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Problem 0.1 Guitarists

a)

We start with two in-phase waves:

{yA(ﬁ t) = Ca(r)cos(k(r —r4) — wt) (1)

yp(r,t) = Cp(r)cos(k(r —rp) —wt) = Cp(r) cos(k(r —ra) —wt + kAr)

Where we defined Ar = r4 —rp, and the amplitudes at the listener position (rr,) are equal
Ca(rr) = Cp(ry) = C. Adding the two waves together we get:

kA kA
Yint (1, 1) = QCCOS<TT) cos(k(rL —7r4) —wt+ 2r> (2)
The amplitude for the oscillating wave is [2C COS(’“%T) | and it have maximum when kAr =
2mn, with n = 1,2,3... . Finally, we can relate k to f by k = % and get:

m 300 Hz n=1
fn:n-%:n- 1nsleC= 600 Hz n=2 (3)
900 Hz n=3

The oscillation frequency is given by f, = n - g3. The velocity of a wave in a string is

v = % We are interested in the fundamental harmonic - f; = };—Tﬁ, S0
2 2 kg 2 1 2
Fr = pfif(2L)* = 0.002 = - 450 — - 1m* = 405N (4)
m sec
The new frequency of the wave at the listener is
VUsound 300 100

= fs-— =440Hz- =440Hz - — =~ 444.44H 5)
L A — “"300-3 “ 799 § (5)

That means that the beating is fpeqt = 444.44Hz — 440 Hz = 4.44 Hz.

The intensity is inverse proportional to the square of the distance between the guitarist and
the listener. Assuming that the sound wave propagate in half sphere we have Ig(r) = %,
where Pp g is the power of the source (guitarist B). The distance between the guitarist to

the listener was change from r; = 12m to ro = 6 m, therefor, the intensity increased by
Ppo

Ipry  5re2 122
factor of 4 (IB‘T1 =B = =14)
27122



Problem 0.2 Standing waves

a)

Because the bead is free to move on the pole there is anti-node in the pole position (and
a node on the wall). This boundary conditions determine that all the length of the string

is equal to odd multiplication of quarter wavelength L = n)jT", with n = 1,3,5,... . The
frequencies are f, = ﬁ = nyp, with v = 1/% = 0%?& =107

The first three frequencies are:

0.25 Hz n=1
fo=n- g = (075 He n=3 (6)
1.25Hz n=>5

2rf 27-0.25 Hz 21

For the fundamental harmonic wave function we have k = =+ = G55~ = 45, and
w = 27 - 0.25 Hz. Therefor, in the range 0 < x < L we get: -
27 -z 2m -t
) = Asin(kz) cos(wt) = (10 ( ) ( ) 7
y(z,t) sin(kx) cos(wt) = (10 cm) - sin 10m ) <\ T (7)

Sketches of the displacement in the g-direction as function of the distance from the wall:
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For calculating the wave energy we consider the kinetic and potential energy in a length
segment dr and integrate over the entire string length.

The kinetic energy is given by dF, = % py?dx, where pde is the mass of a length segment
dx.

The potential energy can be calculated by the work needed to stretch a string segment
that have a displacement y(x) in the ¢ direction. The overall change in the length of

2
the string due to this displacement is dl = \/dz? + dy? — dx = dx( 1+ (%) - 1) ~

2 2
(Z—y) dx. The potential energy is thus dE, = IFT@—Z) dx.

