
Numerical Methods for Partial Differential Equations TA
Summary

NPDE
Jonas Bachmann, Paul Fischill, Samuel Russo and Nico Graf

mailto:jbachmann@student.ethz.ch
mailto:pfischill@student.ethz.ch
mailto:samrusso@student.ethz.ch
mailto:grafn@student.ethz.ch

0 Preface

Theorem 0.3.1.19 Cauchy Schwarz Inequality
if 𝑎 is symmetric positive semi-definite bilinear form, then

|𝑎(𝑢, 𝑣)| ≤ 𝑎(𝑢, 𝑢)
1
2 𝑎(𝑣, 𝑣)

1
2 (1)

Norms

• suprenum norm: ‖𝐮‖∞ = ‖𝐮‖𝐿∞(Ω) ∶= sup
𝐱∈Ω

‖ 𝑢(𝑥)‖

• 𝐋𝟐 norm: ‖𝐮‖2 = ‖𝐮‖𝐿2(Ω) ∶=
(

∫Ω ‖𝐮(𝐱)‖2𝑑𝑥
)

1
2

Theorem 0.3.2.31 Transformation rule for Integration
given to domains Ω, Ω̂ and a continuous, differentiable mapping 𝚽 ∶ Ω̂ → Ω

∫Ω
𝑓 (𝐱)𝐝𝐱 = ∫Ω̂

𝑓 (𝚽(𝐱̂))|det D𝚽(𝐱̂)𝐝𝐱̂ (2)

2

1 Second-Order Scalar Elliptic Boundary Value Problems

1.2 Quadratic Minimization Problems

Linear forms
Let 𝑉 be a Vector Space over ℝ, 𝑙 ∶ 𝑉 → ℝ is a linear form / linear functional ⟺

𝑙(𝛼𝑢 + 𝛽𝑣) = 𝛼𝑙(𝑢) + 𝛽𝑙(𝑣) ∀𝑢, 𝑣 ∈ 𝑉 ,∀𝛼, 𝛽 ∈ ℝ (3)
Bilinear forms
Let 𝑉 be a Vector Space over ℝ, 𝑎 ∶ 𝑉 × 𝑉 → ℝ is a bilinear form ⟺

𝑎(𝛼𝑢1 + 𝑢2,𝛽𝑣1 + 𝑣2)
= 𝛼𝛽𝑎(𝑢1, 𝑣1) + 𝛼𝑎(𝑢1, 𝑣2) + 𝛽𝑎(𝑢2, 𝑣1) + 𝑎(𝑢2, 𝑣2)

∀𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝑉 ,∀𝛼, 𝛽 ∈ ℝ (4)

Positive definite bilinear form
A bilinear form 𝑎 ∶ 𝑉 × 𝑉 → ℝ is positive definite if

𝑢 ∈ 𝑉 ⧵ {𝟎} ⟺ 𝑎(𝑢, 𝑢) > 0 (5)
It is positive semi-definite if

𝑎(𝑢, 𝑢) ≥ 0 𝑢 ∈ 𝑉 (6)
Quadratic functional
A quadratic functional 𝐽 ∶ 𝑉 → ℝ is

𝐽 (𝑢) ∶= 1
2
𝑎(𝑢, 𝑢) − 𝑙(𝑢) + 𝑐 𝑢 ∈ 𝑉 (7)

where 𝑎 ∶ 𝑉 × 𝑉 → ℝ is symmetric bilinear form, 𝑙 ∶ 𝑉 → ℝ is linear form and 𝑐 ∈ ℝ Continuity of
linear form
A linear form 𝑙 ∶ 𝑉 → ℝ is continuous / bounded on 𝑉 , if

∃𝐶 > 0 |𝑙(𝑣)| ≤ 𝐶‖𝑣‖ ∀𝑣 ∈ 𝑉 (8)

1.3 Sobolev Spaces

Given a Quadratic minimization problem, i.e. a quadratic function for which we search a minimizer. Then
we first need to define the space of functions in which we want to look for the solution. There is the following
guidelines: Choose the largest space such that the problem still makes sense.
For example in Physics we generally want the solution (function that describes e.g. the shape of a string, as
in the elastic string model) to be continuous. So it makes no sense to look for a minimizer with jumps.

To formulate this mathematically we need the Sobolev spaces. Because Sobolev spaces make sure that the
bilinear form in the quadratic functional is well defined (i.e. finite for all functions in the space). Hence the

3

mathematical space in which we look for minimizers is determined by the given quadratic functional. So we
can adapt the guideline ... Choose the largest space such that the problem is well defined.

If the quadratic minimization problem is well defined, we then get the following lemma for existence and
uniqueness of minimizers.

Theorem 1.3.3.6 Existence of minimizers in Hilbert spaces
On a real Hilbert space 𝑉 with norm ‖ ⋅ ‖𝑎 for any ‖ ⋅ ‖𝑎-bounded linear functional 𝑙 ∶ 𝑉 → ℝ the quadratic
minimization problem

𝑢∗ = argmin𝑣∈𝑉 𝐽 (𝑣) 𝐽 (𝑣) ∶= 1
2
‖𝑣‖2𝑎 − 𝑙(𝑣) (9)

has a unique solution.

Note that here we use the norm as bilinear form with twice the same argument 𝑎(𝑢, 𝑢) = ‖𝑢‖2𝑎. The main
point is that in (energy) minimization problems, the bilinear form of the quadratic minimization problem can
be seen as the norm of some Sobolev space. This then leads to a solution if we check boundedness of the
linear form.
For checking boundedness we can in many cases use the Cauchy-Schwarz and Poincaré-Friedrichs inequal-
ities.

1.4 Linear Variational Problem

Linear variational problem
With 𝑉 a vector (function) space, 𝑉 ⊂ 𝑉 an affine space, and 𝑉0 ⊂ 𝑉 the associated subspace. The equation

𝑢 ∈ 𝑉 𝑎(𝑢, 𝑣) = 𝑙(𝑣) ∀𝑣 ∈ 𝑉0 (10)
is called a (generalized) linear variational problem, if

• 𝑎 ∶ 𝑉 × 𝑉0 → ℝ is bilinear form
• 𝑙 ∶ 𝑉0 → ℝ is linear form

Knowing that a solution exists of course not enough. And solving a minimization problem over infinite
dimensional spaces is not an easy task. So we reformulate the problems in a linear variational form which is
then which is then already pretty close to what we will be able to solve numerically. Therefore we have the
following equivalence

4

Theorem 1.4.1.8 Equivalence of quadratic minimization problem and linear variational problem
For a (generalized) quadratic functional 𝐽 (𝑣) = 1

2𝑎(𝑣, 𝑣)− 𝑙(𝑣)+ 𝑐 on a vector space 𝑉 and with a symmetric
positive definite bilinear form 𝑎 ∶ 𝑉 × 𝑉 → ℝ the following is equivalent:

1. The quadratic minimization problem for 𝐽 (𝑣) has the unique minimizer 𝑢∗ ∈ 𝑉 over the affine subspace
𝑉 = 𝑔 + 𝑉0, 𝑔 ∈ 𝑉

2. The linear variational problem
𝑢 ∈ 𝑉 𝑎(𝑢, 𝑣) = 𝑙(𝑣) ∀𝑣 ∈ 𝑉0 (11)

has the unique solution 𝑢∗ ∈ 𝑉

Note that the test space 𝑉0 and the trial space 𝑉 can be different because in the trial space 𝑉 we sometimes
need to consider boundary condition (if of Dirichlet type). This (𝑉) is also the space where we want to find
a solution. However in the test space 𝑉0 we do not need to respect the boundary conditions so we set them
to zero in this case (Dirichlet boundary condition).

5

1.5 Boundary Value Problems

Lemma 1.5.2.1 General product rule
for all 𝐣 ∈ (𝐶1(Ω̄))𝑑 , 𝑣 ∈ 𝐶1(Ω̄) holds

div(𝐣𝑣) = 𝑣 div 𝐣 + 𝐣 ⋅ 𝐠𝐫𝐚𝐝𝑣 inΩ (12)

Lemma 1.5.2.4 Gauss‘ Theorem
let 𝐧 ∶ 𝜕Ω → ℝ𝑑 denote the exterior unit normal vector field on 𝜕Ω and 𝑑𝑆 denote integration over a surface,
we have

∫Ω
div 𝐣(𝐱)𝐝𝐱 = ∫𝜕Ω

𝐣(𝐱) ⋅ 𝐧(𝐱)𝑑𝑆(𝑥) ∀𝐣 ∈ (𝐶1
𝑝𝑤(Ω̄))

𝑑 (13)

Lemma 1.5.2.4 Green‘s first formula
for all vector fields 𝐣 ∈ (𝐶1

𝑝𝑤(Ω̄))
𝑑 and functions 𝑣 ∈ 𝐶1

𝑝𝑤(Ω̄) holds

∫Ω
𝐣 ⋅ 𝐠𝐫𝐚𝐝𝑣𝐝𝐱 = −∫Ω

div 𝐣𝑣𝐝𝐱 + ∫𝜕Ω
𝐣 ⋅ 𝐧𝑣 𝑑𝑆 (14)

Lemma 1.5.3.4 Fundamental lemma of the calculus of variations
let 𝑓 ∈ 𝐿2(Ω) satisfy

∫Ω
𝑓 (𝐱)𝑣(𝐱)𝐝𝐱 = 0, ∀𝑣 ∈ 𝐶∞

0 (Ω) (15)
then 𝑓 ≡ 0.

We have seen equivalence of minimization problem of a quadratic functional and linear variational problem.
They are called the weak form, we can transform them with extra smoothness requirements to its strong
form, i.e. into an elliptic BVP. Mainly with the help of the above lemmas.

1.7 Boundary Conditions

For 2nd-order elliptic BVPs we need boundary conditions to get a unique solution. To be more precise, we
need exactly one of the following boundary conditions on every part of 𝜕Ω

Fundamental boundary conditions for 2nd-order elliptic BVPs

1. Dirichlet: 𝑢 is fixed: with 𝑔 ∶ 𝜕Ω → ℝ

𝑢 = 𝑔 on 𝜕Ω

6

2. Neumann: the flux, 𝐣 = −𝜅(𝑥)𝐠𝐫𝐚𝐝𝑢 through 𝜕Ω is fixed: with ℎ ∶ 𝜕Ω → ℝ

𝐣 ⋅ 𝐧 = −ℎ on 𝜕Ω

3. Radiation: flux depends on 𝑢: with increasing function Ψ ∶ ℝ → ℝ

𝐣 ⋅ 𝐧 = Ψ(𝑢) on 𝜕Ω

1.8 Second-Order Ellliptic Variational Problems

We have seen, how we can get from a minimization problem via a variational problem to a BVP. Now we want
to move in the opposite direction, from a PDE and its boundary conditions we want to get to a variational
problem. This can again be done using the lemmas from section 1.5 and consider the boundary conditions
to choose a suitable (Sobolev) function space.
For Neumann problems there is a compatibility condition, if we choose test function 𝑣 ≡ 1 we get the
requirement

−∫𝜕Ω
ℎ 𝑑𝑆 = ∫Ω

𝑓 𝐝𝐱

for the existence of solutions. Additionally the solution of Neumann problems is unique only up to constants.
To address this we can use the constrained function space

𝐻1
∗ (Ω) ∶= {𝑣 ∈ 𝐻1(Ω) ∶ ∫Ω

𝑣𝐝𝐱 = 0}

Theorem 1.8.0.20 (Second) Poincaré-Friedrichs inequality
if Ω ⊂ ℝ𝑑 is bounded and connected, then

∃𝐶 = 𝐶(Ω) > 0 ∶ ‖𝑢‖0 ≤ 𝐶 diam(Ω)‖𝐠𝐫𝐚𝐝𝑢‖0 ∀𝑢 ∈ 𝐻1
∗ (Ω)∕𝐻

1
0 (Ω) (16)

1.9 Essential and Natural boundary Conditions

Essential boundary conditions are boundary conditions which have been imposed directly on the trial space,
i.e. Dirichlet BC. While Neumann BC are only enforced through the variational equation, so called natural
boundary conditions.

• Admissible Dirichlet Data: Dirichlet boundary values need to be continuous.
• Admissible Neumann Data: ℎ needs to be in 𝐿2(Ω) (can be discontinuous)

7

Theorem 1.9.0.10 Multiplicative trace inequality

∃𝐶 = 𝐶(Ω) > 0 ∶ ‖𝑢‖2𝐿2(𝜕Ω) ≤ 𝐶‖𝑢‖𝐿2(Ω) ⋅ ‖𝑢‖𝐻1(Ω) ∀𝑢 ∈ 𝐻1(Ω) (17)

8

2 Finite Element Method

2.2 Galerkin Discretization

The idea is to replace an infinite function space 𝑉0 by 𝑉0,ℎ ⊂ 𝑉0

Theorem 2.2.1.5 Existence and uniqueness of solution of discrete variational problems
If the bilinear form 𝑎 ∶ 𝑉0 × 𝑉0 → ℝ is symmetric and positive definite and the linear form 𝑙 ∶ 𝑉0 → ℝ is
continuous. Then the discrete variational Problem:

𝑢ℎ ∈ 𝑉0,ℎ ∶ 𝑎(𝑢ℎ, 𝑣ℎ) = 𝑙(𝑣ℎ), ∀𝑣ℎ ∈ 𝑉0,ℎ (18)
has a unique Galerkin solution 𝑢ℎ ∈ 𝑉0,ℎ satisfying the energy estimate

‖𝑢‖𝑎 ≤ sup
𝑣ℎ∈𝑉0,ℎ

|𝑙(𝑣ℎ)|
‖𝑣ℎ‖𝑎

(19)

Remember the definition of a basis: {𝑏1,… , 𝑏𝑁} ⊂ 𝑉 is a basis, if for every 𝑣 ∈ 𝑉 there are unique
coefficients 𝜇𝑙 such that 𝑣 =

∑𝑁
𝑙=1 𝜇𝑙𝑏

𝑙. And 𝑁 agrees with the dimension of 𝑉 . Now we can expand
𝑢ℎ = 𝜇1𝑏1 +⋯ + 𝜇𝑁𝑏𝑁 and our goal is to find the coefficients 𝜇𝑖.

