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Cv ∼ |Tc − T |−α

l ∼ (Tc − T )β

χl ∼ |Tc − T |−γ

l ∼ |Hc|1/δ

〈l(0)l(r)〉 ∼ rd−2+η

1

Homogeneity⇒

{
α+ 2β + γ = 2 (Rushbrooke)

γ = β(δ − 1) (Widom)

Hyperscaling ⇒

{
dν = 2− α (Josephson)

γ = ν(2− η) (Fisher)

Hyperscaling is not fulfilled in mean field treatment.
Magnetic systems are short ranged → Hyperscaling.

2

The characteristic time at which the correlated cluster
of size ξ disappears is given by

τ ∼ ξz

ω ∼ qz

→ critical slowing down

3

Continuous symmetry can not be spontaneously
broken at finite temperature in 2D and 1D in a system

with the interaction strength falling off fast (faster
than a certain power law) with the distance.

Beware that the theorem only deals with thermal
fluctuations and no statement regarding T = 0 can be
made. Realistic materials have discreet symmetry but

ordering is suppressed.

4

Absence of thermal fluctuations not sufficient for
order. Critical behaviour is at T 6 0.

5

F ∝ ξ−d(T +Aξ−z)

F ∝ ξ−d−z, deff = d+ z

~ω0 ∝ ξ−z ∝ |g − gc|ϕ

Within the cone, critical thermal fluctuations are
dominant but there is no phase transition. For g = gc,

unable to find any other characteristic energy apart
from temperature T . Unlike thermal, in QPT

thermodynamics can not be separated from dynamics.
6

The semiclassical phase boundary is determined by
the shift exponent Ψ

Tc ∝ ((gc − g)Ψ

where in Landau mean field theory

Ψ =
z

d+ z − 2
6= ϕ = zν

If different, then hyperscaling is violated.

7

Hyperscaling is often violated at QPT as deff ≤ 4⇒
mean field. If deff < 4, then along g = gc we get

S(q, ω, T ) ∝ σ
(qz
T
,
ω

T

)
Absence of intrinsic energy scales.
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Continuous broken symmetry. Infinitesimal in-plane
oscillation correspond to a gapless Nambu-Goldstone
boson (Goldstone’s Theorem). Typically, ω ∝ k and

#gapless modes = #broken symmetry
Beware Ferromagnet, 2 symmetries broken but only

one Goldstone mode with ω ∝ k2. Modes are not
independent.

9

Quasiparticle associated with longitudinal fluctuations
are gapped where the mass scales with the order

parameter. At g = gc the Higgs and Goldstone modes
are both gapless, degenerate and indistinguishable.

10

⇒ discreet symmetry ⇒ Goldstone breaks down and
excitations become massive. For weak anisotropy, the

Goldstone bosons have a small gap leading to
pseudogoldstone modes.

11

Assumptions: dilute approximation, weakly deviate
from equilibrium and fully ordered. Linear spin wave

theory can handle the spectrum of excitations in a
structure described by a single propagation vector Q.

12

Introduce pseudospin operators to map onto a
ferromagnetic structure. Define the operators which

create and destroy the minimal possible on-site
deviation → Holstein-Primakoff transformation.

Diagonalize Hamiltonian using a Bogoliubov
transformation and find the dispersion. Full account

of all the correlation functions.

13

In collinear structures magnons can not spontaneously
decay into two as this does not conserve the wave

function parity under π-rotation around the
collinearity axis. Therefore the number of magnons is

conserved and no magnon-magnon interaction in
leading order.

14

Kinematic condition

~ω(q) = ~ω(k) + ~ω(q− k)

Emin
2 (q) ≤ ~ω(k) + ~ω(q− k) ≤ Emax

2 (q)

If ~ω(q) < Emin
2 (q)⇒ magnon is safe in whole

Brillouin zone and higher-order processes also
forbidden.

15

For
~ω(q) = cq + αq3, then decays allowed for

α = cϕ2

6(q−k)2 > 0 (convex).
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Field induced decays
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Decays at zero field
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Batyev-Braginskii approach
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Bose gas analogy
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Nonlinear sigma model
General
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Nonlinear sigma model
Formula
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Beresinskii-Kosterlitz-Thouless transition
Concept
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Beresinksii-Kosterlitz-Thouless transition
Mathematical description
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Antiferromagnet:

Magnons stable H ≥ Hsat

(collinear but convex)

Decay possible H < Hsat

(not collinear and convex)

Magnons stable H = 0

(collinear and concave)

The threshold field at H∗ ∼ 0.76Hsat changes the sign
of α.

