

Elektrotechnik 1

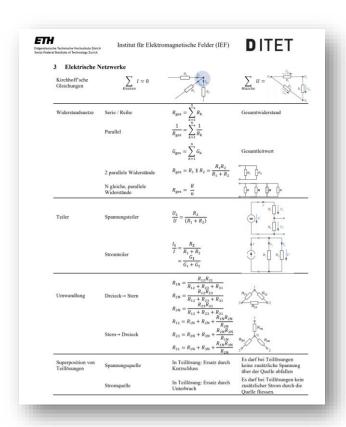
Übung 2 – Netzwerke 1

Wer bin ich?

- Lars Horvath
- Studiere Elektrotechnik am D-ITET im 10. Semester
- ET1 Assistenz im FS19, FS21, NUS Assistenzen, ET1 PVK

Unterlagen: https://n.ethz.ch/~lhorvath/

Email: lhorvath@student.ethz.ch



Unterlagen

• Unterlagen: https://n.ethz.ch/~lhorvath/

Email: lhorvath@student.ethz.ch

Zusammenfassung ausdrucken! (Moodle)

Ablauf Übungsstunde

Erste Stunde:

- Kurze Theorie "aus Studenten-Sicht erklärt"
- Eigene Beispiele oder Beispiele aus der Serie
- Tipps

Zweite Stunde:

Serien lösen

Wichtig! keine ausführliche Nachbesprechung, ausser dies wird gewünscht (Bitte rechtzeitig per Mail bei mir melden!)

Bonus und Prüfung

Serien:

- Abgabe auf Moodle (bis Di 16:00) oder in der Übungsstunde
- Kontrolle zufällig 3x im Semester
- 0.25 Bonus wenn mind 2/3 abgegeben warden (sinnvoll gelöst)
- Aufgaben sehr ähnlich zur Prüfung
- Arbeiten mit Zusammenfassung

→ Serien machen lohnt sich!

Prüfung:

- Schriftlich 90min, ZF bereitgestellt, kein Taschenrechner, 6-7 Aufgaben
- Jedes Jahr ähnliche Aufgaben

Theorie: Kapazität

Definition Kapazität:

$$C=rac{Q}{U}$$

Kapazität entspricht Fähigkeit Ladung aufzunehmen.

Einheit:

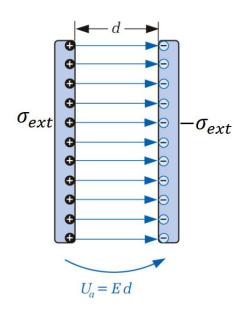
$$[C] = \frac{C}{V} = F$$
 (Farad)

Allg. Vorgehensweise:

Ladung

$$Q = \iint_A \overrightarrow{D} d\overrightarrow{A} = \iint_A \sigma dA = \sigma A$$

Spannung


$$U = \int_{S} \vec{E} d\vec{s} = E d$$

Verschieden sind jeweils:

Theorie: Beispiel Plattenkondensator

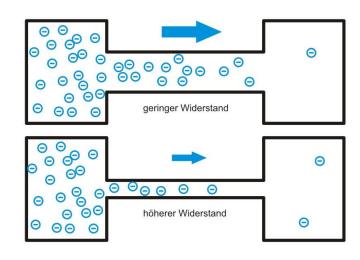
Plattenkondensator

Ladung

$$Q = \iint_A \overrightarrow{D} d\overrightarrow{A} = \iint_A \sigma dA = \sigma A$$

Spannung

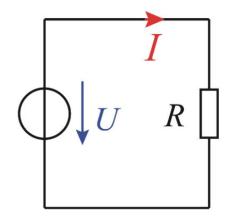
$$U = E d = \frac{\sigma}{\varepsilon_0 \varepsilon_r} d = \frac{Q}{\varepsilon_0 \varepsilon_r A} d$$


→ Kapazität:

$$C = \frac{Q}{U} = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

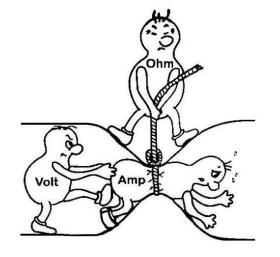
An Prüfung zB. mit Zylinderkondensator, Kugelkondensator