Galerkin Discretization
Linear discrete variational problem (18) choosing basis𝔅ℎ

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗
Linear system of equations 𝐀𝜇 = 𝜑⃗

Galerkin Matrix ∶ 𝐀 =
[

𝑎(𝑏𝑘ℎ, 𝑏
𝑗
ℎ)
]𝑁

𝑗,𝑘=1
∈ ℝ𝑁,𝑁 (20)

RHS vector ∶ 𝜑⃗ =
[

𝑙(𝑏𝑗ℎ)
]𝑁

𝑗=1
∈ ℝ𝑁 (21)

coefficient vector ∶ 𝜇 =
[

𝜇1,… , 𝜇𝑁
]⊤ ∈ ℝ𝑁 (22)

Note that 𝐀𝑗,𝑘 = 𝑎(𝑏𝑘ℎ, 𝑏
𝑗
ℎ) ≠ 𝑎(𝑏𝑗ℎ, 𝑏

𝑘
ℎ) in case of non-symmetric 𝑎. Of course the bilinear form 𝑎 determines

some properties of the Galerkin matrix. If 𝑎 is symmetric and/or positive definite, the Galerkin matrix 𝐀 will
have the same properties.
The choice of 𝑉0,ℎ alone determines the quality of the solution 𝑢ℎ. While mathematically the choice of basis
𝔅ℎ does not matter, for solving the equation numerically, the choice is crucial as the basis determines how
stable and efficiently the solution can be computed, as it determines for example the sparsity of 𝐀.

9

2.3 Linear FEM in 1D

In FEM the goal is to approximate 𝑢 by piecewise polynomial functions.

Mesh in one dimension
let Ω = [𝑎, 𝑏], we equip it with 𝑀 + 1 nodes resulting in the set of nodes:

() = {𝑎 = 𝑥0 < 𝑥1 <⋯ < 𝑥𝑀 = 𝑏}

the nodes define intervals, which build up the mesh:

 = {]𝑥𝑗−1, 𝑥𝑗[∶ 1 ≤ 𝑗 ≤𝑀}

the intervals [𝑥𝑗−1, 𝑥𝑗] are the cells of the mesh
we define local cell size ℎ𝑗 = |𝑥𝑗 − 𝑥𝑗−1| and global mesh width ℎ = max

𝑗
ℎ𝑗

A simple space for continuous, -piecewise polynomial funcitons in 𝐻1
0 (]𝑎, 𝑏[):

𝑉0,ℎ = 𝑆0
1,0() =

{

𝑣 ∈ 𝐶0([𝑎, 𝑏]) ∶ 𝑣
|[𝑥𝑖−1,𝑖]is linear, 𝑖 = 1,… ,𝑀, 𝑣(𝑎) = 𝑣(𝑏) = 0

}

(23)

→ 𝑁 = dim𝑆0
1,0() =𝑀 − 1

The 0-superscript stands for global 𝐶0 of the functions. The 1-subscript denotes local degree 1 polynomial
and the 0-subscript denotes 0 on the boundary. The  stands for calar functions.
Common basis functions are the 1D tent functions:

𝑏𝑗ℎ(𝑥) =

⎧

⎪

⎨

⎪

⎩

(𝑥 − 𝑥𝑗−1)∕ℎ𝑗 if 𝑥𝑗−1 ≤ 𝑥 ≤ 𝑥𝑗
(𝑥𝑗 − 𝑥)∕ℎ𝑗+1 if 𝑥𝑗 ≤ 𝑥 ≤ 𝑥𝑗+1
0 𝑒𝑙𝑠𝑒

(24)

→ 𝑏𝑗ℎ(𝑥𝑖) = 𝛿𝑖𝑗 (25)
A basis satisfying condition (25) is called a cardinal basis. Another key property of tent functions is that
their support just comprises two adjacent cells:

supp(𝑏𝑗ℎ) = [𝑥𝑗−1, 𝑥𝑗+1]

Where the support of a function 𝑓 ∶ Ω → ℝ is defined as
supp(𝑓) = {𝑥 ∈ Ω ∶ 𝑓 (𝑥) ≠ 0} (26)

Polynomials are further nice, as they allow for easy computation of derivatives and integral, which often
occur in (bi)linear forms 𝑎 and 𝑙.

10

2.4 Linear FEM in 2D

Mesh in two dimension
meshes in 2D rely on triangulations. A triangulation  of Ω satisfies:

1.  = {𝐾𝑖}, 𝐾𝑖 are open triangles
2. 𝑖 ≠ 𝑗 → 𝐾𝑖 ∩𝐾𝑗 = ∅

3.
𝑀
⋃

𝑖=1
𝐾𝑖 = Ω

4. 𝑖 ≠ 𝑗 → 𝐾𝑖 ∩𝐾𝑗 is either ∅, an edge from both triangles or a vertex from both

Again the vertices are called nodes and the triangles are the cells.

This definition does not allow for hanging nodes because of point 4. We can get a similar definition as (23).
𝑉0,ℎ = 𝑆0

1 () =
{

𝑣 ∈ 𝐶0(Ω) ∶ 𝑣𝐾 (𝐱) = 𝛼𝐾 + 𝛽𝐾 ⋅ 𝐱, 𝛼𝐾 ∈ ℝ, 𝛽𝐾 ∈ ℝ2, 𝐱 ∈ 𝐾
}

(27)

→ dim𝑆0
1 () = #() (28)

And 𝑆0
1,0() would additionally require functions to be zero on 𝜕Ω, with

dim𝑆0
1,0() = #{𝑥 ∈ () ∶∉ 𝜕Ω}} (29)

Similarly the 1D tent functions can be extended to 2D by requiring the cardinal property. This property
is already enough as there is only one fixed plane through three points (i.e. the vertices of each triangle).
Cardinal bases will produce sparse Galerkin matrices, as the support of the basis functions only cover the
neighbouring triangles and can hence only interact with neighbouring basis functions.

Computation of Galerkin Matrix
Often bilinear forms incur integration over the whole domain. but we have seen, that the support of basis
functions is only local. We can exploit this by performing only integration over the cells.

𝐀𝑖𝑗 = 𝑎(𝑏𝑗ℎ, 𝑏
𝑖
ℎ) =

∑

𝐾∈supp(𝑏𝑗ℎ)∩supp(𝑏𝑖ℎ)
𝑎
|𝐾 (𝑏

𝑗
ℎ, 𝑏

𝑖
ℎ) (30)

where 𝑎
|𝐾 is the local bilinear form over cell 𝐾 .

Cell oriented assembly
To further take advantage of (30), cell oriented assembly can be performed. Go through all cells and compute
𝑎
|𝐾 (𝑏

𝑗
ℎ, 𝑏

𝑖
𝑗) of all basis functions, associated with cell 𝐾 (element matrix) and add it to the entry of 𝐀.

The same procedure can be applied to calculating the right hand side vector𝜑, just that only one basis function
is involved as the rhs comes from a linear functional.

11

2.5 Building Blocks of General Finite Element Methods

First building block are meshes, see 2.3 and 2.4. Next we need to choose a space of functions.

Definition 2.5.2.2 Multivariate Polynomials
Space of d-variate degree (total) p polynomials:

𝑝(ℝ𝑑) =

⎧

⎪

⎨

⎪

⎩

𝐱 ∈ ℝ𝑑 →
∑

𝛼∈ℕ𝑑0 ,|𝛼|≤𝑝

𝑐𝛼𝐱𝛼, 𝑐𝛼 ∈ ℝ
⎫

⎪

⎬

⎪

⎭

(31)

with 𝛼 = (𝛼1,… , 𝛼𝑑), 𝐱𝛼 = 𝑥𝛼11 ⋅ ⋯ ⋅ 𝑥𝛼𝑑𝑑 and |𝛼| = 𝛼1 +⋯ + 𝛼𝑑

as an example, 2(ℝ2) = Span{1, 𝑥1, 𝑥2, 𝑥21, 𝑥22, 𝑥1𝑥2}

Theorem 2.5.2.5 Dimension of spaces of Polynomials

dim𝑝(ℝ𝑑) =
(

𝑑 + 𝑝
𝑝

)

, 𝑝 ∈ ℕ0, 𝑞 ∈ ℕ (32)

in the limit of 𝑝→ ∞ this behaves like 𝑂(𝑝𝑑)

Definition 2.5.2.7 Tensor Product Polynomials
Space of tensor product polynomials of degree p in each coordinate

𝑝(ℝ𝑑) =

{

𝐱 ∈ ℝ𝑑 →
𝑝
∑

𝑙1=0
⋯

𝑝
∑

𝑙𝑑=0
𝑐𝑙1,…,𝑙𝑑𝑥1 ⋅ ⋯ ⋅ 𝑥𝑑 , 𝑐𝑙1,…,𝑙𝑑 ∈ ℝ

}

(33)

= Span{𝐱 → 𝑝1(𝑥1) ⋅ ⋯ ⋅ 𝑝𝑑(𝑥𝑑), 𝑝𝑖 ∈ 𝑝(ℝ)
} (34)

as an example, 2(ℝ2) = Span{1, 𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥21, 𝑥21𝑥2, 𝑥21𝑥22, 𝑥1𝑥22, 𝑥22}

Theorem 2.5.2.8 Dimension of spaces of tensor product Polynomials

dim𝑞(ℝ𝑑) = (𝑝 + 1)𝑑 (35)

Finally we need locally supported basis functions. These basis 𝔅ℎ = 𝑏1ℎ,⋯ , 𝑏𝑁ℎ should satisfy the following
constraints:

12

1. 𝔅ℎ is a basis of 𝑉ℎ, hence dim𝔅ℎ = dim𝑉ℎ.
2. each 𝑏𝑖ℎ is associated with a single mesh geometry entity (cell/edge/face/vertex).
3. each 𝑏𝑖ℎ is only locally supported, i.e. only nonzero in adjacent cells.

2.6 Lagrangian Finite Element Methods

Remember eq. 2.3 and 2.4 as two examples of finite element spaces. Generally they are called Lagrangian
FE spaces:

Definition 2.6.1.1 Simplical Lagrangian finite element spaces

0
𝑝 () =

{

𝑣 ∈ 𝐶0(Ω) ∶ 𝑣
|𝐾 ∈ 𝑝(𝐾),∀𝐾 ∈ 

}

(36)

This space is well suited for triangular meshes, as the local dimension (𝑑+𝑝
𝑝

)

=
(2+𝑝
𝑝

) (in 2D) is the same
as the amount of vertices in a triangle and its interpolation nodes. The local basis functions of 0

1 are the
barycentric coordinate functions. In 0

2 , the local basis functions are linear coombinations of barycentric
coordinate functions:

𝑏1𝐾 = (2𝜆1 − 1)𝜆1, 𝑏4𝐾 = 4𝜆1𝜆2,

𝑏2𝐾 = (2𝜆2 − 1)𝜆2, 𝑏5𝐾 = 4𝜆2𝜆3,

𝑏3𝐾 = (2𝜆3 − 1)𝜆3, 𝑏6𝐾 = 4𝜆1𝜆3,

where the local basis functions 1-3 are associated with vertices and 4-6 with edges.
Analogously, the following space is well suited for quadrilaterals:

Definition 2.6.2.5 Tensor product Lagrangian finite element spaces

0
𝑝 () =

{

𝑣 ∈ 𝐶0(Ω) ∶ 𝑣
|𝐾 ∈ 𝑝(𝐾),∀𝐾 ∈ 

}

(37)

Note, the only difference is the local polynomial space, 𝑝(𝐾) instead of 𝑝(𝐾). This space works well for
quadrilaterals, as the dimension (𝑝 + 1)𝑑 = (𝑝 + 1)2 (in 2D) is again the same as the amount of vertices and
its interpolation points.
Of course these spaces can be mixed, i.e. on mixed meshes where the definition 2.6 is used on triangles and
2.6 on quadrilaterals.

13

2.7 Implementation of Finite Element Methods

Remember the principle of cell orientated assembly. The goal is to rely mostly on local computations. To
perform cell oriented assembly, a map from local to global indices is needed. In LehrFEM++ this is the job
of the dofhandler (lf::assemble::DofHandler documentation). It provides the following main methods:

• NumDofs(), returns the total number of global basis functions, the dimension of the FE space.
• NumLocalDofs(const lf::mesh::Entity &), returns the number of global basis functions cover-

ing any geometric entity.
• GlobalDofIndices(const lf::mesh::Entity &), returns an array of indices of the global basis

function covering the given entity.
• NumInteriorDofs(const lf::mesh::Entity &), returns the number of global basis function, as-

sociated with the given entity.
• InteriorGlobalDofIndices(const lf::mesh::Entity &), similar to GlobalDofIndices, but

returns only the indices of the global basis functions, associated with the given entity.
• Entity(gdof_idx_t dofn), returning the entity, associated with the global index dofnum.

Instead of dimension, in LehrFEM++ the concept of co-dimension is used. instead of going from a point
with dimension 0 to a triangle with dimension 2, the co-dimension is the other way around. The highest
dimension entity has co-dimension 0. This ensures, that cells are always of co-dimension 0.
To assemble the Galerkin matrix, lf::assemble::AssembleMatrixLocally (docs) can be used. To use
it, we need element matrix providers (docs). These are construct, which provide the element matrix for given
bilinear forms. Some common bilinear forms are already implemented.

• ∫𝐾 𝛼(𝑥)𝐠𝐫𝐚𝐝 𝑢 ⋅ 𝐠𝐫𝐚𝐝 𝑣𝑑𝑥 is implemented in lf::fe::DiffusionElementMatrixProvider

• ∫𝐾 𝛾(𝑥) 𝑢 𝑣 𝑑𝑥 is implemented in lf::fe::MassElementMatrixProvider

• ∫𝑒 𝛾(𝑥) 𝑢 𝑣 𝑑𝑆 is implemented in lf::fe::MassEdgeMatrixProvider. Note the integration over
edge and not cell.

• ∫𝐾 𝛼(𝑥)𝐠𝐫𝐚𝐝 𝑢⋅𝐠𝐫𝐚𝐝 𝑣𝑑𝑥+∫𝐾 𝛾(𝑥) 𝑢 𝑣𝑑𝑥 combined is implemented in lf::uscalfe::ReactionDiffusionElementMatrixProvider
• ∫𝐾 𝑓 (𝑥)𝑣 𝑑𝑥 is implemented by lf::fe::ScalarLoadElementVectorProvider
• ∫𝑒 𝑓 (𝑥)𝑣 𝑑𝑆 is implemented by lf::fe::ScalarLoadEdgeVectorProvider. Note again the integration over

edge.

Note that the last two are actually element vector providers.