17

For multiple branches the condition α = cϕ2

6(q−k)2 is not

valid. There are 3 Goldstone modes in a spin
structure with propagation vector Q. Fast magnons
decay into slow even within linear approximation.

18

Antiferromagnet, use Matsubara-Masuda
transformation to ascribe a particle state to each spin

state. Hard-core constraint is required to enforce
single particle occupation. The particles have bosonic

statistics. One then finds

~ω(q) = J
∑
R

(1 + cosqR)

19

In the dilute limit (−Hc ≤ H), E(q) is minimized by
Q = (π/2, π/2, π/2) and the gap is ”negative” for

values above −Hc. This is in analogy to the
Bose-Einstein condensate of a-particles and

corresponds to the antiferromagnetic order that sets

in perpendicular to the field.

20

Assume short-range ordering with ∞� ξ � a⇒
avoid dealing with lattice and focus on long wave
length properties (hydrodynamic approach). The
actual spins on the lattice are approximated by a

continuous field. Low energy behaviour without the
assumption of long range order.

21

~2

2

∂n(r, t)

∂t2
= 4(SJda)2∇2n(r, t)

S =
~S
2

∫
dt

∫
d3r
[ 1

JS2

(∂n
∂t

)2 − 8J(da)2(∇n)2
]

Dynamics reduce to minimization of a classical action
corresponding to a fixed length vector field.

22

Vortex and antivortex are robust topological charges
which cannot be turned into one another by a uniform

rotation of the spins. There is charge conservation.
The interaction between them is attractive. A

strongly bound pair resembles the uniform
ferromagnetic state which will be broken apart by the

fluctuations at high temperatures.

23

Fvortex = (π|J |S2 − 2T ) log

(
L

a

)
⇒ TBKT =

π|J |S2

2

Corresponds to a spontaneous dissociation of
vortex-antivortex pairs. The resulting state is still

lacking LRO but QLRO below TBKT. Form of hidden
order (order by nonexisting) and no symmetry broken

at TBKT.
24



Correlation length and susceptibility of BKT-
transition
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Easy-plane hamiltonian
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Antiferromagnets
Square lattice 2D Heisenberg
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Antiferromagnets in a field
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Nonmagnetic magnets
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Quantum paramagnets
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Magnetic Bose-Einstein condensation
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Pressure induced quantum phase transition
Difference to mBEC
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Remember: No LRO due to HMW.
ξ and χ diverge at TBKT and grow faster than any
power law. Below TBKT both the correlation length

and the uniform magnetic susceptibility remain
infinite. ⇒ Field induced ferromagnet.

25

Any easy-plane anisotropy leads to BKT transition.

H = J
∑
r,dr

[
(Sr · Sr+dr)− ηSzRSzr+dr

]
η = 0 Heisenberg, η = 1 XY, η < 0 Ising. For almost

Heisenberg (η � 1)

TBKT =
4πJS2

log(π2/η)

with fast but modified diverging correlation length
and susceptibility.

26

Has long range Néel order at T = 0 with 〈Ŝz〉 ∼ 0.6S.
LSWT applicable, but reduced magnetic moment

must be taken into account leading to renormalization
of the dispersion.

27

The Heisenberg system may display a BKT transition
in the presence of a magnetic field. The reason is the

staggered magnetization preferring being
perpendicular to the infinitesimally weak external field

→ BKT behaviour.

28

At very low temperatures it may happen that the
ground state of a particular magnetic ion with even

number of electrons is a singlet and the external
magnetic field has nothing to couple to. At high

temperature all states are present with equal
probability. In Ni2+ singlet ground state separated by
energy gap. In (S = 1/2) A.F. dimer spins decouple
from external field as singlet is ground sate. At high
temperature, S = 1/2 paramagnet. Odd number of

e− ⇒ at least doubly degenerate.

29

The states that can couple to the magnetic field are at
the same time energetically expensive and con not be

reached at low temperatures. The energy of the
excited state is lowered by Zeeman and at Hc

magnetization is restored abruptly. Assume no
interaction between the magnetic molecules.