Theorie: Ohmsches Gesetz


Ohm'scher Widerstand

 $[R] = \Omega$

Ein Bauteil, welches immer den selben Widerstand hat, unabhängig vom Strom, welcher durch ihn hindurch fliesst.



$$U = R \cdot I$$

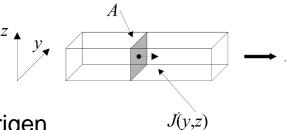
Widerstand

Gibt an, wie frei sich die Ladungsträger bewegen können. Ein höherer Widerstand führt zu einem reduzierten Strom.

Schaltsymbol:

Weitere Definitionen:

Leitwert:


$$G = \frac{1}{R}$$

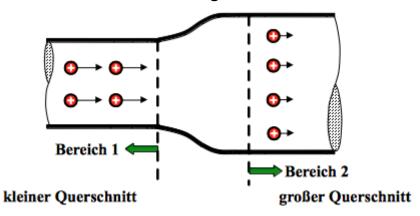
Theorie: elektrisches Strömungsfeld

Strom (allg.)

$$I = \int_A \vec{J} \, d\vec{A}$$

Stromdichte

$$J=\frac{I}{A}$$

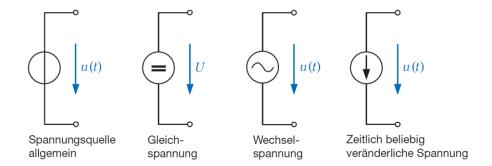

Wobei $d\vec{A}$ senkrecht auf dem zugehörigen Flächenelement steht.

Wenn Stromdichte gleichmäßig über die Querschnittsfläche verteilt ist (meistens, bei Gleichstrom), dann

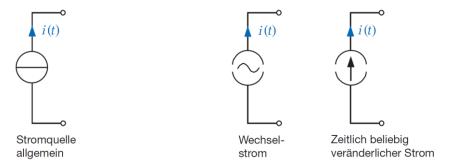
$$I = \vec{J} * \vec{A} = J * A$$

Skalarprodukt vereinfacht sich, da Fläche senkrecht durchflossen (meistens)

Gleiche Anzahl Ladungen = konst. Strom

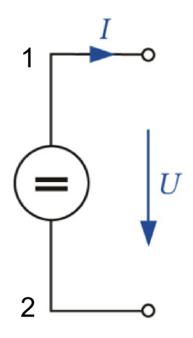

Grosse Stromdichte

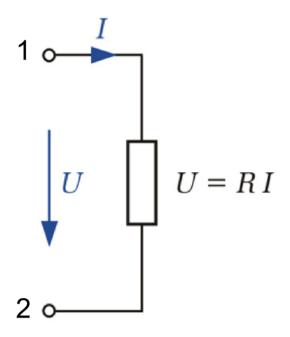
kleine Stromdichte


Theorie: Ideale Quellen

Ideale Spannungsquelle

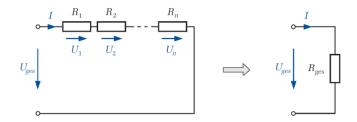
- Über der Spannungsquelle fällt immer genau dieselbe Spannung ab. Es kann ein beliebiger Strom fliessen.
- Wir unterscheiden zwischen Gleichspannung (DC) und Wechselspannung(AC)


Ideale Stromquelle



- Der Ausgangsstrom ist unabhängig vom angeschlossenen Netwerk
- Wir unterscheiden zwischen Gleichstrom (DC) und Wechselstrom (AC)

Anmerkung: Zählpfeilrichtung

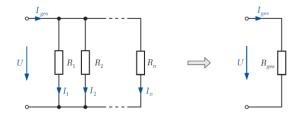


Theorie: Serien- und Parallelschaltung bei Widerständen

Serienschaltung

$$R_{ges} = \sum R_i$$

$$R_{ges} = R_1 + R_2 + \cdots R_n$$



- Gleicher Strom durch alle Widerstände
- Spannung verteilt sich über alle Widerstände
 - →Grösserer Gesamtwiderstand

