Mthd.
rate 1 2 1.618/1.839
cost cheap expensive middle

robust yes no no

Root Finding Problem
Any equation g(z) = h(z) can be rewritten as

g(z) — h(z) = f(z) = 0.
The solution to this is the root (or zero) z*, i.e. f (z*) =0

Bolzano’s Theorem
For a function f(z) € [a,b], if f(a) - f(b) <O,
i.e. sgn(f(a)) # sgn(f(b)), then according to
the intermediate value theorem

3z € (a,b) with f (z*) =0
Condition Number
_ oyl If (@ +0x) — f(2)| L
Hiﬁf |5z| ""f (x)‘
With f (z*) = 0 < z* = f~1(0):
_ 1 _ 1
y=o | EHO) 1f (=)

o
o = \@f @)

Order of Convergence

With ey = z — z*, if zx = x*, there exists:

r, rate of convergence
C, order of convergence

. lex+1]
lim

k—oo |er|”

=C with {

e r=1:if 0 < C < 1 linear convergence
C' = 0 superlinear, C' = 1 sublinear.
e 1 = 2: quadratic convergence.

€k+2 ‘ 1 k41 ‘
0;
€k4+1 / g ek

e 7~ log

2.1 Bisection Method

1. Start with two function eval’s sgn(f(a)) # sgn(f(b))

2. Halve the interval length, until a solution has been isolated
within a prescribed accuracy

e C=1,r=1/2

e Certain to converge (but slow), uses only signs of f

e f doesn't need to be differentiable, just continuous

e Initial interval [a, b] may be hard to find

2.2 Newton’s Method

f(z
et = 22

Follows from taylor expansion around root x*, ignoring hot
Exact for linear functions only

Quadratic convergence, but not guaranteed

Sensitive to initial conditions

Can get stuck in local minimum

Requires function eval and derivative for each iteration

2.3 Secant Method

approximate f (zx) ~ (f (xx) — f (@r—1))/(2x — 1)

Tpy1 = 2k — f (@k) %

e No calc. of derivative, only one f evaluation at each step
e Convergence rate is not quadratic
e Requires two initial approximations z¢, =1

2.4 Set of Equations
A general system with N equations and z1 . s unknowns:

Fx')=[fi (") ... fn () |7 =0

Solution approximated by taylor series:

Filx+y) = fi() + 3L, 252y, + 0 (IyI?)

| Fx+y) = FG) + Gy + 0 (Iyl?) | m = |77)]

Jacobian Matrix

2f1(x) 9f1(x) 2f1(x)
oxq ED) oz pr
J(x) = : : :
NG fN(X) 2fN (%)
oxq ED) oz pr

N = M: Newton-Raphson Method

‘ Xp41 =Xk — J ' (xg) F (x1) ‘

Solve J (x)z = —F (xi) forz — Xp41 =Xi +2

N # M: pseudo-Newton Method

‘karl =xp — It (xx) F (xx) ‘

—JT (JJT)

JJJ\r/I>N = (JT‘])_I JT JJ\JrJ<N o

2.5 Non-Linear Optimization

x* = argmin, F(x)

with unknowns x = (z1,...,zx)" and E: RM - R.
Verify if x* is local minimum with Hessian Matrix:

with F(x) = VE(x) =0

2B (x*) 22 E(x*)
w2 T Bwyomgyy

VIE(x') = H (x") = : :
22 B(x*) 2B (x*)

Newton’s Method
Search root F(x) = VE(x) = 0, with J(x) = V2E(x)

Solve for z : V2E (x1)z = —VE (x3)
= Xp41 = Xk T 2

mailto:kiten@ethz.ch
mailto:pascalau@ethz.ch
https://n.ethz.ch/~kiten/MAD
https://n.ethz.ch/~robinfr

3. Interpolation and Extrapolation

3.1 Lagrange Interpolation

Key Idea
Fit N polynomials of degree N—-1 s.t. I;(x;) = d;;:

T—x;

N
le(z) = Hi:l,i#k Tp—xg

_ (z—z1)...(z—2p_1)(z—2p11) - (z—2N)
(zp—21)-(zp—2p—1) @k —2p41) - (2 —2N)
f@) = X, vk - li(@)
Properties
e Can cause huge oscillations in the edge regions (Runge's
phenomenon)

e Not accurate especially for local trends
e Small fluctuations in data result in re-fitting the whole
model over the whole domain
e Sensitive to noise
Approximation Error
<">(e>
ly(z) — f(=)| = [Ti: (@ — k)

3.2 Cubic Splines

Key Idea and Derivation

Piecewise local polynomials with different parameters for
each interval, split data into smaller independent intervals.