Discreetness of magnetization is a 100% quantum
effect.

30

Assume interaction between magnetic molecules and a
magnetic field. The excited states are then no longer

localized and form a band with dispersion
~ω =

√
∆2 + 2∆J ′(q) ⇒ level-crossing becomes

extended to field interval, no jump-like behaviour.
Quantum disorder ⇒ mBEC ⇒ A.F. ⇒ mBEC ⇒
fully polarized. Shift exponent Ψ = 2/3 and z = 2.

Example of a field induced quantum phase transition.

31

Strong interactions ⇒ ordinary magnet, weak
interaction ⇒ quantum disorder. Interaction can be

tuned by changing the pressure and altering the
superexchange geometries. Difference is found in

dynamical exponent. z = 1 for pressure induced as
wells as dispersion in A.F. But before mBEC has
happened, the dispersion is quadratic ⇒ z = 2.
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General spin wave theory
Introduction
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General spin wave theory
Mean field approximation
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Magnetization and staggered moment in easy
place S = 1 A.F.

35

XXZ spin chain
Jordan-Wigner transformation
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XY chain
Free fermions
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XY mode response function
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XY chain
Ground state
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Ising chain
Excitation

40



Interaction within magnetic molecules are much
stronger than between them.

|Ψ〉 =
∏
r

|Ψ〉r , |Ψ〉r =
∑
λ

mλ |λ〉r

Flavours correspond to the state in the Hilbert state
of a single magnetic molecule. Due to the interdimer
interaction, an excitation would propagate between
them. Find a basis by a unitary transformation in
which the ground state can be created by a single

operator |Ψ〉r = b̂†r,Ψ |0〉
33

Assume most of the bosonic particles are in the
condensate (ground state) and little residue. The

Hamiltonian is H = H0 +H1 +H2, where H1 only
depends on the parameters of the unitary

transformation and by minimization gives the ground

state.
34

35

Ĥ =
∑
n

Jxy(ŜxnŜ
x
n+1 + ŜynŜ

y
n+1) + JzŜ

z
nŜ

z
n+1 − gµBHŜzn

The modification of the transformation has to be
non-local for proper fermionic statistics. Introduce
new operators by attaching an infinite string of Ŝz.

ĉn = Ŝ−n
∏
m<n

(−2Ŝzm)

Particles are topological, know state of all other sites.
36

Jz = 0, Fourier transform ⇒ Ĥ =
∑
q(εq + 1/2)ĉ†q ĉq

εq = Jxy cos(qa)− gµBH

HMW ⇒ no magnetization in zero field ⇒ # particles
= # holes

37

Use ideal electron gas model re-
sults. Maximal intensity at upper
boundary. Soft mode at π/a due
to nesting (A.F). Linear dispersion
q → 0, very narrow, well defined
quasi particle. Gapless.

38

At T = 0 no LRO but correlations falling off very
slowly, QLRO, on the verge to ordering (quantum

critical state).

39

Ground state: Néel antiferromagnet. The lowest
energy excitation is the domain wall which have no

mean of propagating along the chain, localized,
εq = Jz/2.

ξ(T ) ∝ e
Jz
2T

The gapped transition to the ordered state at T = 0 is
reminiscent of the BKT universality class.
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Non-ideal Ising chain
Derivation of existence of mobile domains
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Non-ideal Ising chain
spin of quasi particles
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Lieb-Schultz-Mattis theorem
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Heisenberg chain
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Fermi liquid
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Tomonaga-Luttinger spin liquid
Introduction
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Low energy physics in Tomonaga-Luttinger
liquid
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Tomonaga-Luttinger liquid
Bosonization idea
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For 0 6= Jxy � Jz, domain walls become mobile even
at T = 0. The deviation from the Néel state is small

and we can treat them as weakly interacting particles.

41

Single spin flip gives ∆S = ±1 and improper domain
can grow at no energy cost. Single domain wall is

S = 1/2 and the gapped excitations are fermions and
in experiment can only be excited in pairs. Energy
conservation ⇒ open parameter k ⇒ continuum.

42

S = 1/2 dimer, the singlet state is separated from the
excited states by a gap ∆. For half-odd integer spins

there exists an excited state with energy that vanishes
as N →∞. ⇒ S = 1/2 chain would have a gapless

spin.

