
Solid State Theory1

Prof. Vadim Geshkenbein, FS 2021
August, 2021

Summary Room at HIT, me writing on the whiteboard numerous pens of different color were offered.
Examiner and co-examiner are sitting in the back row of the room (Corona). Language: English.

Description of the content: Lecture 3, 6, 13, 19, 22

Ablauf Entered the room, the professor and the co-examiner were asking about the origin of my name
and where my ancestors were from. We spent quite some time doing small talk before the exam.

Prof: Can you derive conductivity from the Boltzmann equation?

Me: Let me start by saying a few words about the Boltzmann equation. We looked at a particle
density f(k, r, t) in the phase space Γ, where the particle density describes the number of particles
found within an infinitesimal small volume

f(k, r, t)d3r
d3k

(2π~)3
. (1)

There are three possibilities resulting in a change of particles number: One of which is a simple flow
through the small volume which can written as

f(k, r, t) = f(k, r− tv, 0), (2)

where we assumed that Liouvilles theorem holds. By taking a Taylor expansion this equation leads to
the term v · ∂f∂r . Another possibility is by applying a field where we can then use the same arguments as
above leading to the term F · ∂f∂k which indeed describes the change in number of particles by application
of an external field. The last possibility includes the collision integral which is due to collision of
particles inside the infinitesimal small phase space volume. Adding all the terms we find the Boltzmann
equation

∂f

∂t
+ v · ∂f

∂r
+ F · ∂f

∂k
= I(f), (3)

where we used semi-classical dynamics. For isotropic problems and elastic scattering the collision
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integral can be approximated by

I(f) = −f − f0
τ

(4)

where τ corresponds to the average time between the collisions of particles. This ansatz is known as
the relaxation time approximation.

Prof: What is f0?

Me: It is simply given by the Fermi-Dirac distribution where the notation f = f0 + f1 is introduced. I
totally forgot to mention that we assumed f1 � f0, see below.

So for a uniform and time independent electric field we can drop two terms in the Boltzmann equation
leading to

eE · ∂f
∂k

=
f0
τ
. (5)

Solving for f1 leads to

f1 = τvE
∂f

∂k
. (6)

The current density is given by

j = −2e

∫
d3k

(2π~)3
f(k)

∂ε

∂k
(7)

where we can use that f0 would not contribute to the current density just by the fact that it is symmetric
with respect to k→ −k as well as that the energy dispersion is symmetric hence the current density
vanishes. In the next step we again use semi-classics where we finally arrive at the expression

j = e2τ

∫
N(ε)

∂f

∂ε
v =

1

3
N(εF )e2τv2F︸ ︷︷ ︸

σ

E. (8)

Prof: Why did you write ∂f/∂ε and not ∂f1/∂ε?

Me: Absolutely no clue why and trying to dodge the question. Well we need that ∂f/∂ε ∼ −δ(ε− εF ).
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Prof: Not impressed and definitely not satisfied with my answer.

Me: After some discussion about which term scales like which I found out that the answer he was
looking for is that within relaxation time approximation we had to assume that f1 � f0.

The derived result can be re-written into the form of Drude

σ =
ne2τ

m∗ , (9)

which however hides the important part that the electrons at the Fermi surface contribute to conductivity
which can be seen more nicely in the form of Equation 8. So overall we started with the Boltzmann
equation and arrived at the Drude result.

Prof: Can you find the result for AC conductivity?

Me: In this case we can not drop the time dependent term leading to2

δf

dt
− eE · ∂f

∂k
= −δf

τ
(10)

which in Fourier space is given by

−iωδf − eE · ∂f
∂k

= −δf
τ

(11)

and hence

δf(
1

τ
− iω) = eE · ∂f

∂k
. (12)

This term is exactly equivalent to the previous derivation of the conductivity in the constant field.

Prof: Please show it.

Me: If we define g = ( 1τ − iω) and insert it into Equation 7 we find the result

σ =
σ0

1− iωτ
. (13)

I don’t know why but he was simply not satisfied with this answer as he insisted on me doing the whole
derivation so I actually inserted it into the current density and then found the result after three more
lines of calculation.

2Different definition as above: f = f0 + δf .
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Prof: Can you derive conductivity for a lattice with cubic symmetry?

Me: First of all we used the relaxation time approximation which only holds for isotropic problem and
hence is not applicable if we have cubic symmetry.

Prof: But can you say something about the directions? Which has increased conductivity?

Me: Drew a cube just to get some time to think and while drawing the cube I realized that for problems
in 2D this questions sounded familiar. We know that resistivity is a symmetric rank 2 tensor which
defines a quadratic form

q(x) = xTρx. (14)

However from the symmetry of the lattice we have to impose the same symmetry on the resistivity
leading to

U−1ρU = ρ (15)

where U is a unitary transformation and hence

q(x) = xTρx = (Ux)Tρ(Ux). (16)

Just for fun we can then set this equation equal unity where we know from linear algebra that this
will define an ellipse for positive definite ρ. I sketched an ellipsoid and drew the reflection symmetry
planes. On the other hand, we know that U defines a further symmetry which has the representation of
a rotation of the ellipse. As this problem has to be invariant with respect to U the only way to satisfy
the conditions is if ρ ∝ In (the identity) and the ellipse is a circle. From this we can deduce that the
resistivity is isotropic for a sample with a cubic lattice.

Prof: How can we distinguish insulators from metals without measuring the resistivity?

Me: This can be done by measuring the specific heat as we derived in the lecture that

Cv ∼ γT +BT 3, (17)

where γ is the Sommerfeld coefficient (denoted as A in Figure 1). The linear term describes the electron
contribution which is characteristic for metals as this term is not present in insulators. The cubic term
describes the phonon contribution. Given that

∫
d3k

(2π~)3
∼ T 3 (18)
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Figure 1: Specific heat as a function of temperature in metals. Figure taken from Abrikosov - Funda-
mentals of the theory of metals.

and that each phonon contributes an energy of ∼ T the specific heat scales as T 3. In the case of electron
contribution...

Prof: You do not have to derive this.

Me: I sketched Figure 1. For an insulator there is no y-axis intercept which enables us to distinguish
an insulator from a metal.

Prof: What happens in the case of an Anderson insulator?

Me: I honestly do not know the answer to this question. But I assume that as we have localization of
the electrons, we do not get any contribution to the specific heat from the electrons.

Prof: No, there is still contribution to the specific heat as the electrons can be thermally excited to
higher states. (I can not fully remember the arguments he used for this statement). Okay, good.

Final Remarks Prof. Geshkenbein did not interrupt me when I said a few more words about the
theory and derivations of a given question before actually answering it (see for example my introduction
to the Boltzman equation). Hence I think it is certainly not disadvantageous to say a bit more about
what one knows than just simply answering the question. What is of utmost importance are the exercise
sheets as he likes to ask them during exams. I mostly used the books: Abrikosov - Fundamentals of the
Theory of Metals, Ziman - Principles of the Theory of Solids, Landau Lifshitz Vol. 5 and Vol. 9 and
Ashcroft Mermin - Solid State Physics. Please do not take the derived results for granted, as I might
have done some mistakes. Good luck!

Expected mark: 5.5
Received mark: 5.75
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