Construct f(z) € [z1 < z < x|, f(zi) = yi
from f;(z) € [z;,zi+1] with N unknowns f! = f” (z;):

f"(ac) _ f{/ (zi+1i*1) +f{l (1;:31)

f(@) = N(‘Eii Jk +f1+1(2Ai) +C;

T, 1—T z—z;)3
f@) =y Epel g om0 (o -z 4

From boundary conditions:
L Yit17Yi " my Ay
Ci = A, _(fi+1—f1:)T

D, = //A?
z‘*’yi—fiT

Ai_1 en Aj_1t+4y "

= f¢—1+(7z 3 l)f + &l
_ Yi+17Yi Yi—Yi—1
Y Aj_1

Initial Conditions
o Natural spline: f;’
e Parabolic runout: Set f1 = fi and f; = fR_
o Clamping: Set f' (z1) = f' (zn) =0

=0

Tri-Diagonal Matrix Algorithm (TDMA)
N-2 equations and 2 initial conditions in N xN-Matrix

b ° Vs e
a2 bz Cc2 fg d2
. 1"

as bs . 3 ds

o CN-1 " d.

0 an bn N N
_ A _ A1 tAg
a; = —%—, by=—"=—7%—"

oAy _ Yit1~Yi Yi—Yi—1
¢ = 5> di = R, T A

4. Numerical Integration

4.0 Key Idea

Split a definite integral which may be analytical or not
into N consecutive intervals

I= Lb f(z)dz = Z f f(z)d

and approximate f(z) by p(ac):
NIt ey
Z f pi(z)dz
i=0 i

4.1 Rectangle rule

pi(z) = f(zi) — Ir; = f(zi)A;

with error in second order

(1~ 8. 505 £ @)

4.2 Midpoint rule
i s
pi(z) = f (%) = Im; = f(ziv12) As

TitTit1
2

Error in third order: Enr, = 7 (Tig1)2) A3+ 0O (A‘;’)

IzAIZf’;)l

4.3 Trapezoidal rule

(esmreols , g

pi(z) =
Iy = f(mi)+§(zi+1)Ai

Ingg + § 57 (wi12) AY + O (A7)

I~ 48 (f(20) +2- (25" f @) + f (an))

Error in third order: Eq, = —%f” (xi+1/2) Ag’ + 0 (Af)

4.4 Simpson’s Rule
Approximate f () with a parabola p; = f(z°) :

F(@i)+af((witeip1)/2)+F(ig1) N
6 3

Is, =

_ 2 1
= 3Im; + 317y

An N —
~T(f<mo)+4 S f (@) +

i=1, odd

N-—-2
+2 0y f(zi)-i-f(fﬂN))

i=2, even

Error in fifth order: Eg, = O (Af) +

Attention:

Error is reduced by one order if it is evaluated over a domain.

4.5 Newton-Cotes

(1*-’30)-~-(z*-tk—l)(z*zkﬁ»l)”-(z*zM)
(eh==0)--(zk—=p—1)(ek—=k+1) - (& —=n1)

1 (2) =

lﬁ/f(x)dx

I; ~ IZH pi(z)dz = Z f fk)j

Ti k=0

M Titl
I ~A; Y C,]wa(zk) with C,éVI == l,lcw(:r)dx
k=0 Yo
M
I~((b—a) Y CMf(xr) with CYf = 2= SlM(ac)d;c
k=0 a

C,ICV[: averaged Lagrange basis over the interval

Properties of C}: Y CM =1 and CM =CM .