14

https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_dof_handler.html
https://craffael.github.io/lehrfempp/group__assemble__matrix__locally.html#ga39b4197203dd4e896bd7073fc033aca3
https://craffael.github.io/lehrfempp/group__entity__matrix__provider.html
https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_diffusion_element_matrix_provider.html
https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_mass_element_matrix_provider.html
https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_mass_edge_matrix_provider.html
https://craffael.github.io/lehrfempp/classlf_1_1uscalfe_1_1_reaction_diffusion_element_matrix_provider.html
https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_scalar_load_element_vector_provider.html
https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_scalar_load_edge_vector_provider.html

Lemma 2.7.5.5 Integration of powers of barycentric coordinate functions
For 𝑑-simplex (line in 1D, triangle in 2D, tetrahedron in 3D) with barycentric coordinate functions
𝜆1,… , 𝜆𝑑+1

∫𝐾
𝜆𝛼11 ⋅ ⋯ ⋅ 𝜆𝛼𝑑+1𝑑+1𝑑𝑥 = 𝑑!|𝐾|

𝛼1! ⋅ ⋯ ⋅ 𝛼𝑑+1!
(𝛼1 +⋯ + 𝛼𝑑+1 + 𝑑)!

, 𝛼𝑖 ∈ ℕ (38)

Quadrature rule

∫𝐾
𝑓 (𝑥)𝑑𝑥 ≈

𝑃𝐾
∑

𝑙=1
𝑤𝐾
𝑙 𝑓 (𝜁

𝐾
𝑙), 𝑤𝐾

𝑙 → weights, 𝜁𝐾𝑙 → (quadrature) nodes (39)

Order of a quadrature rule: a quad rule is of order 𝑞 if

• for a simplex 𝐾 is exact for all polynomials 𝑓 ∈ 𝑝−1(ℝ𝑑)

• for a tensor product element 𝐾 is exact for all polynomials 𝑓 ∈ 𝑝−1(ℝ𝑑)

Lemma 2.7.5.14 Affine transformation of triangles
For any triangle 𝐾 , |𝐾| > 0, there is a unique affine transformation Φ𝐾 (𝑥̂) = 𝐹𝐾 𝑥̂ + 𝜏𝐾 , with 𝐾 = Φ𝐾 (𝐾̂)
and 𝐾̂ the unit triangle.

This is nice as that allows us to transform th unit triangle to any triangle and perform easy integration.
Additionally, Φ𝐾 can be computed straight forward:

let 𝐾 be a triangle with vertices 𝑎1, 𝑎2, 𝑎3 → Φ𝐾 (𝑥̂) =
[

𝑎21 − 𝑎
1
1 𝑎31 − 𝑎

2
1

𝑎22 − 𝑎
1
2 𝑎32 − 𝑎

2
2

]

𝑥̂ +
[

𝑎11
𝑎12

]

(40)

Essential Boundary Conditions
Remember from 1.9, essential boundary conditions are Dirichlet boundary conditions, i.e. 𝑢 = 𝑔 on 𝜕Ω, and
can be solved with the offset function trick. This trick can also be used in FEM. Suppose:

𝐴 =
[

𝐴0 𝐴0𝜕
𝐴⊤0𝜕 𝐴𝜕𝜕

]

(41)

where 𝐴0 is the Galerkin matrix for 0
𝑝,0(), (𝐴0𝜕)𝑖𝑗 = 𝑎(𝑏𝑗ℎ, 𝑏

𝑖
ℎ), where 𝑏𝑗ℎ belongs to the boundary and 𝑏𝑖ℎto the interior. Similarly, 𝐴𝜕𝜕 consists only of entries calculated from basis functions of the boundary. Then

we want to solve:
[

𝐴0 𝐴0𝜕
𝐴⊤0𝜕 𝐴𝜕𝜕

] [

𝜇0
𝜇𝜕

]

=
[

𝜑
𝜑𝜕

]

(42)
where 𝜇𝜕 are the coefficients of the basis expansion of 𝑔 on the boundary. Hence its known. We only need
to solve for 𝜇0 which results in

𝐴0𝜇0 = 𝜑 − 𝐴0𝜕𝜇𝜕 (43)

This can be done in LehrFEM++ with lf::assemble::FixFlaggedSolutionComponents or
lf::assemble::FixFlaggedSolutionCompAlt. Both modify, the matrix 𝐴 and rhs vector 𝑏 such that it corre-
sponds to the above equation, but do it slightly different (see the docs).

15

https://craffael.github.io/lehrfempp/namespacelf_1_1assemble.html#a4fba0f99e10227530fcb990ddda7b305
https://craffael.github.io/lehrfempp/namespacelf_1_1assemble.html#ad8de42b7c7e79eeba5704e43a5b4d67f

2.8 Parametric Finite Element Methods

Definition 2.8.1.2 Pullback
Given domains Ω, Ω̂ ⊂ ℝ𝑑 and a bijective mapping Φ ∶ Ω̂ → Ω, the pullback of a function 𝑢 ∶ Ω → ℝ is a
function on Ω̂ defined by (Φ∗𝑢)(𝑥̂) = (𝑢◦Φ)(𝑥̂) ∶= 𝑢(Φ(𝑥̂)), 𝑥̂ ∈ Ω̂

An example for this is the affine transformation of triangles (Lemma 2.7.5.14) above. Note that in the follow-
ing we will use 𝑥̂ for an element that "lives" in a reference Triangle (or Quadrilateral). That is the triangle
with corners ((0,0), (1,0), (0,1)) and the square with edge length one rooted at 0.
Note that all bilinear forms and linear forms in this course consists of integrals. Hence we will sooner or
later use quadrature to approximate the integrals. But in the literature quadrature rules are defined over the
aforementioned reference elements. Hence we want to make a change of variables in the integrals of the
linear and bilinear forms, such that we can apply these quadrature rules. That’s where we need the pullback
functions.
For the simple example of e mass matrix we get (by some multidimensional analysis)

∫𝐾
𝑏𝐾𝑖(𝑥)𝑏𝐾𝑗(𝑥) 𝑑𝑥 = ∫𝐾̂

(Φ∗
𝐾𝑏𝐾𝑖)(𝑥̂)(Φ

∗
𝐾𝑏𝐾𝑗)(𝑥̂)

√

det
(

𝐷Φ𝑇
𝐾 (𝑥̂)𝐷Φ𝐾 (𝑥̂)

)

𝑑𝑥, (44)

And for the diffusion matrix

∫𝐾
∇𝑏𝐾𝑖(𝑥)∇𝑏𝐾𝑗(𝑥) 𝑑𝑥 = ∫𝐾̂

∇𝑥(Φ∗
𝐾𝑏𝐾𝑗)(𝑥̂)∇𝑥(Φ∗

𝐾𝑏𝐾𝑗)(𝑥̂)
√

det
(

𝐷Φ𝑇
𝐾 (𝑥̂)𝐷Φ𝐾 (𝑥̂)

)

𝑑𝑥. (45)

Where 𝑏𝐾𝑗 ∶ 𝐾 → ℝ is one of the basis functions. E.g. a barycentric function on 𝐾 .
Both equations follow form the substitution rule of multivariate analysis. But just a note for the term
det

(

𝐷Φ𝑇
𝐾 (𝑥̂)𝐷Φ𝐾 (𝑥̂)

): It is only necessary if Ω and Ω̂ do not live in the same space, i.e. if for exam-
ple Ω ⊂ ℝ3 describes a 2-d plane in a 3-d world and Ω̂ ⊂ ℝ2. Then we will have 𝐷Φ𝐾 ∈ ℝ3𝑥2 and
hence det

(

Φ𝐾
) is not defined. But no worries all you need with respect to this monster is implemented in

lf::geometry::IntegrationElement.
The next thing which needs clarification are the ∇𝑥(Φ⋆

𝐾𝑏𝐾𝑗)(𝑥̂), this is because the computation of these is
in this form not really clear because ∇𝑥(Φ⋆

𝐾𝑏𝐾𝑗)(𝑋̂) = ∇𝑥𝑏𝐾𝑗(𝑥) by the definition of Φ𝐾 . But ∇𝑥𝑏𝐾𝑗(𝑥)
depends on the shape of 𝐾 , hence it is not clear how these gradients will look like in the general case.
Therefore we use

Lemma 2.8.3.10 Transformation formula for gradients
For differentiable 𝑢 ∶ 𝐾 → ℝ and any diffeomorphism Φ𝐾 ∶ 𝐾̂ → 𝐾 we have

(∇𝑥̂(𝑢◦Φ𝐾))(𝑥̂) = (𝐷Φ𝐾 (𝑥̂))𝑇 ((∇𝑥𝑢)◦Φ𝐾)(𝑥̂) = (𝐷Φ𝐾 (𝑥̂))𝑇∇𝑥𝑢(𝑥) (46)

16

https://craffael.github.io/lehrfempp/classlf_1_1geometry_1_1_geometry.html#a80112cf5cfa9314cb44e61756299607d

Note that the brackets around the gradients are important because this implies
∇𝑥𝑏𝐾𝑗(𝑥) = (𝐷Φ𝐾 (𝑥̂))((𝐷Φ𝐾 (𝑥̂))𝑇 (𝐷Φ𝐾 (𝑥̂)))−1∇𝑥̂𝑏𝐾𝑗(Φ𝐾 (𝑥̂)) (47)

= (𝐷Φ𝐾 (𝑥̂))((𝐷Φ𝐾 (𝑥̂))𝑇 (𝐷Φ𝐾 (𝑥̂)))−1∇𝑥̂𝑏̂(𝑥̂) (48)

Here 𝑏̂(𝑥̂) is the basis reference basis function on the reference shape 𝐾̂ . I.e. we can compute ∇𝑥̂𝑏̂(𝑥̂) easily
by hand.
Note that in the script (𝐷Φ𝐾 (𝑥̂))((𝐷Φ𝐾 (𝑥̂))𝑇 (𝐷Φ𝐾 (𝑥̂)))−1 = (𝐷Φ𝐾 (𝑥̂))−𝑇 with some abuse of notation. And
in case𝐷Φ𝐾 (𝑥̂) ∈ ℝ𝑑×𝑑 i.e. it is a squared matrix, then we have that𝐷Φ𝐾 (𝑥̂) is invertable and (𝐷Φ𝐾 (𝑥̂))−𝑇
is accurate. So the long term only matters, when we have as above Ω and Ω̂ do not live in the same space, for
example if Ω ⊂ ℝ3 describes a 2-d plane in a 3-d world and Ω̂ ⊂ ℝ2. But the same applies here you can in
any case just use lf::geometry::JacobianInverseGramian which will return (𝐷Φ𝐾 (𝑥̂))−𝑇 in any case.

Bilinear Transformation for Quadrilaterals
let {𝐚𝟏, 𝐚𝟐, 𝐚𝟑, 𝐚𝟒} be the ordered corners of a quadrilateral. Then

Φ𝐾 (𝑥̂) = (1 − 𝑥̂1)(1 − 𝑥̂2)𝐚𝟏 + 𝑥̂1(1 − 𝑥̂2)𝐚𝟐 + (1 − 𝑥̂1)𝑥̂2𝐚𝟑 + (1 − 𝑥̂1)𝑥̂2𝐚𝟒 (49)
=
[

𝛼1 + 𝛽1𝑥̂1 + 𝛾1𝑥̂2 + 𝛿1𝑥̂1𝑥̂2
𝛼2 + 𝛽2𝑥̂1 + 𝛾2𝑥̂2 + 𝛿2𝑥̂1𝑥̂2

]

(50)

with
[

𝛼1
𝛼2

]

= 𝐚𝟏,
[

𝛽1
𝛽2

]

= 𝐚𝟐 − 𝐚𝟏,
[

𝛾1
𝛾2

]

= 𝐚𝟒 − 𝐚𝟏,
[

𝛿1
𝛿2

]

= 𝐚𝟒 − 𝐚𝟑 − 𝐚𝟐 + 𝐚𝟏

3 FEM: Convergence and Accuracy

3.1 Abstract Galerkin Error Estimates

The main point here is Optimality of Galerkin solutions.

Theorem 3.1.3.7 Cea’s Lemma
Under some assumptions that guarantee the existence of a unique solution we have

‖𝑢 − 𝑢ℎ‖𝑎 = inf
𝑣ℎ∈𝑉0,ℎ

‖𝑢 − 𝑣ℎ‖𝑎 (51)

So the solution we get form FEM are the best with respect to the energy norm, in the chosen discrete subspace.
Next we want to discuss the types of refinement.

17

https://craffael.github.io/lehrfempp/classlf_1_1geometry_1_1_geometry.html#a7cb2b572966d7492522acb1b127cbbd0

h-refinement
Replace the mesh  (underlying 𝑉0,ℎ) with a finer mesh ′ (underlying larger discrete trial space 𝑉 ′

0,𝑁 ′)

p-refinement
Replace 𝑉0,ℎ ∶= 𝑆0

𝑝 (), 𝑝 ∈ ℕ, with 𝑉 ′
0,ℎ ∶= 𝑆0

𝑝+1() ⟹ 𝑉0,ℎ ⊂ 𝑉 ′
0,ℎ

So h-refinement refines the mesh (smaller and smaller triangles). And p-refinement chooses more powerful
basis functions (start with linear then quadratic, ...). The h in h-refinement corresponds to the

Definition 3.2.1.4 Mesh width
Given a mesh  = {𝐾}, the mesh width ℎ is defined as

ℎ ∶= max{diam𝐾 ∶ 𝐾 ∈ } (52)
diam𝐾 ∶= max{|𝑝 − 𝑞| ∶ 𝑝, 𝑞 ∈ 𝐾} (53)

3.2 Empirical (Asymptotic) Convergence of Lagrangian FEM

As in NCSE, there are basically two types of convergence, algebraic and exponential. We refer to the number
of basis functions (dimension of the trial space) as 𝑁 . And we study the behaviour of errors with 𝑁 → ∞.

Definition 3.2.2.1 Types of convergence

‖𝑢 − 𝑢𝑁‖ = (𝑁−𝛼), 𝛼 > 0 is called algebraic convergence with rate 𝛼.

‖𝑢 − 𝑢𝑁‖ = (exp
(

−𝛾𝑁𝛿), 𝛾, 𝛿 > 0 is called exponential convergence.

Note that in the case of h-refinement we get the relation between 𝑁 and ℎ is given by

Equation 3.3.5.16

𝑁 = dim𝑆0
𝑝 () ≈ 𝑝𝑑ℎ−𝑑 ⟹

ℎ
𝑝

≈ 𝑁− 1
𝑑 (54)

Where 𝑝 are the dimensions of the local basis functions i.e. for the linear basis function we have 𝑝 = 1. and
𝑑 is the dimension of the underlying space Ω.