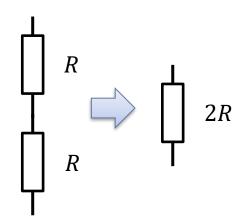
Parallelschaltung

$$R_{ges}^{-1} = \sum R_i^{-1}$$

$$\frac{1}{R_{qes}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

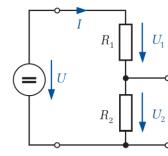
- Spannung ist gleich über jeden Widerstand
- Strom verteilt sich über alle Widerstände
 - → Kleinerer Gesamwiderstand

Spezialfall 2 Widerstände:


$$R_{ges} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

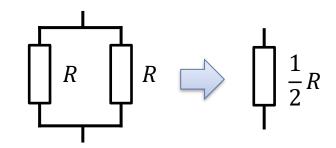
Theorie: Serien- und Parallelschaltung bei Widerständen

Serienschaltung

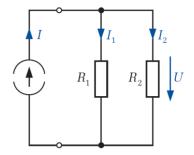

$$R_{ges} = R_1 + R_2 + \cdots R_n$$

$$R_{ges} = \sum R_i$$

Spannungsteiler


$$U_2 = U_{ges} \frac{R_2}{R_1 + R_2}$$

Parallelschaltung


$$\frac{1}{R_{qes}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

$$R_{ges}^{-1} = \sum R_i^{-1}$$

Stromteiler

$$I_2 = I_{ges} \frac{R_1}{R_1 + R_2}$$

Theorie – Knotenregel

$$I_1 = I_2 + I_3$$

$$\sum_{k=1}^{n} I_k = 0$$

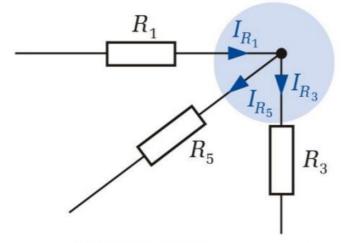
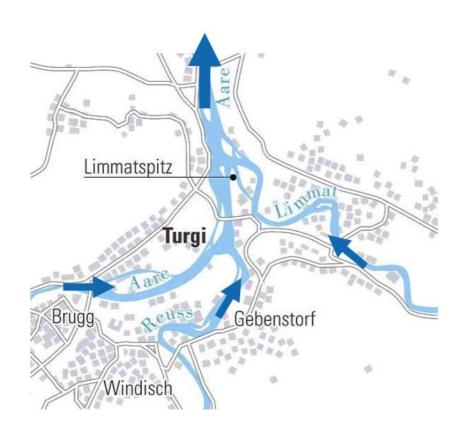
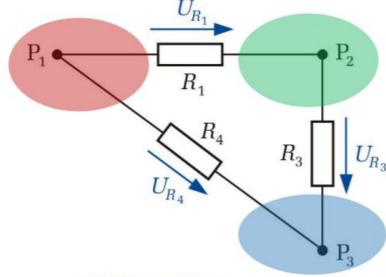
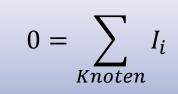



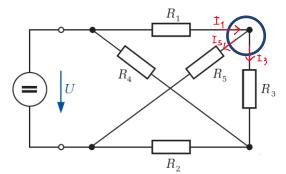
Abbildung 3.8: Knotenregel

Theorie – Maschenregel

$$U_1 = U_2 + U_3$$

$$\sum_{k=1}^{n} U_k = 0$$

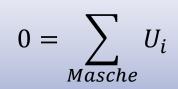



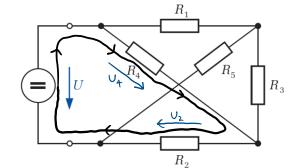

Abbildung 3.7: Maschenregel

Theorie: Kirchhoff'sche Regeln

Knotenregel

$$0 = I_1 + I_2 + \cdots + I_n$$

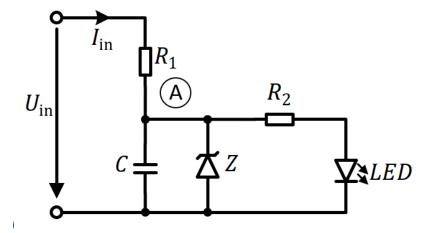



$$0 = I_1 - I_3 - I_5$$
$$I_3 + I_5 = I_1$$

- In einen Knoten muss gleich viel Strom rein wie raus fliessen!
- Alle Ströme die in den Knoten reinfliessen schreiben wir mit positivem Vorzeichen, alle die rausfliessen mit negativem Vorzeichen