4.6 Richardson Extrapolation

The absolute value G is approximated with G ~ G(h),
which is dependant on discretisation h.
h—0

Taylor Expansion of Quantity for G(h) — G

G(h) = G(0) + c1h + c2h® + - -
1 1
G(h/2) = G + serh + Zc2h2 4k ooa
Richardson’s Combination of G(h) and G(h/2)
G1(h) = 2G(h/2) — G(h) = G + chh® + c4h® +
1 3
Ga(h) = 5 (4G1(h/2) = Ga(h)) = G + O (h)

Gn—1(h))

Gn(h) = gr (2"Grn_1(h/2) —
G+ 0O (h"*Y)

Error estimation
€(h/2)

Relative Tolerance:

~ G(h/2) — G(h)

h
e(h/2) <3 tol - —
ho
Error order: E,_1(h) > E,_1(h/2) > E,(h)

4.7 Romberg integration

b—a
n

Trapezoidal rule with spacing h =

Starting with one interval, the number of intervals is doubled
with every iteration until the desired accuracy is achieved.

n_h = ,
I§ =5 [fla)+ f() +2 3] fla+jh)
j=1
I[T)l =1— 01h2 — 02h4 — CghG
2 h? h* hS
I 71—01——0216 03674.“
412 — I 1 5
If:M—IJrﬂmh + —c3hf -

) 4 16
Richardson applied to Trapezoidal and Simpson Rule:
ATy Fa

4k —1

n
n 171k71

n __ — S i
Iy = k= 4k+1 1

4.8 Adaptive Quadrature

Optimize quadrature by sampling the funtion non-uniformly.
Evaluate the integral with more precision at points with
sudden changes.

e Use Rhomberg integration and error estimation to evaluate
locally.

Pseudocode: Adaptive Integration
function ADAPINT(a, b)
I;(h) = INTEGRAL(a, b)
m = (a +b)/2
I;(h/2) = INTEGRAL(a, m) + INTEGRAL(m, b)
€ = I,_(h) - Il(h/Q)
if € > desired :
return ADAPINT(a, m) + ADAPINT(m, b)
else return I; (h/2)

4.9 Gauss quadrature

I—Jf(:c dz ~ (

e We choose ¢; and x; to minimize the error.
e Inspect coefficients to find 7 unknowns ¢ . .

Key idea

f(@)

.Ciy X1 - - T

Undetermined Coefficients

This method is exact for integrals of a straight line
and recovers the trapezoidal rule.

b b
J f(z)dx = f (ap + a1x)dz ~ c1f(a) + ca f(b)

We get: ¢ = ca2 = bga

2-point Gauss rule

For two points, we require the equation to exactly
integrate a cubic polynomial.

b
J ag + a1z + asx? + a3z3dz ~ c1f(z1) + caf(x2)

e v = ms = (122) () + 22

4.10 Hermite Interpolation

Interpolate through N points {x;, y;} 2, by flttmg a ponno—
mial of degree 2N —1 s.t. f(z;) = y; and fl(z) =y,

— — Uy (zj) = 0jk
i@ = 3 U@+ 3 Vi@ | V&0
= = Vi (w5) = 35

Uk (z) = [1 — 2L}, (zx) (z — zx)] L3 (z)
Vie(z) = (z — 2x) Lj ()

4.11.1 N-point Gauss rule - Recipe

Goal: Evaluate [= SZ f(z)dz using N points

1. Change the boundary of the integral using change of vari-
ables: z =

Ifgl = (b ”(z—l)+b)dz

2. Read out mtegratlon pomts z; and weights w; from tables

Zwt (432 (@ -1 +1)

3. Evaluate I ~

4.11.2 N-point Gauss rule

Key Idea
Transform integration interval I € (a,b) to I’ € (—1,1):

with ¢ € (a,b), z € (—1,1)

Approximate Sil f(z)dz with Hermite polynomials.
Accurate for polynomials of order 2N-1.

Derivation
1 n 1 no, (L

J- f(x)dz = Z ykf Uy (x)dz + Z ykf Vi (xz)dx
-1 k=1 -1 k=1 -1

n n

[7@z = 3 wr @+ 3 s @) = 3 wif @)
- k=1

k=1 i=1

1 1
wp = J Ug(z)dz, v, = J Vi (z)dz 2o
—1 —1

Use Legendre polynomials to ensure
v = Ck 5171 F(z)Ly(x)dz = 0 to receive

n

1
[f@de = % uns @) | wn =

2
& (=22) (Ph (o0))?