For example in the case where we have Ω ⊂ ℝ2 and piecewise linear basis function, we get ℎ−2 ≈ 𝑁

18

3.3 A Priori (Asymtotic) Finite Element Error Estimates

Linear interpolation error 1D
Using the linear interpolant I1 we want to study the interpolation error 𝑢 − I1𝑢. The following interpolation
error estimates can be used for sufficiently smooth functions 𝑢:

‖𝑢 − I1𝑢‖𝐿∞(]𝑎,𝑏[) ≤
1
4
ℎ2‖𝑢′′‖𝐿∞(]𝑎,𝑏[) (55)

‖𝑢 − I1𝑢‖𝐿2(]𝑎,𝑏[) ≤ ℎ2‖𝑢′′‖𝐿2(]𝑎,𝑏[) (56)
|𝑢 − I1𝑢|𝐻1(]𝑎,𝑏[) ≤ ℎ‖𝑢′′‖𝐿2(]𝑎,𝑏[) (57)

Linear interpolation error 2D
In 2D linear interpolation corresponds to tent functions. I1𝑢 =

∑

𝑝∈()
𝑢(𝑝)𝑏𝑝, where 𝑏𝑝 is the tent function

associated with point 𝑝. After some derivations one arrives at:

‖𝑢 − I1𝑢‖𝐿2(Ω) ≤
√

3
8
ℎ2

‖

‖

‖

‖

‖

‖

𝐷2𝑢‖‖
‖𝐹

‖

‖

‖𝐿2(Ω)
(58)

and
‖𝐠𝐫𝐚𝐝(𝑢 − I1𝑢)‖𝐿2(Ω) ≤

√

3
32
𝜌ℎ

‖

‖

‖

‖

‖

‖

𝐷2𝑢‖‖
‖𝐹

‖

‖

‖𝐿2(Ω)
(59)

These bounds might seem complicated but 𝐷2 is just the Hessian, hence 𝐷2𝑢 =
⎡

⎢

⎢

⎣

𝜕2𝑢
𝜕𝑥21

𝜕2𝑢
𝜕𝑥1𝜕𝑥2

𝜕2𝑢
𝜕𝑥1𝜕𝑥2

𝜕2𝑢
𝜕𝑥22

⎤

⎥

⎥

⎦

.

The "second" derivative, as above. ‖ ⋅ ‖𝐹 is the Frobenius norm, ‖𝐴‖𝐹 =
(

∑

𝑖,𝑗
𝐴2
𝑖,𝑗

)
1
2 .

And 𝜌 is the shape regularity measure of the mesh , defined as 𝜌 = max
𝐾∈

ℎ2
|𝐾|

for a triangular mesh.

To get rid of this cumbersome notation, we can introduce more Sobolov spaces.

Definition 3.3.3.1 Higher order Sobolov spaces/norms
The m-th order Sobolev norm is defined as

‖𝑢‖2𝐻𝑚(Ω) =
𝑚
∑

𝑘=0

∑

𝛼∈ℕ𝑑 ,|𝛼|=𝑘
∫Ω

|𝐷𝛼𝑢|2𝑑𝑥, where 𝐷𝛼𝑢 = 𝜕|𝛼|𝑢
𝜕𝑥𝛼11 ⋯ 𝜕𝑥𝛼𝑑𝑑

(60)

Hence we can define the m-th Sobolov space as
𝐻𝑚(Ω) =

{

𝑣 ∶ Ω → ℝ ∶ ‖𝑣‖𝐻𝑚(Ω) <∞
} (61)

19

Definition 3.3.3.3 Higher order Sobolov semi-norms
The m-th order Sobolev semi-norm is defined as

|𝑢|2𝐻𝑚(Ω) =
∑

𝛼∈ℕ𝑑 ,|𝛼|=𝑚
∫Ω

|𝐷𝛼𝑢|2𝑑𝑥 (62)

Remember the multidex 𝛼 defined in 2.5. Using this new notation, we can rewrite the error bounds from 3.3
as

‖𝑢 − I1𝑢‖𝐿2(Ω) ≤
√

3
8
ℎ2|𝑢|𝐻2(Ω) (63)

and
‖𝐠𝐫𝐚𝐝(𝑢 − I1𝑢)‖𝐿2(Ω) ≤

√

3
32
𝜌ℎ|𝑢|𝐻2(Ω) (64)

Now the question is, whether these bounds are sharp. After some investigation, the bound might not be very
smooth, but a sharper bound can be made for Lagrangian finite elements:

Theorem 3.3.5.6. Best approximation error estimates for Lagrangian finite elements
given a triangular mesh 

inf
𝑣ℎ∈0

𝑝 ()
‖𝑢 − 𝑣ℎ‖𝐻1(Ω ≤ 𝐶 ⋅

(

ℎ
𝑝

)𝑚𝑖𝑛{𝑝,𝑘−1}

‖𝑢‖𝐻𝑘(Ω) ∀𝑢 ∈ 𝐻𝑘(Ω) (65)

We might not know the constant 𝐶 and/or ‖𝑢‖𝐻𝑘(Ω) but we know 𝑝 and ℎ as they are imposed by the
choice of function space and mesh. Remember the concept of refinement 3.1, we can adjust these values.
And from Eq. 3.2 we know ℎ

𝑝
∈ 

(

𝑁− 1
𝑑

)

in case of simplicial meshes. Hence the error displays algebraic

convergence with rate 𝑚𝑖𝑛{𝑝,𝑘−1}
𝑑

. What still remains a question, is 𝑘, the smoothness of the solution 𝑢.

3.4 Elliptic regularity

Theorem 3.4.0.2 Smooth elliptic lifting theorem
For domains Ω with smooth boundaries 𝜕Ω, i.e. no corners and sufficiently smooth 𝜎, if

𝑢 ∈ 𝐻1
0 (Ω) and − div(𝜎𝐠𝐫𝐚𝐝(𝑢)) ∈ 𝐻𝑘(Ω) (66)

or
𝑢 ∈ 𝐻1(Ω), −div(𝜎𝐠𝐫𝐚𝐝(𝑢)) ∈ 𝐻𝑘(Ω) and 𝐠𝐫𝐚𝐝(𝑢) ⋅ 𝐧 on 𝜕Ω (67)

holds, then 𝑢 ∈ 𝐻𝑘+2(Ω) and
‖𝑢‖𝐻𝑘+2(Ω) ≤ 𝐶 ⋅ ‖div(𝜎𝐠𝐫𝐚𝐝(𝑢))‖𝐻𝑘(Ω) (68)

20

This tells us, that when solving −div(𝜎𝐠𝐫𝐚𝐝(𝑢)) = 𝑓 and the source term 𝑓 is in 𝐻𝑘(Ω), the solution 𝑢 will
be in 𝐻𝑘+2(Ω) (of course under the right assumptions).
The theorem requires smooth domains, but our meshes will have corners, so what can be done there? As
long as the domain and all cells are convex, the above still holds. That is encapsulated in the following:

if Ω convex, 𝑢 ∈ 𝐻1
0 (Ω),Δ𝑢 ∈ 𝐿2(Ω) → 𝑢 ∈ 𝐻2(Ω) (69)

3.5 Variational Crimes

What are variational crimes? Instead of solving 𝑢ℎ ∈ 𝑉0,ℎ ∶ 𝑎(𝑢ℎ, 𝑣ℎ) = 𝑙(𝑣ℎ), ∀𝑣ℎ ∈ 𝑉0,ℎ solving perturbed
variational problem 𝑢̃ℎ ∈ 𝑉0,ℎ ∶ 𝑎ℎ(𝑢̃ℎ, 𝑣ℎ) = 𝑙ℎ(𝑣ℎ), ∀𝑣ℎ ∈ 𝑉0,ℎ with modified bi-, linear forms 𝑎ℎ, 𝑙ℎ. With
computers, the use of quadrature and approximation of boundaries result in such a crime. As Hiptmair likes
to say, "we are all sinners".
But what are acceptable "crimes"? Crimes which do not affect the type and rate of convergence.
So how to not temper with the convergence?

if ‖𝑢 − 𝑢ℎ‖1 ∈ (ℎ𝑝) then use quadrature rule of order at least 2𝑝 − 1

if 𝑉0,ℎ = 0
𝑝 () then use boundary fitting with polynomials of degree 𝑝

3.6 FEM: Duality Techniques for Error Estimation

Theorem 3.6.1.7. Duality estimate for linear functional output
given a functional 𝐹 ∶ 𝑉0 → ℝ the dual solution 𝑔𝐹 solves:

𝑔𝐹 ∈ 𝑉0 ∶ 𝑎(𝑔𝐹 , 𝑣) = 𝐹 (𝑣) ∀𝑣 ∈ 𝑉0 (70)
and

|𝐹 (𝑢) − 𝐹 (𝑢ℎ)| ≤ ‖𝑢 − 𝑢ℎ‖𝑎 ⋅ inf
𝑣ℎ∈𝑉0,ℎ

‖𝑔𝐹 − 𝑣ℎ‖𝑎 (71)

Why is this useful? If 𝑔𝐹 can be approximates well in 𝑉0,ℎ, then the output error |𝐹 (𝑢)−𝐹 (𝑢ℎ)| can converge
to 0 much faster, than ‖𝑢 − 𝑢ℎ‖𝑎

21

5 Non-Linear Ellipctic Boundary Value Problems

5.1 Elastic String Model

We want to derive the general variational equation for an elastic string. For this, one approximates the string
as 𝑛 point masses affected by gravity connected with springs, whose energy behaves according to Hooke’s
law. Then, one takes the limit 𝑛 → ∞ to derive a continuous model. The total energy is then just given by
the sum of elastic and gravitational energies - given positions (𝜇0,… , 𝜇𝑛) and 𝑥𝑖 = 𝑎 + ℎ𝑖, assuming the
spring constants are 1:

Total energy of discrete spring system

𝐸(𝜇) = 1
2

𝑛
∑

𝑖=0

(

√

ℎ2 + (𝜇𝑖+1 − 𝜇𝑖)2
)2

+
𝑛
∑

𝑖=1
𝑚𝑖𝜇𝑖𝑔 (72)

Then, the equilibrium position for this model can be found by minimizing this expression over 𝜇. A con-
tinuous model is derived by replacing the discrete positions 𝜇𝑖 by a function 𝑢(𝑥𝑖), and the mass by a mass
density. Then, performing some manipulations, one obtains

Total energy for the continuous string model

𝐽𝑠(𝑢) = ∫

𝑏

𝑎

1
2
𝑏 − 𝑎
𝐿

𝜎(𝑥)
(
√

1 + |𝑢′(𝑥)|2 − 𝐿
𝑏 − 𝑎

)2
+ ∫

𝑏

𝑎
𝑔𝜌(𝑥)𝑢(𝑥)d𝑥 (73)

In a similiar fashion, a membrane model can be derived by assuming a two-dimensional grid of springs
containing points masses and taking the limit 𝑛→ ∞ springs. The energy then becomes

Total energy for the membrane model

𝐽𝑀 (𝑢) = ∫Ω

1
2𝐿
𝜎(𝑥)

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

√

1 +
|

|

|

|

𝜕𝑢
𝜕𝑥1

(𝑥)
|

|

|

|

2
− 𝐿
𝑏 − 𝑎

⎞

⎟

⎟

⎠

2

+
⎛

⎜

⎜

⎝

√

1 +
|

|

|

|

𝜕𝑢
𝜕𝑥2

|

|

|

|

2
− 𝐿
𝑏 − 𝑎

⎞

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎠

+ 𝑔𝜌(𝑥)𝑢(𝑥)d𝑥 (74)

In the limit of a taut membrane, i.e. for 𝐿 ≪ 𝑏− 𝑎, these equations just reduce to the problem of minimizing
the familiar functionals seen in earlier chapters:

22

Elastic string taut membrane limit

𝐽𝑠(𝑢) =
1
2 ∫

𝑏

𝑎
𝜎̂(𝑥)|𝑢′(𝑥)|2 + 𝑔𝜌(𝑥)𝑢(𝑥)d𝑥 (75)

Taut membrane limit
𝐽𝑀 (𝑢) = 1

2 ∫Ω
𝜎̂(𝑥)‖grad 𝑢(𝑥)‖2 + 𝑔𝜌(𝑥)𝑢(𝑥)d𝑥 (76)

5.2 Calculus of Variations

The difference between the equations seen so far, which hold in the limit of a very stretched string / membrane
and the general equations given above, is that they are a quadratic minimization problem, while the ones
given above are nonlinear minimization problems. The theory used so far mapped quadratic minimization
problems to linear variational problems, which were then discretized. The new equations, however, yield
nonlinear variational equations. Therefore, more general variational problems need to be derived.
The idea employed is that, for a minimizer of 𝐽 (𝑢), every perturbation 𝐽 (𝑢 + 𝑣) would be larger than 𝐽 (𝑢).
This means that 𝑓 (𝑡) = 𝐽 (𝑢 + 𝑡𝑣) has a minimum at 𝑡 = 0 for every function 𝑣:

Theorem 5.2.1.5 Characterization of global minimizers Assume 𝑢 is a global minimizer of 𝐽 (𝑢)
𝑢 = argmin𝑢∈𝑉0𝐽 (𝑢) (77)

Then, if 𝜑𝑣(𝑡) = 𝐽 (𝑢∗ + 𝑡𝑣) is differentiable in 𝑡 = 0,
d𝜑𝑣
𝜑𝑡

(0) = 0 ∀𝑣 ∈ 𝑉0 (78)

This means that nonlinear variational equations can be derived by computing this derivative for an arbitrary
𝑣. As an example, for the elastic string model introduced in the last subchapter, this yields

Variational equations for elastic string model

∫

𝑏

𝑎

𝜎(𝑥)
𝑐

(

√

1 + |𝑢′∗(𝑥)|2 − 𝑐
) 𝑢′∗(𝑥)𝑣

′(𝑥)
√

1 + |𝑢′∗(𝑥)|2
+ 𝑔𝜌(𝑥)𝑣(𝑥) d𝑥 = 0 ∀𝑣 ∈ 𝐻1

0 (]𝑎, 𝑏[) (79)

This can be formulated more generally as a general variational equation:

23

General variational equation A general, nonlinear variational equation reads
𝑢 ∈ 𝑉 ∶ 𝑎(𝑢; 𝑣) = 0 ∀𝑣 ∈ 𝑉0 (80)

Where 𝑎 is linear in the second argument 𝑣 and 𝑉0, 𝑉 are function spaces.