(1) (8)" 1)

1
2\ drx
Now, we will calculate the derivatives:

y = —wAsin(kz) sin(wt)
— §? = w?A? sin?(kz) sin?(wt)

similarly:



g—i = kA cos(kzx) cos(wt)

2
@> = k2 A% cos?(kx) cos? (wt)

— (896

The total mechanical energy of the segment is:

dE = dEy, + dE,

1 1
= §uw2A2 sin?(kx) sin? (wt)dz + §FTk2A2 cos? (kx) cos? (wt)dzx

Using k% = “F—f we get:

1
dE = §uw2A2 (sinz(k:a:) sin?(wt) + cos®(kx) cos? (wt)) dx

1
= ZMW2A2 (1 + cos(2kx) cos(2wt))dac

Finally, performing the integration (where k = i—z) we get:

L1
E = / —pw? A2 (1 + cos(2kx) cos(2wt)>d33
o 4

= %,uw2A2L + %uszQ . % sin(ZEZ:z) cos(2wt)‘§

L 92 1 kg - 2 2 ®)
= qhw A°L = 1 0.1 o (2m-0.25Hz)” - (0.1m)“ - 10m
T 1072) ~ 617100

16

Due to energy conservation, we can also calculate the energy when we have maximal kinetic
energy and zero potential energy. The kinetic energy per unit length of the string is:

1 o 1 2 42 i 2 .2
5 pdx y° = §uda:w A®sin®(kx) sin®(wt) (9)

m

dEk(w) =

juy

2

The maximum potential energy is when wt =

1
dEk maz(z) = dE(z) = §uda:w2A2 sinQ(kx) (10)
L1 1 2
E = / i,udxuﬂAz sin?(kz) = Z,uwQAQL T 1072~ 6.17-1073] (11)
0

d) In a standing wave, without dissipation, the energy is conserved and is spatial bounded by

the boundary (i.e., by the two ends of the string), therefor, no energy is being transmitted
by the wave.
Another way to look on a standing wave is interference between counter propagating waves
with the same amplitude, where each wave transmit the same amount of power but in the
opposite direction from the other wave, such that the overall power transmitted by the
wave 1s zero.



Problem 0.3 Heat capacity

a) The angular frequency is:

here wf — -h — 0 _ 400 1,
where wo = 75, = 01kg

1 _ 1
V400 L =20 L.

sec

2
1 _ 1 1 I~ _
and (—) = 360000 =z~ Lherefor, W' ~ wp =

b) The entire mechanical energy of the spring was converted during the oscillation to internal
energy of the mass and the Tungsten tube. The initial potential energy of the spring was:

1 1 N
EpzikAL2:§-4OE-O.52m2:5J

The change in the internal energy is thus:

AUmt = (MW -cw + M - C)AT = Ep

1 /FE
:>C:M(7P—Mw-c‘/v>

AT
1 5J kJ (12)
— (2~ 0.1kg - 0.135 )
0.1kg(0.2K & kg - K
J kJ
=115 —— =0.115 ——
kg - K kg - K
c) Sketch of the temperature as function of time:
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Sketch of the energy of the spring as function of time:
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In the case of solids, the change in volume due to change in temperature is negligible,
therefor we can estimate % = 0. That means that the change in the solid internal energy

is due to heat dU;,; = dQ (dW = 0).

Tr Tr M dT
dS:/ Q:/ My ewdT
T, T T, T

T
— AS = Myewl (—f>:0.1k .0.135
wew 1n T, g kg - K

(13)

kJ 300.2K
ln(

J
=8.997-107% =
300K ) K

Because the temperature is changing very slowly in the integration we can also approximate
it to be constant and the integral becomes:

Tr M T AT
ds :/ MwyewdT Myyew — (14)
T T

if using the initial temperature we get:

AT kJ 02K J
AS ~ M, =0.1kg 0135 ——  ——— =9.1073 = 1
S wew T 0.1kg-0.135 kg K 300K 9-10 K’ (15)
while if using the final temperature we get:
AT kJ 0.2K J
AS ~ M =0.1kg- 0.1 - =8.994-107° —. 1
S wew T 0.1kg-0.135 kg K 3002K 8.994 - 10 K (16)



Problem 0.4 Brayton cycle

a) We start with calculating the volume and temperature at the beginning of each step. We
will use the given molar heat capacity at constant volume, ¢, = R (the molar heat capacity
at constant pressure is ¢, = ¢y + R = 2R), as well as the Poisson constant v = f—"; =2.