=1

with g, the roots of the n-th Legendre polynomial.

Legendre Polynomials

ln/2]
_ k (2’)1 . 2k)' n—2k
Pu(@) = Eo D T — 2k

1
Po(w) =1, Pi(z)=z, Pa(z)=7 (32 - 1)
n-Pp(z) = (2n — 1)zP,—1(z) — (n — 1)P,_2(x)
Error with n abscissas
22n+1(n!)4

T GrnrDEa)? 1)

4.12 Quadrature in multiple dimensions

Goal:
Integrate a function in D dimensions:

b1 bp
I:j J- f(x1,...,zp)dx; ---dazp
ay ap

Using Quadrature in every dimension with N gridpoints:
N

Z wi, f (2iy)

ig=1

b
f * f (wa) dza ~
g

N N
gives: | I ~ Z Z Wiy o Wiy f(zil,...,:ciD)
i1=1 in=1

Curse of dimensionality:

Quadrature in D dimensions requires M = NP
function evaluations

Additionally, order of accuracy depends on dimension D,
one-dimensional order of acc. s and grid spacing h = bg,“:

I-Iq=0(h)=0(N"*)=0(M*/P)

4.13 Monte Carlo Integration

Key Idea

Multiply D-dimensional integral and multiply with domain

|€2| and uniform distribution py (z) = ﬁ:

1= [s@de =0l | f@pule)de = 0] EF(X)]
Q Q T~pyYy
With independent and identically distributed samples

{fa®, .., F@PD)}
with mean E[f(x)] = (f>ar and Var[f(x)] = 62 < o0,
the Central Limit Theorem follows:

VI (L3 (a0, o®) — 1) = a (0.6%)
i=1

Estimate of the Value of the Integral
With expectation value of the integrand f

= [r@az
over the domain Q = {, dz:
I =[QK5
Use samples from uniform distribution from 7 =1... M
x(= (m(li),, ; .,mg)) ~ U ([a1,b1] x--- % [ap,bp])

and approximate (f) ~ (fyn = & XM, f (&)

Then the integral value estimate is

1 M))
Ile:\m.M Zf(wgl)»---,mg))
i=1

Error Estimate

e = y/Var [(Har = (P) = y/Var [(Fa]

= va;/gf] oc O(M71/2)

Note: Error is independent of dimension D!

Summary

1. Sample points x; from a uniform distribution and evaluate
the integrand f to get random variables f (x;)

2. Store the number of samples, the sum of values,
and the sum of squares: M, Y™ | f (x;), M| f (x:)?

3. Compute the mean as the estimate of the expectation
(normalized integral):

I | M

— = = = — %5

] = <P < = 3 1)

4. Estimate the variance using the unbiased sample variance:

M i &
el By AT,
i=1

= 5= (7~ <0%)

5. Estimate the error:

_ | Var[f] 1
EMEANTI AN M—1

Var[f] ~

(CRITREE)SH)

4.14 Inverse Transform Sampling

Key Idea
A random variable X with PDF px () and CDF Fx (z)
can be generated by samples u(i)|i:1,,,1\7
from a uniformly distributed value U ~ ([0, 1])
with a transformation z = g(u).
Transformation

Fx(z)=u < z= F;l(u)

@ = P! (um)

F(z) = S; p(z)dz

4.15 Accept-Reject Sampling

General Method

Goal: Get samples from distribution p(z). We have a distribu-
tion h(x) which we know how to sample from. h(z) bounds
p(x) such that p(z) < X - h(z)

1. draw a sample z from h(z)
2. draw a uniform random number u from [0,1]

%, otherwise forget x

4. repeat until enough samples are obtained

3. accept the sample if u <

Rejection sampling for Integration

To integrate a function in D dimensions, sample

xM = (:c(li),...,:v(Di)) ~U(Q) fromi=1...M
Evaluate function f (x('i)) fori=1...M