5.3 Nonlinear Boundary value problems

Similarly to the linear case, nonlinear PDEs can be derived from the variational equations by “stripping” of
the derivatives of 𝑣 by partial integration and employing the fundamental lemma of calculus of variations.
As an example, for the string model, this yields for 𝑢(𝑎) = 𝑢𝑎, 𝑢(𝑏) = 𝑢𝑏

d
d𝑥

⎛

⎜

⎜

⎜

⎝

𝜎(𝑥)
𝑐

(

√

1 + |𝑢′∗(𝑥)|2 − 𝑐
) 𝑢′∗(𝑥)

√

1 + |𝑢′∗(𝑥)|2

⎞

⎟

⎟

⎟

⎠

= 𝑔𝜌(𝑥) in]𝑎, 𝑏[(81)

5.4 Galerkin Discretization of Non-Linear BVPs

The idea of Galerkin discretization for non-linear variational equations is exactly the same as for linear
equations, but they yield nonlinear systems of equations instead of linear systems of equations: One restricts
𝑢 and 𝑣 to a finite function space 𝑢ℎ = 𝑉ℎ and 𝑣ℎ ∈ 𝑉0,ℎ, and expands the functions in some basis of the
space. This, then, leads to nonlinear equations for the basis expansion coefficients. These equations could
be solved directly by employing some fixed-point iteration seen in NumCSE.

Galerkin discretization of variational problem Given a variational problem 𝑎(𝑢; 𝑣) = 0∀𝑣 ∈ 𝑉0,ℎ, the
Galerkin discretization reads

(𝐹 (𝜇))𝑖 = 𝑎

(

𝑢0,ℎ +
𝑁
∑

𝑗=1
𝜇𝑗𝑏

𝑗
ℎ; 𝑏

𝑖
ℎ

)

, 𝑖 = 1,… , 𝑁 (82)

Where 𝑏𝑖ℎ are fixed basis functions, 𝜇𝑖 are the basis function coefficients and 𝑢0,ℎ contains Dirichlet boundary
conditions.

Another option is to already linearize the continuous problem, and then discretize it to derive linear systems
of equations. This is done by employing Newton’s method in function space: The conventional Newtons
iteration is given as

𝜉(𝑘+1) = 𝜉(𝑘) − D𝐹 (𝜉(𝑘))−1𝐹 (𝜉(𝑘)) (83)
Replacing the vector 𝜉 with a function 𝑢 and the derivative by a function derivative now gives

24

Functional Newton iteration

𝑤 ∈ 𝑉0 𝑎(𝑢(𝑘); 𝑣) + D𝑢𝑎(𝑢(𝑘); 𝑣)𝑤 = 0 ∀𝑣 ∈ 𝑉0 (84)
𝑢(𝑘+1) = 𝑢(𝑘) +𝑤 (85)

Here, the directional derivative is defined as

D𝑢𝑎(𝑢(𝑘); 𝑣)𝑤 = lim
𝑡→0

𝑎(𝑢 + 𝑡𝑤; 𝑣) − 𝑎(𝑢; 𝑣)
𝑡

, 𝑢(𝑘) ∈ 𝑉 , 𝑣,𝑤 ∈ 𝑉0 (86)

Now, the advantage of this equation for𝑤 is that the functional derivative is linear, i.e. (𝑣,𝑤) ↦ 𝐷𝑢𝑎(𝑢(𝑘); 𝑣)𝑤
is a bilinear form. Now, one can employ Galerkin discretization for the linear problem in 𝑤, exactly like it
was done in Chapter 2 and 3. The final equations then read

Nonlinear Newton equations for variational problems

𝑤ℎ ∈ 𝑉 (𝑘)
0,ℎ ∶D𝑢𝑎(𝑢

(𝑘−1)
ℎ ; 𝑣ℎ)𝑤ℎ = −𝑎(𝑢(𝑘−1)ℎ ; 𝑣ℎ) ∀𝑣ℎ ∈ 𝑉 (𝑘)

0,ℎ (87)
𝑢(𝑘)ℎ = 𝑃 (𝑘)

ℎ (𝑢(𝑘−1)ℎ +𝑤ℎ) (88)

Here, different function spaces can be used for each iterations, so a projector 𝑃 (𝑘)
ℎ needs to be used to project

the solution from 𝑉 (𝑘−1)
ℎ to 𝑉 (𝑘)

ℎ . In all of this equations, the previous iterate 𝑢(𝑘−1)ℎ is kept fixed, a linear
system like derived in Chapter 2 is solved to obtain the intermediate 𝑤ℎ, and then a new iterate 𝑢(𝑘) is
obtained.

25

9 Second-Order Linear Evolution Problems

9.2 Parabolic Initial-Boundary Value Problems

Heat Equation
In local form the heat equation is given by

𝜕
𝜕𝑡
(𝜌𝑢) − div(𝜅(𝑥)grad 𝑢) = 𝑓 in Ω̃ = Ω×]0, 𝑇 [(89)

where 𝑢 is the temperature, 𝜌 the heat capacity, 𝜅 the heat conductivity and 𝑓 a (time dependent) heat
source/sink. Without the time derivative, this looks very similar to standard PDE we know how to trans-
form into a nice variational problem.
To solve it we still need boundary conditions. Besides the boundary conditions of the spatial domain, which
is now required for the whole time, one also needs initial conditions over the whole domain at time 0.

𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) for (𝑥, 𝑡) ∈ 𝜕Ω×]0, 𝑇 [(90)
𝑢(𝑥, 0) = 𝑢0(𝑥) for all 𝑥 ∈ Ω (91)

Testing with time independent test functions 𝑣 and assuming 𝜌 to be time independent as well, we get to

∫Ω
𝜌(𝑥)𝑢̇𝑣𝑑𝑥 + ∫Ω

𝜅(𝑥)grad 𝑢 ⋅ grad 𝑣𝑑𝑥 = ∫Ω
𝑓 (𝑥, 𝑡)𝑣𝑑𝑥 ∀𝑣 ∈ 𝐻1

0 (Ω) (92)
𝑢(𝑥, 0) = 𝑢0(𝑥) ∈ 𝐻1

0 (Ω) (93)

with the shorthand notation
𝑚(𝑢̇, 𝑣) = ∫Ω

𝜌(𝑥)𝑢̇𝑣𝑑𝑥 (94)

𝑎(𝑢, 𝑣) = ∫Ω
𝜅(𝑥)grad 𝑢 ⋅ grad 𝑣𝑑𝑥 (95)

𝑙(𝑣) = ∫Ω
𝑓 (𝑥, 𝑡)𝑣𝑑𝑥 (96)

and the realisation, that 𝑚(𝑢̇, 𝑣) = 𝑑
𝑑𝑡
𝑚(𝑢, 𝑣) as only 𝑢 depends on time (note, that its also important, that the

domain Ω stays constant) we can rewrite 92 as
𝑑
𝑑𝑡
𝑚(𝑢, 𝑣) + 𝑎(𝑢, 𝑣) = 𝑙(𝑣) (97)

which looks like something we know how to solve from NumCSE.
Stability

26

Lemma 9.2.3.8. Decay of solutions of parabolic evolutions
if 𝑓 ≡ 0, the solution 𝑢(𝑡) of 92 satisfies

‖𝑢(𝑡)‖𝑚 ≤ 𝑒−𝛾𝑡‖𝑢0‖𝑚, ‖𝑢(𝑡)‖𝑎 ≤ 𝑒−𝛾𝑡‖𝑢0‖𝑎 ∀𝑡 ∈]0, 𝑇 [(98)
where 𝛾 = diam(Ω)−2

Note that lemma also tells us, that if 𝑓 is time independent, the solution 𝑢(𝑡) converges exponentially (in
time) to the stationary solution (the solution of 92 without the 𝑚(⋅, ⋅)𝑝𝑎𝑟𝑡.
Method of Lines
Now lets look into how we can solve 97. Lets apply the Galerkin discretization. As 𝑢 is now also time
dependent, let the expansion coefficients of 𝑢 also be time dependent.

𝑢ℎ(𝑡) =
𝑁
∑

𝑖=1
𝜇𝑖(𝑡)𝑏𝑖ℎ (99)

Combining this with 97, we get

𝐌
{ 𝑑
𝑑𝑡
𝜇(𝑡)

}

+ 𝐀𝜇(𝑡) = 𝜑⃗(𝑡) (100)
𝜇(0) = 𝜇0 (101)

This is now an ODE with respect to time and can be solved by time stepping, learned in NumCSE.
Recall ODE’s
An ODE is given as

𝐮̇ = 𝐟 (𝑡,𝐮) (102)
and is called linear, if 𝐟 (𝑡,𝐮) = 𝐀(𝑡)𝐮. With the ODE there is an evaluation operator associated, defined as
Φ𝑡0,𝑡𝑢0 = 𝑢(𝑡). There are some methods to approximate the evaluation operator with a discrete evaluation
operator Ψ.

• explicit Euler: Ψ𝑡,𝑡+𝜏𝐮 = 𝐮 + 𝜏𝐟 (𝑡,𝐮)

• implicit Euler:Ψ𝑡,𝑡+𝜏𝐮 = 𝐰,𝐰 = 𝐮 + 𝜏𝐟 (𝑡 + 𝜏,𝐰)

• implicit midpoint: Ψ𝑡,𝑡+𝜏𝐮 = 𝐰,𝐰 = 𝐮 + 𝜏𝐟 (𝑡 + 1
2𝜏,

1
2 (𝐰 + 𝐮))

Hence we can calculate the time evolution by the sequence
𝐮(0) = 𝐮0, 𝐮(𝑗) = Ψ𝑡𝑗−1,𝑡𝑗𝐮(𝑗−1), 𝑗 = 1,… ,𝑀 (103)

As Ψ is the discrete approximation, the question about the error is immediate. One usually considers

• the error at final time: 𝜖𝑀 = ‖𝐮(𝑀) − 𝐮(𝑇)‖

27

• maxium error in the sequence: 𝜖∞ = max𝑗 ‖𝐮(𝑗) − 𝐮(𝑡𝑗)‖

Theorem 9.2.6.14. Convergence of single-step methods
given the above sequence of solutions, obtained by a single step method of order 𝑞 ∈ ℕ, then

𝜖∞ = max
𝑗

‖𝐮(𝑗) − 𝐮(𝑡𝑗)‖ ≤ 𝐶𝜏𝑞 (104)

with 𝜏 = max𝑗 |𝑡𝑗 − 𝑡𝑗−1|

Runge-Kutta Single-Step Methods

Definition 7.3.3.1. General Runge-Kutta single-step method
For coefficients 𝑏𝑖, 𝑎𝑖,𝑗 ∈ ℝ, 𝑐𝑖 =

∑𝑠
𝑗=1 𝑎𝑖,𝑗 , the discrete evolution operator Ψ𝑠,𝑡 of an s-stage Runge-Kutta

single step method (RK-SSM) for the ODE 𝐮̇ = 𝐟 (𝑡,𝐮) is defined by

𝐤𝑖 = 𝐟 (𝑡 + 𝑐𝑖𝜏,𝐮 + 𝜏
𝑠
∑

𝑗=1
𝑎𝑖,𝑗𝐤𝑗), 𝑖 = 1,… , 𝑠, Ψ𝑡,𝑡+𝜏𝐮 = 𝐮 + 𝜏

𝑠
∑

𝑗=1
𝑏𝑗𝐤𝑗 (105)

with 𝐤𝑗 the increments.

The RK-SSM methods can be written down in compact form (the butcher scheme) as
𝐜 𝔄

𝐛 (106)

where 𝐜 is a vector containing the coefficients 𝑐𝑖, 𝐛 the coefficients 𝑏𝑖 and 𝔄 a matrix containing the coeffi-
cients 𝑎𝑖,𝑗 .
So continuing from 100 with different time steppings, we get

• explicit Euler:
𝜇(𝑗) = 𝜇(𝑗−1) + 𝜏𝑗𝐌−1 (𝜑⃗(𝑡𝑗−1) − 𝐀𝜇(𝑗−1)

) (107)
• implicit Euler:

𝜇(𝑗) =
(

𝜏𝑗𝐀 +𝐌
)−1 (𝐌𝜇(𝑗−1) + 𝜏𝑗𝜑⃗(𝑡𝑗−1)

) (108)
• implicit midpoint (Crank-Nicolson)

𝜇(𝑗) =
(

𝐌 + 1
2
𝐀
)−1

𝜏𝑗
((

𝐌 − 1
2
𝐀
)

𝜇(𝑗−1) + 1
2
(

𝜑⃗(𝑡𝑗) + 𝜑⃗(𝑡𝑗−1)
)

)

(109)

Which all involve solving a linear system of equations each time step. However note, that the matrices to
invert, stay constant with respect to time, so we can calculate the decomposition only once to save a lot of
time.

28

Using a general RK-SSM method as the time step, we get the following system of equations

𝐌𝜅⃗𝑖 +
𝑠
∑

𝑚=1
𝜏𝑎𝑖,𝑚𝐀𝜅⃗𝑚 = 𝜑⃗(𝑡𝑗 + 𝑐𝑖𝜏) − 𝐀𝜇(𝑗) (110)

𝜇(𝑗+1) = 𝜇(𝑗) + 𝜏
𝑠
∑

𝑚=1
𝑏𝑚𝜅⃗𝑚 (111)

with the Kronecker product, this can be rewritten as

(

𝐈𝑠 ⊗𝐌 + 𝜏𝔄⊗ 𝐀
)

⎡

⎢

⎢

⎣

𝜅⃗1
⋮
𝜅⃗𝑠

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝜑⃗(𝑡𝑗 + 𝑐1𝜏) − 𝐀𝜇(𝑗)
⋮

𝜑⃗(𝑡𝑗 + 𝑐𝑠𝜏) − 𝐀𝜇(𝑗)

⎤

⎥

⎥

⎦

(112)

which can be used to solve for the increments 𝜅⃗𝑖.
Remember stiff initial value problems:

Stiff IVP
An initial value problem is called stiff, if stability imposes much tighter timestep constraints on explicit single
step methods than the accuracy requirements

To study the stiffness of the method of lines, we first diagonalize it. For 100 let 𝜓⃗1,… , 𝜓⃗𝑁 denote the 𝑁
linearly independent generalized eigenvectors satisfying

𝐀𝜓⃗𝑖 = 𝜆𝑖𝐌𝜓⃗𝑖, 𝜓⃗⊤𝑗 𝐌𝜓⃗𝑖 = 𝛿𝑖𝑗 (113)
with positive eigenvalues 𝜆𝑖. With 𝐓 =

[

𝜓⃗1,… , 𝜓⃗𝑁
] and 𝐃 = diag(𝜆1,… , 𝜆𝑁), this can be rewritten as

𝐀𝐓 = 𝐌𝐓𝐃, 𝐓⊤𝐌𝐓 = 𝐈 (114)
The eigenvectors with positive eigenvalues is guaranteed, as 𝐀,𝐌 are (semi)positive definit. Thus with a
change of basis to the eigenvector basis, one can diagonalize 100.