Step 1: Here we just have P, V4 and T}

Step 2: To calculate the temperature and volume in 2 we can use the P — V relation in
adiabatic process, PV7 = const. In addition, we can use the equation of state for
ideal gas PV = nRT:

The volume:

PV =RV

Py

— Vi="= V2

2= p N

Pys 1

— V=V (—) =V,

2 1 AP, 571

The temperature:
T2 _P2V2 _4P1'%V1 —9

. PV, PV
— 15 =21}

Step 3: Here we have Py = P53 (we now that T3 = 877 - it is the maximum temperature in the
cycle), therefor we can use the equation of state to calculate the volume.
nRIT5y  8nRT

= = = 2
Vs P 4P Vi

Step 4: This step is similar to step 2 (or 3):
The volume:

P4V2:P3V3FY
P
2_73' 2
:>‘/;1 _P4 ‘/3
4P

:>V4:2V1(Pl>; — 41

The temperature:

Overall we have:

Step 1: Py, Vi, Ty

Step 2: Po=4P,, Vo = %Vl, T, =21
Step 3: Ps=4P;, V3 =2V, T3 =81}
Stepd: Po=P;, Vy=4V;, Ty =4T



Sketch of the P-V diagram:
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b) We will calculate the work in each step:

Step 1: in adiabatic process there is no heat transfer AQ = 0, therefor:

AUint =AWop gas = gﬁRAT =
AR(Ty — Ty) = ARTy = P4

where f=2 is the number of degrees of freedom of the gas.

Step 2: The work done on the gas in constant pressure is:

1
AWop gas = — PAV = —4P(2V; — §V1) =—6P V1,



with P = P, and AV = V3 — V5.
The change in the internal energy is:

A[]im‘, = [ n

> nRAT = 6nRTy = 6P V;

The heat that was transferred to the gas is:

AQ = AUin — AW = 12P, 4

Step 3: (Similar to step 1)

f .

AUint = Av[/Vongas = 577/

AQ =0

RAT = —4nRT) = —4P1V;

Step 4: (Similar to step 2)
AW gas = —PAV =3PV,
with P = P; and AV = V] — Vy. The change in the internal energy is:

f

AUipt = §nRAT = —3ART; = -3P,V}

The heat that was transferred to the gas is:

AQ = AUy — AW = —6P1V;

The total amount of work done by the engine in one cycle is:

chc, by — _‘/chc7 on — 6P1V1

c) The efficiency of the engine is:

n= ’W‘ _ chc,by _ 6P1V1 _ }
Qn Qn 12PV; 2

where @, is the heat that was transferred from the hot reservoir (during step 2).



Problem 0.5 Entropy and heat capacity

a)

The entropy relates to the number of possible microstates of the system. We need to count
the number of possible microstates of the system, or, in how many arrangement we can
position the two atoms. We have N = 3 positions and & = 2 atoms. The number of

: : : _ _ N 3
possible configuration is €} = =R = (B2 = 6.
et (TS o] e [OTSTS
Configuration 3 [ [e) O [

The entropy is S = kpIn(Q) = kpIn(6) ~ 1.79kp.

We have N = 3 atoms and each of them have k& = 3 different possible spin configuration.
The number of possible configuration is therefor Q = k¥ = 3% = 27. The entropy is
S = kB ID(Q) = kB 111(27) ~ 3.3/63.

The molar heat capacity at constant volume, c,, relates to the change in internal energy
by AUt = nic, AT

From the equipartition theorem we know that energy of %RT per mole is associated with
every degree of freedom. The number of degrees of freedom for a molecule in the system is
f =4 (2 for translation, 2 for rotation). Therefor,

1
Uine = f - 715 RT
1
AUint = f - 15 RAT = e, AT

:cvzgR:ﬂ%

When F is very large the molecules cannot rotate any more, therefor the number of available
degree of freedom is reduced to f = 2 and the molar heat capacity is ¢, = %R = R.

Qualitatively sketch of the molar heat capacity:
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