43

Heisenberg chain is gapless and quantum critical.
Spinons have S = 1/2 and can only be excited in pairs

⇒ continuum.

44

2D and 3D, abrupt cut-off at εF with reduced jump
Z < 1. Landau quasi particles characterized by
linearized dispersion but lifetime is now finite.

Particles are well defined at εF and also present for
T = 0. Excited electrons are dressed by weak density

fluctuations.

45

Spatial restriction leads to infinitely large density
fluctuations ⇒ smooth boundary at εF . The

Tomonaga-Luttinger liquid is the analogue of the
Fermi liquid in 1D. The singular behaviour is

approximated by

n(k) ∝ |k − kF |K/2+1/(2K−1)

K = 1, non interacting, K < 1 repulsive and K > 1
attractive.

46

Low energy excitations k ∼ kF do not have well
defined εF dispersion but rather form a continuum

EF + u|k − kF |

and fully describe the low energy physics by u and K.
Beware that deff = 2 and far from mean field.

47

Fermionic particle operator ĉ†i and ĉi as continuous
quantum bosonic fields. Introduce field ϕ(x) as the
polar canting angle w.r.t. z-axis and field θ(x) as

orientation in xy-plane.They obey bosonic statistics
and resemble quantum oscillators. In one dimension:
Switch between bosonic and fermionic description but
interaction between quasi particles are affected. Trade

statistics for interaction. Non commuting as Ŝα do
not commute.
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TLL Hamiltonian
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TLL
Correlations and response formula
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TLL
Transverse and longitudinal spectrum
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XXZ chain: TLL graphs
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XXZ chain: Phase diagram
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Ordering temperature in chains
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The most primitive TLL Hamiltonian is given by

Ĥ =
U

2π

∫ [
K(∇θ(x))2 +

1

K
(∇ϕ(x))2

]
dx

and is in the majority case the only part responsible
for low-energy behaviour.

49

〈sznszn+l〉 ∼ Az
(1

l

)2K
〈s+
n s
−
n+l〉 ∼ Ax

(1

l

)1/2K −Bx(1

l

)2K+1/2K

K


< 1/2 longitudinal dominant

= 1 isotropic

> 1/2 transverse dominant

50

~ω = uq

5152

53

Interchain coupling J ′ is always present in realistic
materials. It follows that χ will diverge not at T = 0

but earlier thanks to the interchain coupling.

χMF (T ) =
χ

1− J ′χ

and TN ∝ (J ′)λ, λ = 2K/(4K − 1). Heisenberg: λ = 1,
XY-model: λ = 2/3

54

Ĥ =
∑
n

J‖(Ŝn,1Ŝn+1,1 + Ŝn,2Ŝn+1,2) + J⊥Ŝn,1Ŝn,2

J⊥ = 0 uncoupled chains, J‖ = 0 non interacting and
J⊥ → −∞ Haldane.

55

J⊥ � J‖, for the dimerized there is a triplet and a
singlet state. For small magnetic field, the ground

state remains the direct product of rung singlets. For
strong magnetic field, the triplet state is split and gap
closes within a QPT. The resulting state has no LRO

(long-wavelength fluctuations) and is a TLL state.
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Strong rung case: XXZ chain mapping
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Strong leg case
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Symmetric and anti-symmetric excitations in
spin ladder
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Haldane chains
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AKLT model
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AKLT ground state
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Topological order
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Haldane and AKLT model
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In magnetic field only consider low energy state |s〉
and |t+〉 which can be mapped to some effective

spin-1/2 chain system in a fictitious magnetic field ⇒
each rung of the ladder corresponds to a single

pseudospin object. Using pseudospin operators one
finds the XXZ Hamiltonian with Jz/Jxy = 1/2. The
low energy states are described by the TLL. Strong

rung assumption needed to neglect the remaining two
triplet states.

57

Spinon excitations are bound in the strong leg case.
Symmetric excitation: Singlet, S = 0, 2 spinon

excitation (1/2 spin excitation forbidden), bound state
between the legs q‖ = 0.

Antisymmetric excitation: Triplet, S = 1, bound state
along leg, q⊥ = π, transverse momentum. Excitations
will be found at different position in Brillouin zone.

58

59

S = 1, short-range correlations and gapped .
ξ ∝ exp{πS}a holds for integer spins (half odd ⇒
Lieb-Schultz-Mattis Theorem. From NLσM we get

∆ ∝ ξ−1.