Accept sample if f (x“’)) < y(i), reject otherwise:

accepted samples
1 TRccepted samples o
M

5. Probability Theory

5.1 Basics

A probability density P : F — [0, 1] assigns probabilities to
events with P(Q2) = 1.
e State/sample space F (range of values of RV)
e Discrete case: Y}, P(z;) = 1
e Continuous case: §,, dP(z) = {, p(z)dz = 1
with p(z), the probability density function
e Pla< X <b) = SZp(a:)da:
e Cumulative Distribution Function:
Fx(z) = P(X <a) = | p(e)da

5.2 Set Theory

Consider two subsets A and B of a whole sample set F.

e Complacement of a set: A° = F\A

Union of sets: A U B

Intersection of sets: A n B

Disjoint sets: An B =

e Special case: IF A°=BAND AuB=F: AnB=gg

5.3 Statistical Terms

Expectation value :

e Discrete case (mean): u = >, x- P(z) |p

e Continuous case: E[h(X)] = SZ h(z)p(z)dx

e Special case: h(z) =X = EX)=npn
Variance (h(X) = (X — p)?) :

0% = Var[X] = E [(X -]E[X])z] —E [X2] — (B[X])?

5.4 Empirical Distributions

Definition: Consider a set of N independent, identically dis-
tributed data points of an unknown distribution function.

Probability Density Function (PDF):

#elements in the sample with value =
N (size of sample set) =

a ST x. —
Pn(z) = 1711\] =

Cumulative Distribution Function (CDF):
F(z) = 2

in the sample with value <z _ 2j—1 X ;<ax
N (size of sample set) -

Unbiased Estimator:

An unbiased estimator of a statistical parameter means that
the expected value equals the true value of the parameter,

eg E[p] = u, E[6%] = o
A= g X @i

5.5 Common Distributions

6% = g 3 (= — p)°

Uniform Distribution Binomial Distribution

n n—
pu(@) = 525 p(k) = <k) P —p) "
Normal Distribution Exponential Distrib.
2
P (@) = L= exp(=15025) p(a) = Ae
o2 20

6. Neural Networks

6.1 General Structure

R"0 — R"L

output = F'(input, weight)

y = F(x,w),

Different Types of Neural Networks
e Fully Connected Neural Networks
e Convolutional Neural Networks (CNN)
e Recurrent Neural Networks (RNN)

6.2 2-Layer Networks

1st layer 2nd layer

s 2

Whyno

For each layer:

1. Input z; is weighted by w;

2. Summed

3. Activation function ¢ is applied

Map Input to First Layer:

a} = ZTBO w]11xl and zgl. = 1 (a})
Map First to Second Layer / Output

a? = 27:10 w]2'izil
Compact Notation

‘y(w;w) =2 (W21 (W'a)) ‘

2

and y; = zj; = p2 (a?)

6.3 L-Layer Networks

1st layer

L-1 layer

L layer

L-1 L-1
Oy #npy

Compact Notation for y(xz; w) =

PL (WLAPL—l (WL71¢L—2 (- W31 (Wlm))))

6.4 Activation Functions

Heaviside Ramp (ReLU) Hyperbolic Tangent Logistic
& t 1
NN
1
/
JL

)= ==0 0, <0 .
#lo) {1 a0 olx) = {, e () = tanh(z) (@) = o

6.5 Training

Goal:

Update the weights w so that the output y,, given an input
T, matches a target ¢y,

Steps:
1. Build a model y (x,,w) with the initial weights

w={W1,W2,‘.‘,WL}

2. Perform the forward pass, i.e. produce the output y,, for
all x,, in the dataset
3. Compute the loss with respect to the target:

1 N 5 N
W) = — Yn Y Xn, W = n
Ew) =5 % @~y (xnw)’ = 3 B

4. Perform the backward pass, i.e. update weights (see 6.6)
5. Repeat until you reach a minimum: w* = arg min E(w)

6.6 Gradient Descent (GD) and Variations

Key ldea:

Use derivatives (gradient) of the cost function E with re-
spect to the weights w to update the parameters:

w*+D) _ (B _ NVwE (w(k))
with iteration index k and learning parameter n

Stochastic Gradient Descent (SGD):

Alternative to GD with derivative of local error E,, re-
lated to the pair {z,,, Un }:

wh D = w® v, B, (w®)

with sequential or random choice of E,,.