𝜇(𝑡) =
∑

𝑘
𝜂𝑘(𝑡)𝜓⃗𝑘 ⟺ 𝜇(𝑡) = 𝐓𝜂(𝑡) ⟺ 𝐓⊤𝐌𝜇(𝑡) = 𝜂(𝑡) (115)

→ 𝐌𝐓 𝑑
𝑑𝑡
𝜂(𝑡) +𝐌𝐓𝐃𝜂(𝑡) = 𝜑⃗(𝑡) (116)

→
𝑑
𝑑𝑡
𝜂(𝑡) + 𝐃𝜂(𝑡) = 𝐓⊤𝜑⃗(𝑡) (117)

As 𝐃 is diagonal, this amount in 𝑁 decoupled scalar ODE’s. And on the we can perform our analysis more
easily. In NumCSE you have seen, that the Euler schemes and also Crank-Nicolson can be rewritten as a
RK-SSM for appropriate coefficients, so we can study the stability of the general RK-SSM for the scalar case.
For 𝑢̇ = −𝜆𝑢, with the butcher scheme 106 we obtain Ψ𝑡,𝑡+𝜏

𝜆 𝑢 = 𝑆(−𝜆𝜏)𝑢, with the stability function

𝑆(𝑧) = 1 + 𝑧𝐛⊤(𝐼 − 𝑧𝔄)−1𝟏 =
det(𝐈 − 𝑧𝔄 + 𝑧𝐛𝟏⊤)

det(𝐈 − 𝑧𝔄)
(118)

29

Unconditional stability of single step methods A necessary condition for unconditional stability of a single
step method, is that the discrete evolution operator Ψ𝑡

𝜆 applied to the scalar ODE 𝑢̇ = −𝜆𝑢 satisfies
𝜆 > 0 → lim

𝑗→∞
(Ψ𝜏

𝜆)
𝑗𝑢0 = 0, ∀𝑢0,∀𝜏 > 0 (119)

Definition 9.2.7.46. L-stability
A RK-SSM satisfying the above condition, is called L-stable if its stability function satisfies

|𝑆(𝑧)| < 1,∀𝑧 < 0 and 𝑆(−∞) = lim
𝑧→−∞

𝑆(𝑧) = 0 (120)

plugging −∞ int 𝑆 we obtain 𝑆(−∞) = 1 − 𝐛⊤𝔄−1𝟏, which is equal to zero if 𝐛 is equal to the last row of
𝔄.

“Meta-theorem” 9.2.8.5. Convergence of solutions of fully discrete parabolic evolution problems
Assume that

• the solution of the parabolic IBVP is "sufficiently smooth"
• its spatial Galerkin finite element discretization relies on degree 𝑝 Lagrangian finite elements on uni-

formly shape-regular families of meshes
• timestepping is based on a L-stable single step method of order 𝑞 with uniform timestep 𝜏 > 0

Then we can expect an asymptotic behaviour of the total discretization error according to
(

𝜏
𝑀
∑

𝑗=1

|

|

|

𝑢(𝜏𝑗) − 𝑢(𝑗)ℎ
|

|

|

2

𝐻1(Ω)

)

1
2

≤ 𝐶
(

ℎ𝑝 + 𝜏𝑞
) (121)

Hence the total error is the spatial error plus the temporal error

30

9.3 Models for Vibrating Membrane

Wave Equation
In local form, the (linear) wave equation is given by

𝜌(𝑥) 𝜕
2

𝜕𝑡2
𝑢 − div(𝜎(𝑥)grad 𝑢) = 𝑓 in Ω̃ (122)

Note the similarity to the heat equation 89. As this makes the wave equation, a second order ODE 𝐮̈ = 𝐟 (𝐮),
two initial conditions are needed. Additional to the initial conditions 90 & 91,

𝜕
𝜕𝑡
𝑢(𝑥, 0) = 𝑣0(𝑥) for all 𝑥 ∈ Ω (123)

is also needed.
To be able to use the same time steppings as the ones introduced in the previous section, the wave function
can be converted into a first order ODE:

𝑢̇ = 𝑣 (124)
𝜌𝑣̇ = div(𝜎(𝑥)grad 𝑢) (125)

Remember from Analysis that the particular wave equation 𝜕2

𝜕𝑡2
𝑢− 𝑐2 𝜕2

𝜕𝑥2
𝑢 = 0 in 1D results in the d’Alembert

solution:
𝑢(𝑥, 𝑡) = 1

2
(

𝑢0(𝑥 + 𝑐𝑡) + 𝑢0(𝑥 − 𝑐𝑡)
)

+ 1
2𝑐

𝑥+𝑐𝑡

∫
𝑥−𝑐𝑡

𝑣0(𝑠)𝑑𝑠 (126)

with 𝑢0 and 𝑣0 the initial conditions. Hence there is again the concept of domain of dependence and domain
of influence. This will be important later. Furthermore, in the absence of a source term, as in the simple case
above, the solution will stay undamped. This corresponds to conservation of total energy.
We can formulate the variational problem:

𝑚(𝑢̈, 𝑣) + 𝑎(𝑢, 𝑣) = 0 ∀𝑣 ∈ 𝑉0 (127)

Theorem 9.3.2.16. Energy conservation in wave propagation
If 𝑢 solves eq. 127, then its energy is conserved, in the sense that

𝑡→ 1
2
𝑚(𝜕
𝜕𝑡
𝑢, 𝜕
𝜕𝑡
𝑢) + 1

2
𝑎(𝑢, 𝑢) ≡ const (128)

where 1
2𝑚(

𝜕
𝜕𝑡
𝑢, 𝜕

𝜕𝑡
𝑢) is can be understood as the ‘kinetic’ energy and 1

2𝑎(𝑢, 𝑢) as the ‘potential’ energy.

Method of Lines
The method of lines gives rise to

𝐌
{

𝑑2

𝑑𝑡2
𝜇(𝑡)

}

+ 𝐀𝜇(𝑡) = 𝜑⃗(𝑡) (129)

𝜇(0) = 𝜇0,
𝑑
𝑑𝑡
𝜇(0) = 𝜈0 (130)

31

Using 𝜈 = ̇⃗𝜇, we can rewrite it to be a first order ODE.
𝑑
𝑑𝑡
𝜇 = 𝜈 (131)

𝐌 𝑑
𝑑𝑡
𝜈 = 𝜑⃗(𝑡) − 𝐀𝜇 (132)

𝜇(0) = 𝜇0, 𝜈(0) = 𝜈0 (133)
Remember, in the case of 𝜑⃗ ≡ 0, there is conservation of energy:

𝐸ℎ(𝑡) =
1
2
𝑑
𝑑𝑡
𝜇⊤𝐌 𝑑

𝑑𝑡
𝜇 + 1

2
𝜇⊤𝐀𝜇 ≡ const (134)

So we would like, that the time stepping preserves this. Such time stepping schemes called structure pre-
serving. One such timestepping scheme is the Crank Nicolson one:

𝐌𝜇(𝑗+1) − 2𝜇(𝑗) + 𝜇(𝑗−1)

𝜏2
= −1

2
𝐀
(

𝜇(𝑗−1) + 𝜇(𝑗+1)
)

+ 1
2

(

𝜑⃗
(

𝑡𝑗 −
1
2
𝜏
)

+ 𝜑⃗
(

𝑡𝑗 +
1
2
𝜏
))

(135)

Another one would be Strömer scheme:

𝐌𝜇(𝑗+1) − 2𝜇(𝑗) + 𝜇(𝑗−1)

𝜏2
= −𝐀𝜇(𝑗) + 𝜑⃗

(

𝑡𝑗
) (136)

For both these second order time stepping schemes, to get 𝜇(1), 𝜇(−1) is needed in the equation. Now the
question is, where do we get this from? It can be obtained with a special initial step, using a symmetric (first
order) difference quotient:

𝑑
𝑑𝑡
𝜇(0) = 𝜈0 →

𝜇(1 − 𝜇(−1)

2𝜏
= 𝜈0 (137)

And finally there is the Leapfrog timestepping. Using the auxiliary variable 𝜈(𝑗+1∕2) = 𝜇(𝑗+1)−𝜇(𝑗)

𝜏
and insert-

ing this into the Strömer scheme results in

𝐌𝜈(𝑗+1) − 𝜈(𝑗)
𝜏

= −𝐀𝜇(𝑗) + 𝜑⃗
(

𝑡𝑗
) (138)

𝜇(𝑗+1) − 𝜇(𝑗)

𝜏
= 𝜈(𝑗+1∕2) (139)

with the inital step 𝜈(−1∕2) + 𝜈(1∕2) = 2⃗𝜈0.

32

10 Convection-Diffusion Problems

10.1 Heat conduction in a Fluid

Consider a flowing fluid. Then there is the key quantity, the flow field 𝐯 ∶ Ω ⊂ ℝ𝑑 → ℝ𝑑 , where 𝑑 is the
dimension we consider. The flow field can be understand as 𝐯(𝑥) = fluid velocity at point 𝑥 ∈ Ω.
Given a flow field 𝐯, we can consider the autonomous initial value problem

𝐲̇ = 𝐯(𝐲), 𝐲0 = 𝐱0 (140)
The solution 𝑡→ 𝐲(𝑡) describes how a particle moves, carried by the fluid, also called streamline.
As the domain Ω is usually bounded, we cannot have fluid leaving the domain. This means the fluid velocity
must be zero in the normal direction of the domain boundary. Hence

𝐯(𝐱) ⋅ 𝐧(𝐱) = 0, ∀𝐱 ∈ 𝜕Ω (141)

Fourier’s law in a moving fluid

𝐣(𝐱) = −𝜅grad 𝑢(𝐱) + 𝐯(𝐱)𝜌𝑢(𝐱) (142)
with 𝜅 the heat conductivity and 𝜌 the volumetric heat capacity

We already know the first part, called diffusive heat flux, from the heat equation. The second part is called
convective heat flux. With this new flux, the standart PDE becomes

−div(𝜅grad 𝑢) + div(𝜌𝐯(𝐱)𝑢) = 𝑓 in Ω (143)
Incompressible Fluids
A fluid is called incompressible if its associated flow map (evaluation operator) Φ𝑡 is volume preserving,
i.e. |

|

Φ𝑡(𝑉)|
|

= |

|

Φ0(𝑉)|
|

= |𝑉 | for all control volumes 𝑉 . This means that d
d𝑡
|

|

Φ𝑡(𝑉)|
|

= 0. Going through
with some derivation (can be found in the lecture document) a equivalent statement to volume preservation
is found

div 𝐯 ≡ 0 in Ω (144)
Hence the fluid is incompressible, if its flow velocity is divergence free. In the derivation an important
theorem is used

Theorem 10.1.3.7. Differentiation formula for determinants
Let 𝐒 be a smooth matrix-valued function. If 𝐒 is regular then

d
d𝑡

det(𝐒(𝑡)) = det(𝐒(𝑡))tr
(d𝐒
d𝑡

𝐒−1(𝑡)
)

(145)

with det the determinant and tr the trace of a matrix.

33

In case of incompressibility, equation 143 can be simplified, using the general product rule 12 and div 𝐯 = 0

−div(𝜅grad 𝑢) + 𝐯(𝐱) ⋅ grad𝜌𝑢 = 𝑓 in Ω (146)
Of course we can also look at the time dependent heat flow, similar to the heat equation 92

𝜕
𝜕𝑡

(𝜌𝑢) − div(𝜅grad 𝑢) + div(𝜌𝐯(𝐱, 𝐭)𝑢) = 𝑓 in Ω (147)
We will see lateron how this can be solved.

10.2 Stationary Convection-Diffusion Problems

Here we will focus on the convection diffusion equation 143 with constant 𝜅, 𝜌, incompressible flow 𝐯 and
zero dirichlet boundary conditions. Hence

−𝜅Δ𝑢 + 𝜌𝐯(𝐱) ⋅ grad𝑢 = 𝑓 in Ω, 𝑢 = 0 on 𝜕Ω (148)
Nondimentionalizing the problem results in

−𝜖Δ𝑢 + 𝐯(𝐱) ⋅ grad𝑢 = 𝑓 in Ω, 𝑢 = 0 on 𝜕Ω (149)
with ‖𝐯‖𝐿∞(Ω) = 1. This results in the following variational form

𝜖 ∫Ω
grad 𝑢 ⋅ grad 𝑣𝑑𝑥 + ∫Ω

(𝐯 ⋅ grad 𝑢)𝑣𝑑𝑥 = ∫Ω
𝑓 (𝑥)𝑣𝑑𝑥 (150)

with the lefthandside the bilinear form 𝑎(𝑢, 𝑣). However, 𝑎 is not symmetric. This also means, it does not
induce an energy norm. However it is still positive definite (see lecture document).
Singular perturbation
A boundary value problem depending on a parameter 𝜖 is called singularly perturbed, if the limit problem
for 𝜖 → 𝜖0 is not compatible with the boundary conditions.
For 𝜖 = 0 the above PDE is singular perturbed. It cannot satisfy dirichlet boundary conditions on the outflow
part of the boundary. Γout = {𝐱 ∈ 𝜕Ω ∶ 𝐯(𝐱) ⋅ 𝐧(𝐱) > 0}, similarly Γin = {𝐱 ∈ 𝜕Ω ∶ 𝐯(𝐱) ⋅ 𝐧(𝐱) < 0}

Upwinding
When trying to solve eq. 151 with the Galekrin approach, when 𝜖 is very close to 0, one can observe huge
oscillations in the solution, which is not correct. It comes from the fact, that the Galerkin matrix becomes
close to singular. So our goal is to get a robust method, which can solve eq. 151 no matter the 𝜖.
Consider again eq. 151 but in 𝑑 = 1 and with zero boundary conditions

𝜖 ∫

1

0

𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑥
𝑑𝑥 + ∫

1

0

𝜕𝑢
𝜕𝑥
𝑣𝑑𝑥 = ∫

1

0
𝑓 (𝑥)𝑣𝑑𝑥 (151)

To calculate the Galerkin matrix for an equidistant mesh with 𝑀 cells, we use the global composite trape-
zoidal rule for the convective term

∫

1

0
𝜓(𝑥)𝑑𝑥 = ℎ

𝑀
∑

𝑗=0
𝜓(𝑗ℎ) (152)