60

Ĥ =
∑
n

J(Ŝn · Ŝn+1) +K(Ŝn · Ŝn+1)2, S = 1

The AKLT model corresponds to K = 1/3J which has
an exact solution. The Heisenberg model has the same

thermodynamic ground state as the AKLT model.

61

S = 1 ion physically consists of 2 spin 1/2 electrons
and is formed by ferromagnetic coupling of rung

exchange. The singlets are formed between the spins
of site n and n+ 1. The resulting ground state as a
crystal of singlets. Translational invariance ”broken”

by forming dimerized pairs, but the periodicity
remains the same.

62

63

The Haldane state at K = 0 may be seen as the
AKLT state with a finite number of excited states

(topological order) present. All the other key
properties, such as gapped ground state and presence

of pseudospin- 1/2 degrees of freedom at the open
chain ends can also be found in the Heisenberg limit.

Therefore, despite being a somewhat artificial
construction, AKLT model perfectly captures the

essential physics of the S = 1 Haldane chain and all of
its exotic properties.
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Ladders in a field
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Universal phase diagram (Heisenberg)
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Harris’ criterion
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Rare regions: depleted magnets
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Destroying order by impurities
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Depletion of dimerized antiferromagnet
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Magnetic frustration
Introduction
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Frustration
Magnetic susceptibility of antiferromagnet
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Triplet
S = 1 state will be split by applied magnetic field and

lowered. No mBEC to LRO due to HMW but
resulting TLSL state ⇒ continuum of states.

6566

dν > 2, α < 0 for the irrelevance of disorder effects at
the phase transition ⇒ correlated volume averages out

the randomness, transition remains sharp, tolerates
finite amount of disorder. Otherwise, it becomes
washed out, no prediction what happens. This

criterion is necessary but not sufficient. In QPT, d is
not replaced by d+ z.

67

In the case where the Harris’ criterion is not fulfilled,
local effects have to be taken into account. Site

depletion by substituting an atom with a chemical
similar one but different spin. Rare regions can be the

driving force behind a phase transition.

68

x ∼ 1: By removing spins one will slowly get a
depleted paramagnet. At some critical concentration
xc the answer is given by percolation theory. T = 0

square lattice xc ∼ 60%. For the case when x ∼ 0, one
gets antiferromagnetic ordering.

69

Assume many body dimer, if one spin is removed,
then one spin remains as a degree of freedom, which is

not localized ⇒ spin islands (correlated droplet).
They interact with one another by J and this leads to

ordering at T ∗ ∼ J .

70

Marshall’s theorem ⇒ for A.F. interaction, the
collinear state hast he lowest possible energy. But

even in bipartite lattices frustration can occur (villain
lattice). Toulouse criterion∏

contour

sign(−J) = −1⇒ frustrated

Macroscopic degeneracy in the ground state which
does not occur due to the symmetry in Hamiltonian

but from geometric frustration ⇒ accidental
degeneracy.
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Order from disorder
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Order from disorder
Classic vs quantum
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Triangular lattice in a magnetic field
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Frustrated spin chains
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Spin nematics
Introduction
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Consider F = U − TS, search for the point in phase
space with the largest entropy contribution (thickest

coating). This is connected to the excitation
spectrum. Width inverse proportional to rigidity ⇒

To maximize the entropy, one needs to find the
ground state with the softest excitation spectrum.

73

Classic: The selection of the true ground state is
performed by thermal fluctuations ⇒ ∼

∑
logw

Quantum: T = 0 but zero point fluctuations present
⇒ ∼

∑
w. Therefore, quantum fluctuations can drive

the order from disorder mechanism too.

74
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Ĥ =
∑

J1(ŜnŜn+1) + J2(ŜnŜn+2)

Exact solution at the Majumdar-Ghosh point:
J1 = 2J2.

76

If 〈Sr〉 6= 0⇒ local magnetic field detectable and
referred as dipolar. Break time reversal symmetry and

rotational symmetry of spin space. Frustration can
provoke spontaneous breaking of spin rotational
symmetry without formation of dipolar magnetic

moments. The quadrupolar components go ordered
which is a time reversal invariant rank 2 tensor ⇒

tensorial order parameter. The spin rotational
symmetry remains broken and leads to different
outcomes for measuring the spins along different

directions.
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