Batch Stochastic Gradient Descent (batchSGD):
Method between GD and SGD with gradient on subset Z,

with Z < {1,2,..., N}, chosen randomly.
wFTD — () NV Z E, (,w(k))
nel

Learning Parameter 7
e Crucial hyper-parameter in deep learning
e Not a priori clear how to be chosen

(a

)
(b) 7 too low/slow: takes too many iterations to reach w*
)

(c

n too high/fast: oscillates between suboptimal values
desired value of

E(w) E(w)

w iteration

6.7 Backpropagation

Update weights using Gradient Descent:
w*tD — ® v B (w(k))
and rewrite gradient in terms of a; = Y}, w;x 2 (chain rule):

0B, 0B, da; 0E, . 5
= = zZ; = 6JZ7,

aaj (7w]'i B

- Py
8wj,- oaj

WD @ weight
Derivative of the Error §;
0E, 0E, day <~ Oay
R e
aaj aak aaj aaj
k k

with ap = Z]- ’II))C]‘Z]' = Z]‘ lf)kjtp(aj):
day,

o = ¢ (@) Dy = 8 = ¢ (a5)) Dr;On
J

k

Last Layer of Neural Network, i.e. a; = y;

OB, _ 9B, da,

= = = 6]‘21‘
911)]'7; 6aj oWy
0B, 0 1 5
d; = = — = 2 — 4
L P ly (@n; w) — 9, |
0

1 . N
=22 3wk (@i w) — Gni)® =y (®ns W) — Gnj
J
K

Key Idea of Backpropagation

OEn,

o At last layer, gradients 5~ and o)
I

daj

don’t depend on

Neural Network
e Calculate 6; at last layer first, then back-propagate
to acquire the ¢;'s at every previous layer

6.8 Overfitting

Bias-Variance-Tradeoff
e Overfitted: Model fits behaviour of noise and does not
generalize efficiently (model estimation errors)
o Underfitted: Too few parameters, model ignores meaning-
ful data (model mismatch errors)

Key lIdea:
Introduce subset of data (~10%) as a test set
and run SGD on both training and test data.
Plot error for both subsets over iterations:
overfitting

E(w)

testing data

training data

iterations

7. Dimensionality Reduction

7.1 Principal Component Analysis (PCA)

Goal
e Decrease dimension of the data while either explaining
most of the variance or minimizing the reconstruction loss.
e Changes the coordinate system of the data while aligning
the axes to the directions with the most variance
e Data must have zero mean, i.e. ,, = ©,, — T
= centered data matrix X € RV*D
Maximum Variance Formulation
Find direction v} = argmaxs q fovl s.t. variance is max.:

2
2 _ 1 N T _ T
0] = NoT Zn-1 (Xn Vl) =v; Oy

1 T DxD.,
o XTX e RPXD:

Cvy = \vi
The Principal Comp’ts are the eigenvectors of the eigenvalues
of C sorted from the biggest to the smallest:
C=VAV™', A=diag({\}), V' =VTeRrP*P

with Covariance matrix C' =

i
vivy=1

Compression of data by using only first » < D p.c.:
Y, =VIX
Reconstruct Data

Y
Zi:l A

v DxN A
X =V,.Y.eR ‘Wlth orctetinzs) werEmm = SD X
n=1 7Y

Kernel PCA
Nonlinear cluster of data made linearly separable by
transforming the data by using some kernel functions ¢:
N

C changes to C' = % .gl & (x:) b (xi)T

7.2 Auto-Associative Neural Network

Key Idea
e Use Neural Network to learn dimension reduction
e Map input x,, € RP onto an output X" € RP through

an intermediate layer y,, € R" using a matrix W € [RESE

‘yn = Wxn, %,=WTy,

Error Function
Find optimal weights by minimizing the error,
i.e. the difference between input and output:
1 N
w”* = argmin— Z |lxn — wT Wx, Hg
w N n=1 RV
yn
Nonlinear Problems

Capture non-linear problems by adding non-linear activation
function ¢ and more intermittent layers:

Yn = oL (Wrer—1 (--- Wapr (Wix,))

Xn = W1T992 ("'W;—I‘PL (WITYn))

Note: Deeper networks increase expressiveness
but are easier to overfit and memorize the training dataset.