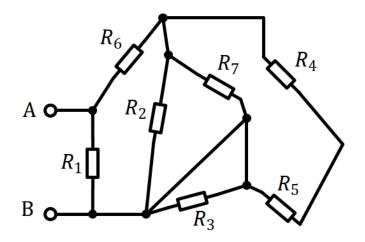
Maschenregel

$$0 = U_1 + U_2 + \dots + U_n$$



$$0 = -U + U_4 + U_2$$
$$U = U_4 + U_2$$

- Entlang einer Masche addieren sich alle Spannungen zu Null!
- Alle Spannungen die in Richtung unserer Masche zeigen schreiben wir mit postivem Vorzeichen, alle die in Gegenrichtung zeigen mit negativem Vorzeichen


Beispiel Serie 3, A3b

-) Markieren Sie alle Knoten. Wie viele gibt es?
- ii) Definieren Sie Strom- und Spannungsrichtungen für alle Elemente.
- (b) Betrachten Sie nun Abbildung 3(b). Mit ähnlichem Verfahren wie in (a)
 - i) Finden Sie einen Zusammenhang zwischen der Spannung über dem Kondensator *C* sowie der LED. (Hinweis: Maschengleichung)
 - ii) Stellen Sie die Knotengleichung im Knoten A auf.
 - iii) Mit der Knotengleichung in A, finden Sie einen Zusammenhang zwischen I_{in} und dem Strom durch die LED.

Beispiel Serie 3, A3b

- i) Markieren Sie alle Knoten.
- ii) Entfernen Sie kurzgeschlossene Elemente falls vorhanden.
- iv) Finden Sie je zwei Widerstände mit der gleichen Spannung bzw. dem gleichen Strom.

Tipps Serie 3

1.
$$R_k = \frac{l}{\kappa A} U = R^*I$$

2.
$$I = J(r) * A(r) \text{ von}$$

- 1. Halbe Kugeloberfläche nutzen $I = \int_{A_H} \vec{J} \cdot d\vec{A}$
- 2. Nach J(r) lösen
- 3. Elektrisches Feld mithilfe von J(r) finden (in der Zusammenfassung)
- 4. Ohm'sche Gesetze nutzen

3. Knotenregel

Beispiel: Kugelkondensator

1. Kondensatorberechnung

- (a) In der Vorlesung haben wir das Beispiel eines Zylinderkondensators angeschaut. In dieser Übung betrachten wir einen Kugelkondensator wie in Abbildung 1 gezeigt. Die innere Kugel mit Radius a sei mit einer Ladung Q auf der Oberfläche geladen, die äussere Hohlkugel mit Radius b mit Q. Zwischen den Kugeln befinde sich Vakuum. Berechnen Sie das elektrische Feld $\vec{\mathbf{E}}(\vec{\mathbf{r}})$ für diese Anordnung ausgehend von der Ladung Q. Benutzen Sie ein sphärisches Koordinatensystem.
- (b) Berechnen Sie nun die Spannung U_{ab} aus dem elektrischen Feld.
- (c) Was ist die Kapazität C des Kugelkondensators?

Beispiel: Feldberechnung

4. Feldberechnung

- (a) Betrachten Sie eine Metallkugel mit Radius a, die mit einer Ladung Q geladen ist im Vakuum. Bestimmen Sie das elektrische Feld $\vec{\mathbf{E}}(\vec{\mathbf{r}})$ um die Kugel. *Hinweis*: Benutzen sie Kugelkoordinaten und nutzen Sie die Symmetrie der Situation aus.
- (b) Berechnen Sie das Potential φ der Kugel.
- (c) Berechnen Sie die Feldstärke an der Oberfläche der Kugel $E_{\text{Oberfläche}} = |\vec{\mathbf{E}}(|\vec{\mathbf{r}}| = a)|$.

