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Definition 2.0.1 — Mathematical optimization problem. Let f: " — Rand g;: R" = R
for i EM. A mathematical optimization problem in n variables has the form.

min /(x)
gilx) <0, fori & [m],
xeR"

The function f is called the objective function and functions g; are called (inequality ) constraint
[functions.
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. .Xy]. We start with the following definition.

sed semidlgebraic set. A set . (| B” |sa basic closed semidl-
gebraic set if there exists a set of polynomials % = {go:= ] g..... gn} € R[x] such that
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Exercise 2.1 Consider the following two sets of polynomials %', %% < R[x,)]:

' ={4— (=2~ (-2, —~(x-1)@4-x), ~6-DB-y}
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Definition 2.0.3 — Closed semialgebraic set. A finite union of basic closed semialgebraic
sets in BY is called a closed semialgebraic set.

!® Semialgebraic sets are closed under finite unions, intersections, and complementation.

————

pr————

Theorem 2.0.1 — Tarski—Seidelberg theorem. Let X be a semialgebraic set in B"*! and
T : B"! — R" be the projection defined as u (X1 ,. .. . Xn,Xnt1) = (X1,... . Xn). Then M,(X) is a
semialgebraic set in E”.
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Definition 2.0.4 — Polynomial optimization problem. Let f,gi1,....gm € Blxi,...,x]. A
polynomial optimization problem in general form takes the form

min f(x)
g, (x) >0, fori £ [m],
xeR"
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Definition 2.1.1 — Convex optimization problem. Let f,g1,...,gx : R — R be convex
functions. A convex oprimization problem in general form is the following program:

min f(x)? K

gilx) <0, forie|m].
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= Example 2.6 Consider a finite set of k polytopes F; C R”, for i € [k]. We are interested in

optimizing, possibly an affine function, over the convex hull of the union of polytopes ..., B,
namely over a set P defined as:

P
P = conv (UP, .

i=1

Since the convex hull of the union of £.... P is a polytope, we are interested in its inequality
representation.
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Convex problems cover a broad class of problems. including linear programs and many other
classes that we will study in the next chapters. Special classes of convex problems include:
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Proposition 2.1.1 Let f.h.g. for i € [m], be convex functions. The program

min{/()] g = 0, h(x) < 0, for [m]} 22
is equivalent to the convex problem

min{/()] £ = 0, h(x) = 0, for & [m]} 23)

if at any optimal solution x* of the convex problem we have 1(x*) = 0.
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Consider the following optimization problem
MAX X, F X

_ 3
S‘t XLS )(4 Jﬂ{ d h hf)ll f feasibl
In red, we have convex hull of feasible
)(" 7)(L € (a/"”j solutions. Red arrow shows direction

of optimization. Blue vertices are
optimal solutions, that give opt=1.

Since we cannot solve 0/1 optimization problems in general, usually we relax the problem
to the following form.
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Since we relaxed the problem, the feasibility region got bigger (the green region).
The optimal value of the relaxed problem (the green points) is 3/2. Which is bigger
than the integral optimal solution that was 1.

One of the successful ways to provide tighter relaxation is to use Cutting Plane methods.
In this method we generate additional linear constraints to make our feasibility region as
tight as possible. An example of cutting plane method are Chvatal-Gomory cuts.
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Even more general type of cuts is the class of Split cuts.

In a split cut we "cut" our feasible region in two pieces by cutting it with
a hyperplane, and then delete a strip "around" the hyperplane in a way
to be sure that none of the integral solutions was deleted. The we take
a DISJUNTION of these two parts, that is a convex hull of union of these
sets. Let's see how such a cut/could look like in our case.
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Now we will try to construct a "strip" around the hyperplane such that we
do not delete any of the integral solutions. Such a "strip" is shown below.

After deleting the strip we get two polytops P1 and P2 and we optimize over
convex hull of its union. The polytopes are defined in the following way.
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Now we can draw P1 (in blue), P2 (in gray) and convex hull of its union (in purple).

.

One can see that purple region (obtained using split cut and DISJUNCTIVE PROGRAMMING)
is tighter that the green relaxation.
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