34

Hence the convective term of the bilinear form will be approximated by

∫

1

0

𝜕𝑢ℎ
𝜕𝑥

𝑣ℎ𝑑𝑥 ≈ ℎ
𝑀−1
∑

𝑗=1

𝜕𝑢ℎ
𝜕𝑥

(𝑗ℎ)𝑣ℎ(𝑗ℎ) (153)

But 𝜕𝑢ℎ
𝜕𝑥

(𝑗ℎ) is not valid, as its discontinuous at the nodes for 𝑢ℎ ∈ 0
1,0. However, convection transports the

information in the direction of 𝐯 (= 1 in our case). Hence use
𝜕𝑢ℎ
𝜕𝑥

(𝑗ℎ) = lim
𝛿→0

𝜕𝑢ℎ
𝜕𝑥

(𝑗ℎ − 𝛿𝐯) =
𝜕𝑢ℎ
𝜕𝑥 |]𝑥𝑗−1,𝑥𝑗 [

(154)

And generalized in more dimensions
𝐯(𝐩) ⋅ grad 𝑢ℎ(𝐩) = lim

𝛿→0
𝐯(𝐩) ⋅ grad 𝑢ℎ(𝐩 − 𝛿𝐯(𝐩)) (155)

Streamline diffusion
A totally different idea to fix the problem of 𝜖 → 0 is to add some ℎ dependent diffusion. I.e. replace
𝜖 ← 𝜖 + 𝑐(ℎ) with 𝑐(ℎ) > 0. However, there is smearing in the internal layers. But as the solution is smooth
along the direction of 𝐯, so adding diffusion along the velocity should not do any harm.
The method of Anisotropic diffusion is born. On cell𝐾 replace 𝜖 ← 𝜖𝐈+𝛿𝐾𝐯𝐾𝐯⊤𝐾 with 𝐯𝐾 the local velocity,
i.e. obtained by averaging and 𝛿𝐾 > 0 some controlling parameter. Resuling in

∫Ω

(

𝜖𝐈 + 𝛿𝐾𝐯𝐾𝐯⊤𝐾
)

grad 𝑢 ⋅ grad 𝑣𝑑𝑥 + ∫Ω
(𝐯 ⋅ grad 𝑢)𝑣𝑑𝑥 = ∫Ω

𝑓 (𝑥)𝑣𝑑𝑥 (156)

However this affects the solution 𝑢, such that it will not be the same as the one from eq. 151. To get rid of
this inconsistency, the anisotropic diffusion can be introduced via a residual term

∫Ω
𝜖grad 𝑢 ⋅ grad 𝑣𝑑𝑥 + ∫Ω

(𝐯 ⋅ grad 𝑢)𝑣𝑑𝑥

+
∑

𝐾∈
𝛿𝐾 ∫𝐾

(−𝜖Δ + 𝐯 ⋅ grad 𝑢 − 𝑓)𝐯 ⋅ grad 𝑣 = ∫Ω
𝑓 (𝑥)𝑣𝑑𝑥 (157)

the added term will be zero for the exact solution (strong PDE) and the anisotropic diffusion is still here. The
control parameter is usually chosen according to

𝛿𝐾 =

{

𝜖−1ℎ2𝐾 if ‖𝐯‖𝐾,∞ℎ𝐾
2𝜖 ≤ 1

ℎ if ‖𝐯‖𝐾,∞ℎ𝐾
2𝜖 > 1

(158)

With this, the (ℎ2) convergence of ‖
‖

𝑢 − 𝑢ℎ‖‖𝐿2(Ω) for ℎ refinement is preserved, while upwind quadrature
only achieves (ℎ) convergence.

35

10.3 Discretization of Time-Dependent (Transient) ConvectionDiffusion IBVPs

Now we will take a look at how time dependent convection diffusion can be modeled. Assuming the incom-
pressibility condition and nondimensionalizing, eq. 147 becomes

𝜕
𝜕𝑡
𝑢 − 𝜖Δ𝑢 + 𝐯(𝐱,𝑡) ⋅ grad 𝑢 = 𝑓 in Ω (159)

Up on inspecting the solution obtained with method of lines, one observes that without upwind quadrature,
oscillations occur. However, with upwind damping is observed, which is wrong. Hence other methods of
solving have to be explored. Of course the limit of 𝜖 → 0 again poses a problem. So lets first look at the
pure transport problem

𝜕
𝜕𝑡
𝑢 + 𝐯(𝐱,𝑡) ⋅ grad 𝑢 = 𝑓 in Ω (160)

Its solution is given by the Method of Characteristics

𝑢(𝐱, 𝑡) =
{

𝑢0
(

𝐱𝟎
)

+ ∫ 𝑡
0 𝑓 (𝐲(𝑠), 𝑠)𝑑𝑠 if 𝐲(𝑠) ∈ Ω∀0 < 𝑠 < 𝑡

𝑔
(

𝐲
(

𝑠0
)

, 𝑠0
)

+ ∫ 𝑡
𝑠0
𝑓 (𝐲(𝑠), 𝑠)𝑑𝑠 if 𝐲(𝑠0) ∈ 𝜕Ω, 𝐲(𝑠) ∈ Ω∀𝑠0 < 𝑠 < 𝑡

(161)

where
𝐲̇(𝑡) = 𝐯(𝐲(𝑡), 𝑡) (162)

𝑢0 the initial condition and 𝑔 the dirichlet boundary conditions on the inflow boundary. Unfortunately, this
only work for the pure transport problem. For 𝜖 > 0 we need an other method
Splitting Methods
given a general ODE whose right hand side is the sum of two functions

𝐲̇ = 𝐠(𝑡, 𝐲) + 𝐫(𝑡, 𝐲) (163)
The Strang splitting single step method provides a method to solve it

Strang splitting
compute 𝐲(𝑗+1) given 𝐲(𝑗) according to

𝐲̃ = 𝐳(𝑡𝑗 +
1
2
𝜏), where 𝐳(𝑡) solves 𝐳̇ = 𝐠(𝑡, 𝐳), 𝐳(𝑡𝑗) = 𝐲(𝑗) (164)

𝐲̂ = 𝐰(𝑡𝑗+1), where 𝐰(𝑡) solves 𝐳̇ = 𝐫(𝑡,𝐰),𝐰(𝑡𝑗) = 𝐲̃ (165)
𝐲(𝑗+1) = 𝐳(𝑡𝑗+1), where 𝐳(𝑡) solves 𝐳̇ = 𝐠(𝑡, 𝐳), 𝐳(𝑡𝑗 +

1
2
) = 𝐲̂ (166)

and 𝑡𝑗+1 = 𝑡𝑗 + 𝜏

Theorem 10.3.3.5. Order of Strang splitting single step method
Assuming exact or second order accuracy solution of the initial value problems of the sub-steps, the Strang
splitting single step method is of second order

36

We can now apply this to eq. 159
𝜕
𝜕𝑡
𝑢 = 𝜖Δ𝑢 𝑓 − 𝐯 ⋅ grad 𝑢

↕ ↕ ↕
𝐲̇ = 𝐠(𝐲) 𝐫(𝐲)

(167)

This amount to once solving pure diffusion
𝜕
𝜕𝑡
𝑧 − 𝜖Δ𝑧 = 0 (168)

and once pure transport
𝜕
𝜕𝑡
𝑤 + 𝐯 ⋅ grad 𝑢 = 𝑓 (169)

To solve the pure transport problem, we have seen the method of characteristics eq. 161. However, it requires
integration along streamlines. One idea is to solve it with the particle method.

1. Pick suitable interpolation nodes {𝐩𝑖
}, the initial particle positions

2. Solve initial value problems
𝐲̇(𝑡) = 𝐯(𝐲,𝑡) , 𝐲(0) = 𝐩𝑖 (170)

with suitable sigle step methods
3. Reconstruct the approximation. With the composite midpoint rule

𝑢(𝑗)ℎ
(

𝐩(𝑗)𝑖
)

= 𝑢0
(

𝐩𝑖
)

+ 𝜏
𝑗−1
∑

𝑙=1
𝑓
(1
2
(

𝐩𝑙𝑖 + 𝐩𝑙−1𝑖
)

, 1
2
(

𝑡𝑙 + 𝑡𝑙−1
)

)

(171)

But the interpolation nodes change over time and care needs to be taken, to add particles each step at the
inflow boundary and remove one, which leave the domain. Because of the movement of the nodes and
potential creation and deletion, each step we need to re-mesh, create a new triangular mesh with the advected
nodes/particles.
Semi Lagrangian
An other method, which relies on a fixed mesh is the semi Lagrangian method.

Definition 10.3.4.2. Material derivative
given a velocity field 𝐯, the material derivative of a function 𝑓 is given by

𝐷𝑓
𝐷𝐯

(𝐱, 𝑡0) = lim
𝜏→0

𝑓 (𝐱, 𝑡0) − 𝑓 (Φ𝑡0,−𝜏𝐱, 𝑡0 − 𝜏)
𝜏

(172)

By the chainrule we find
𝐷𝑓
𝐷𝐯

(𝐱, 𝑡) = grad 𝑓 (𝐱, 𝑡) ⋅ 𝐯(𝐱, 𝑡) + 𝜕
𝜕𝑡
𝑓 (𝐱, 𝑡) (173)

Hence the transient convection diffusion eq. 159 can be rewritten as
𝐷𝑢
𝐷𝐯

− 𝜖Δ𝑢 = 𝑓 in Ω (174)

37

By using a backwards difference of the material derivative, we get a semi-discretization
𝑢(𝑗)(𝐱) − 𝑢(𝑗−1)(Φ𝑡𝑗 ,𝑡𝑗−𝜏𝐱)

𝜏
− 𝜖Δ𝑢(𝑗) = 𝑓 (𝐱, 𝑡𝑗) in Ω (175)

with additional initialconditions for 𝑡 = 𝑡𝑗 . On this semi-discretization the standard Galerkin method can be
applied.

∫Ω

𝑢(𝑗)(𝐱) − 𝑢(𝑗−1)(Φ𝑡𝑗 ,𝑡𝑗−𝜏𝐱)
𝜏

𝑣𝑑𝐱 + 𝜖 ∫Ω
grad 𝑢(𝑗) ⋅ grad 𝑣𝑑𝐱 = ∫Ω

𝑓 (𝐱, 𝑡𝑗)𝑣𝑑𝐱 (176)
Unfortunately this cannot be implemented as is, because the function 𝑢(𝑗−1)(Φ𝑡𝑗 ,𝑡𝑗−𝜏𝐱) is not smooth in 
and is hence not a finite element function on . To get around this, simply replace it by its linear interpolant
𝐼1(𝑢(𝑗−1)◦Φ𝑡𝑗 ,𝑡𝑗−𝜏) and replace Φ𝑡𝑗 ,𝑡𝑗−𝜏𝐱 by 𝐱 − 𝜏𝐯(𝐱,𝑡𝑗) (explicit Euler).

∫Ω

𝑢(𝑗)(𝐱) − 𝐼𝑖(𝑢(𝑗−1)(⋅ − 𝜏𝐯(⋅,𝑡𝑗)))(𝐱)
𝜏

𝑣𝑑𝐱 + 𝜖 ∫Ω
grad 𝑢(𝑗) ⋅ grad 𝑣𝑑𝐱 = ∫Ω

𝑓 (𝐱, 𝑡𝑗)𝑣𝑑𝐱 (177)

Which can be implemented now.

11 Numerical Methods for Conservation-Laws

11.2 Scalar Conservation Laws in 1D

The goal of this chapter is solve Cauchy problems which are of the form
𝜕𝑢
𝜕𝑡

(𝑥, 𝑡) + 𝜕
𝜕𝑥

(𝑓 (𝑢(𝑥, 𝑡), 𝑥)) = 𝑠(𝑢(𝑥, 𝑡), 𝑥, 𝑡). (178)

The flux 𝑓 ∶ ℝ × Ω → ℝ can be a general function, which can depend non-linearly on the solution 𝑢.
Everything in this chapter will be one dimensional in space and time. So we have Ω ⊆ ℝ.
Particle Model

One first example is the particle model, in the lecture we took cars as particles and wanted to model traffic
speed as a function of the number of cars in the following way:

𝑥̇𝑖(𝑡) = 𝑣𝑚𝑎𝑥(1 −
Δ0

Δ𝑥𝑖(𝑡)
), Δ𝑥𝑖(𝑡) = 𝑥𝑖+1(𝑡) − 𝑥𝑖(𝑡). (179)

Intuitively, this describes the speed of car 𝑖 as a function of the maximum velocity the car can drive 𝑣𝑚𝑎𝑥, the
distance to the car in front Δ𝑥𝑖(𝑡) and the minimal distance, i.e. car length Δ0.
To get a differential equation we have to think about what quantities must preserved and how we can relate the
changes of cars over some space interval to the speed of the cars in this interval. This can then be modelled
as

𝜕𝑢
𝜕𝑡

(𝑥, 𝑡) = 𝜕
𝜕𝑥
𝑢(1 − 𝑢), (180)

where 𝑢 describes the care density (average number of cars on the road in some infinitesimally small interval
at position 𝑥 and time 𝑡).

38

11.2.2 Characteristics

We consider the conservation law as above 178 with 𝑠 = 0. Then a characteristic curve is defined as

Definition 11.2.2.3 Characteristic curve for one dimensional scalar conservation law
Γ ∶ [0, 𝑇] → ℝ × [0, 𝑇] with Γ(𝜏) ∶= (𝛾(𝜏), 𝜏), such that 𝛾 satisfies

𝑑
𝑑𝑡
𝛾(𝜏) = 𝑓 ′(𝑢(𝛾(𝜏), 𝜏)) (181)

for 0 ≤ 𝜏 ≤ 𝑇 .

Generally, characteristic curves are lines along which information propagates. This means a 𝑢(𝑥, 𝑡) will only
depend on the initial condition at 𝑥0, 𝑢0(𝑥0) if there is a characteristic curve that starts in the point 𝑥0 are
travels to the point in space time (𝑥, 𝑡). One property of Characteristic curves is the following:

Lemma 11.2.2.6 Classical solution and characteristic curves
Smooth solutions of 178 with 𝑠 ≡ 0 are constant along characteristic curves.

For example in the case of linear advection (this is the ODE 𝜕𝑡𝑢 + 𝑣𝜕𝑥𝑢 = 0) we can use this to solve the
equation because 𝛾(𝜏) = (𝑥0 + 𝜏𝑣), which implies 𝑢(𝑥, 𝑡) = 𝑢0(𝑥 − 𝑡𝑣).
But this doesn’t work if the solution is not smooth for example in the traffic flow model above, the solution
has a jump after a certain time and hence this approach breaks down.

39

11.2.4 Jump conditions and Riemann Problem

The method of characteristics usually only works up to a certain point in time. To get the solution for times
after that, we first note that the solution will usually have a discontinuity after the time where the method of
characteristics breaks down. So we study how the solution behaves at these jumps (discontinuities).
The setting is as follows: We study the equation (178) still with 𝑠 ≡ 0. Then we can derive that along jumps,
the normal components must be continuous, which leads to the

Definition 11.2.4.2 Rankine Hugoniot (jump) condition

𝑠̇(𝑢𝑙 − 𝑢𝑟) = 𝑓 (𝑢𝑙) − 𝑓 (𝑢𝑟) (182)
where 𝑠̇ = 𝑑𝛾

𝑑𝑡
is the time derivative of the discontinuity curve Γ(𝑡) = (𝛾(𝑡), 𝑡) ∈ ℝ × [0, 𝑇]. And 𝑢𝑙 is the

solution value on the left of the jump and 𝑢𝑟 is the solution value on the right of the jump.

Note that this is useful because it allows us to compute the jump if we know 𝑢𝑙 and 𝑢𝑟.
The Riemann problem is given as

Definition 11.2.5.1 Riemann problem

𝜕𝑢
𝜕𝑡

+
𝜕𝑓 (𝑢)
𝜕𝑥

= 0 (183)
and

𝑢0(𝑥) =

{

𝑢𝑙 ∈ ℝ if 𝑥 < 0
𝑢𝑟 ∈ ℝ if 𝑥 > 0

(184)

Note that 𝑓 can still be chosen to be any sufficiently smooth flux function.

Using the Rankine Hugoniot jump condition we then get the following solution for Riemann problems with
a shock:

Lemma 11.2.5.4 Shock solution for Riemann problem
For any two states 𝑢𝑟, 𝑢𝑙 ∈ ℝ the piecewise constant function

𝑢(𝑥, 𝑡) ∶=

{

𝑢𝑙 for 𝑥 < 𝑠̇𝑡
𝑢𝑟 for 𝑥 > 𝑠̇𝑡, 𝑠̇ ∶=

𝑓 (𝑢𝑙) − 𝑓 (𝑢𝑟)
𝑢𝑙 − 𝑢𝑟

, 𝑥 ∈ ℝ, 0 < 𝑡 < 𝑇 (185)

is a weak solution to the Riemann problem.

Note that the solution only holds if the equation implies a shock (jump). This for example the case if 𝑓 is
convex and 𝑢𝑙 > 𝑢𝑟. Or if 𝑓 is concave and 𝑢𝑟 > 𝑢𝑙.
If the jump only exists in the beginning we have a different solution

40

Lemma 11.2.5.10 Rarefaction solution of Riemann problem

If 𝑓 ∈ 𝐶2(ℝ) is strictly
{

convex and 𝑢𝑙 < 𝑢𝑟
concave and 𝑢𝑟 < 𝑢𝑙,

then

𝑢(𝑥, 𝑡) ∶=

⎧

⎪

⎨

⎪

⎩

𝑢𝑙 for 𝑥 < min{𝑓 ′(𝑢𝑙), 𝑓 ′(𝑢𝑟)} ⋅ 𝑡
𝑔(𝑥

𝑡
) for min{𝑓 ′(𝑢𝑙), 𝑓 ′(𝑢𝑟)} <

𝑥
𝑡
< max{𝑓 ′(𝑢𝑙), 𝑓 ′(𝑢𝑟)}

𝑢𝑙 for 𝑥 > max{𝑓 ′(𝑢𝑙), 𝑓 ′(𝑢𝑟)} ⋅ 𝑡
(186)

𝑔 ∶= (𝑓 ′)−1, is a weak solution to the Riemann problem.

The question when to choose which of the two solution is answered by

Definition 11.2.6.1 Lax entropy condition
𝑢=̂ weak solution of the (178) piecewise classical solution in neigborhood of 𝐶2-curve Γ ∶= (𝛾(𝜏), 𝜏), 0 ≤
𝜏 ≤ 𝑇 , discontinuous across Γ.
𝑢 satisfies the Lax entropy condition in (𝑥0, 𝑡0) ∈ Γ ⟺ 𝑓 ′(𝑢𝑙) >

𝑓 (𝑢𝑙)−𝑓 (𝑢𝑟)
𝑢𝑙−𝑢𝑟

> 𝑓 ′(𝑢𝑟).

Now we have that if 𝑢 satisfies the Lax entropy condition, then we have to pick the shock solution. Otherwise
we pick the rarefaction solution.

11.2.7 Properties of Entropy Solutions

The essential properties here are that with the propagation speed 𝑓 ′(𝑢) we find the domain of dependence
and the domain of influence, which is best illustrated by a picture and hence we encourage the reader to look
at the lecture document and the illustrations below Theorem 11.2.7.3.
Moreover the second result is that the number of extremas of the solution is non-increasing in time.

11.3 Conservative Finite Volume (FV) Discretization

11.3.1 Finite-Difference Methods

Finite difference methods are probably the simplest methods for solving PDEs. We just replace the spacial
derivatives by some finite difference quotient for example one of the following
Symmetric difference quotient

𝜕𝑓
𝜕𝑥

≈
𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0 − ℎ)

2ℎ
(187)

41

Backward difference quotient
𝜕𝑓
𝜕𝑥

≈
𝑓 (𝑥0) − 𝑓 (𝑥0 − ℎ)

ℎ
(188)

Forward difference quotient
𝜕𝑓
𝜕𝑥

≈
𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0)

ℎ
(189)

Then we construct a solution by time stepping in the sense, that given 𝑢(𝑥, 𝑡𝑘) we compute 𝑢(𝑥, 𝑡𝑘+1) by using
some Runge Kutta integrator.
With the example of finite difference methods we observe that by the nature of the problems we are studying
in this chapter the solutions have to be constructed under consideration of the flux direction. That is, in
the spirit of characteristic curves we know that information propagates along curves in space time. And for
example if this curve advances from left to right in space, then we need to use the forward difference quotient,
because the backward difference quotient will not contain the information of the flow direction.

11.3.2 Spatially Semi-Discrete Conservation Form

The method we will use in this section of the course is the finite Volume Method, This means we build a
mesh by taking intervals around the spacial points in which we approximate the solution 𝑢. And then we use
the problem definition

𝜕𝑢
𝜕𝑡

= − 𝜕
𝜕𝑥
𝑓 (𝑢) (190)

to derive in the simplest case
𝜕𝑢(𝑥𝑖, 𝑡𝑘)

𝜕𝑡
≈ 𝜕
𝜕𝑡

1
ℎ ∫

𝑥𝑗+1∕2

𝑥𝑗−1∕2
𝑢(𝑥, 𝑡𝑘)𝑑𝑥 ≈ −1

ℎ
(

𝐹 (𝑢(𝑥𝑗 , 𝑡𝑘), 𝑢(𝑥𝑗+1, 𝑡𝑘)) − 𝐹 (𝑢(𝑥𝑗−1, 𝑡𝑘), 𝑢(𝑥𝑗 , 𝑡𝑘))
)

, (191)

where 𝐹 (...) is a approximation of the flux function 𝑓 (𝑢). Note that in the above example 𝐹 only depends
on two neighbouring nodes, but this can also be extended to use more nodes. As we can then plug the
above equation given 𝐹 in a Runge Kutta solver again, we reduced the problem to choosing appropriate Flux
functions.

Definition 11.3.3.5 Consistency numerical flux function
A numerical function 𝐹 ∶ ℝ𝑚𝑙+𝑚𝑟 → ℝ is consistent with the flux 𝑓 ∶ ℝ → ℝ if

𝐹 (𝑢, 𝑢,… , 𝑢) = 𝑓 (𝑢), ∀𝑢 ∈ ℝ (192)

Then we have the result that consistent numerical flux functions will reconstruct the correct "discrete shock
speed" when applied as explained above. As this is such an important property the finite volume method
comes in very handy to solve these Cauchy problems.

42

11.3.4 Numerical Flux Functions

This section now treats how to find suitable flux functions. There are several options introduced starting with
the simplest which basically corresponds to a average of the two inputs in 𝐹 (𝑢,𝑤). But then it turns out that
this flux suffers from similar problems as the finite difference methods did.
One remedy for this is the Lax-Friedrichs / Rusanov Flux Flux which is useful but is flattens the edges of
jumps. Which is due to it’s constuction with additional diffusion.
As pointed out before, the direction in which the information flows is crucial, so an important idea to choose
the right flux is to respect that. Moreover the flux has to reproduce physical solution in the sense as explained
above when studying two possible solutions for the Riemann problem.
The final flux introduced, which solves these problems is the Godunov Flux

11.3.4.33 Godunov Flux

𝐹𝐺𝐷(𝑣,𝑤) =

{

min𝑣≤𝑢≤𝑤 𝑓 (𝑢) , if 𝑣 < 𝑤
max𝑤≤𝑢≤𝑣 𝑓 (𝑢) , if 𝑣 ≥ 𝑤,

(193)

11.3.5 Monotone Schemes

In one of the above subsections it was mentioned that the number of extremas must not increase over time.
This section shows that the two useful fluxes we derived in the previous chapter both have these property.
This is established by

11.3.5.8 Monotonicity of Lax-Friedrichs / Rusanov numerical flux and Godunov flux
For any continuously differentiable flux function 𝑓 the associated Lax-Friedrichs/Rusanov flux and Godunov
flux are monotone.

and

11.3.5.13 Non-oscillatory monotone semi-discrete evolutions
If 𝜇 = 𝜇(𝑡) solves the two point flux equation (191), with a monotone numerical flux and 𝜇(0) has finitely
many local extrema, then the number of local extrema of 𝜇(𝑡) cannot be larger than that of 𝜇(0).

43

11.4 Timestepping for Finite-Volume Methods

As already introduced earlier, to solve the the equations, once we chose the numerical Flux, we use Runge
Kutta numerical Integration.
This subsection then studies the some conditions that have to be considered, when applying these Runge
Kutta methods. In particular, what constraints we have, when choosing the timestepsize 𝜏.

11.4.2.5 Numerical domain of dependence
Consider explicit transition-invariant fully discrete evolution 𝜇(𝑘+1) ∶= (𝜇(𝑘)) on uniform spatio-temporal
mesh (𝑥𝑗 = ℎ𝑗, 𝑗 ∈ ℤ, 𝑡𝑘 = 𝑘𝜏, 𝑘 ∈ ℕ0) with

∃𝑚 ∈ ℕ0 ∶ ((𝜇))𝑗 = (𝜇𝑗−𝑚,… , 𝜇𝑗+𝑚), 𝑗 ∈ ℤ. (194)
Then the numerical domain of dependence is given by

𝐷−
ℎ (𝑥𝑗 , 𝑡𝑘) ∶= {(𝑥𝑛, 𝑡𝑙) ∈ ℝ × [0, 𝑡𝑘] ∶ 𝑗 − 𝑚(𝑘 − 𝑙) ≤ 𝑛 ≤ 𝑗 + 𝑚(𝑘 − 𝑙)} (195)

Note that the definition applied on the current problem with flux function 𝐹 (𝑢𝑗−𝑚,… , 𝑢𝑗+𝑚), we point out
that  is the symbol for all the operations done in one timestep of Runge Kutta, and 𝑚 corresponds to the
number of neighbours we need to compute the numerical flux in one point.
The following kind of condition appears over and over again in numerical integration and gives a upper bound
for the timestepsize 𝜏 that can be used to construct the numerical soution, such that the solution is stable.

11.4.2.11 Courant-Friedrichs-Lewy (CFL-) condition
An explicit translation-invariant local fully discrete evolution 𝜇(𝑡+1) ∶= (𝜇) on uniform spacio-temporal
mesh (𝑥𝑗 = ℎ𝑗, 𝑗 ∈ ℤ, 𝑡𝑘 = 𝑘𝜏, 𝑘 ∈ ℕ) satisfies the CFL condition, if the convex hull of its numerical
domain of dependence contains the maximal analytical domain of dependence

𝐷−(𝑥𝑗 , 𝑡𝑘) ⊂ 𝑐𝑜𝑛𝑣𝑒𝑥(𝐷−
ℎ (𝑥𝑗 , 𝑡𝑘)) ∀𝑗, 𝑘. (196)

Applied on the problem we are studying right now this means
𝜏
ℎ
≤ 𝑚

max{|𝑠̇min|, |𝑠̇max|}
. (197)

11.4.4 Convergence of Fully Discrete FV Method

We essentially get at most order one convergence in the maximum and the 𝐿1 norm. This can be seen by the
following lemma

44

Order barrier for monotone numerical fluxes
Monotone numerical fluxes are at most first order consistent.

Alternative ways to see this is to do numerical experiments or Taylor expansion of for example the Godunov
flux.

45

	Preface
	Second-Order Scalar Elliptic Boundary Value Problems
	Quadratic Minimization Problems
	Sobolev Spaces
	Linear Variational Problem
	Boundary Value Problems
	Boundary Conditions
	Second-Order Ellliptic Variational Problems
	Essential and Natural boundary Conditions

	Finite Element Method
	Galerkin Discretization
	Linear FEM in 1D
	Linear FEM in 2D
	Building Blocks of General Finite Element Methods
	Lagrangian Finite Element Methods
	Implementation of Finite Element Methods
	Parametric Finite Element Methods

	FEM: Convergence and Accuracy
	Abstract Galerkin Error Estimates
	Empirical (Asymptotic) Convergence of Lagrangian FEM
	A Priori (Asymtotic) Finite Element Error Estimates
	Elliptic regularity
	Variational Crimes
	FEM: Duality Techniques for Error Estimation

	Non-Linear Ellipctic Boundary Value Problems
	Elastic String Model
	Calculus of Variations
	Nonlinear Boundary value problems
	Galerkin Discretization of Non-Linear BVPs

	Second-Order Linear Evolution Problems
	Parabolic Initial-Boundary Value Problems
	Models for Vibrating Membrane

	Convection-Diffusion Problems
	Heat conduction in a Fluid
	Stationary Convection-Diffusion Problems
	Discretization of Time-Dependent (Transient) ConvectionDiffusion IBVPs

	Numerical Methods for Conservation-Laws
	Scalar Conservation Laws in 1D
	Characteristics
	Jump conditions and Riemann Problem
	Properties of Entropy Solutions

	Conservative Finite Volume (FV) Discretization
	Finite-Difference Methods
	Spatially Semi-Discrete Conservation Form
	Numerical Flux Functions
	Monotone Schemes

	Timestepping for Finite-Volume Methods
	Convergence of Fully Discrete FV Method

