

$$
\mathbf{T}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}
$$

The vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3} are called primitive vectors. The choice of \mathbf{a}_{i} is not unique. All points of this lattice are equivalent. Has inversion symmetry.

is defined as one site and all the points that are closer to that site than any other lattice sites

- Is not a Bravais lattice as it can be viewed as a bipartite lattice formed by two hexagonal lattices and lacks inversion symmetry.

The translations form a subset of the vectors of the Bravais lattice. These unit cells may have higher symmetry than the primitive cell.

Parallelogram with no other symmetry.

$$
\phi=60^{\circ}, a_{1}=a_{2}, \text { reflection }
$$

planes and 60° rotations. More isotropic than square.

$$
a=b=c \alpha=\beta=\gamma=90^{\circ}
$$

$\alpha=\beta=\gamma=90^{\circ}$

$$
\alpha=\beta=\gamma=90^{\circ}
$$

$$
\gamma \neq \alpha=\beta=90^{\circ}
$$

$$
a=b \neq c \alpha=\beta=90^{\circ}, \gamma=120^{\circ}
$$

fcc, where basis consists of one Na atom and a Cl atom seperated by one-half the body diagonal.

Shifted stacking of graphene layers

$$
C=3.35 \dot{\mathrm{~A}}
$$

22

Cube stretched along its body diagonal: $a=b=c \alpha=\beta=\gamma \neq 90^{\circ}$

The subset of the full symmetry group of the crystal that leaves a particular point fixes is called the point group.
Anisotropy in a crystal means that different directions have different properties. The anisotropy is determined by the symmetry of the directions.

Stacking of hexagonal lattices of identical spheres, highest average density, not a Bravais lattice.

$\varepsilon_{\alpha \beta}$ and $\rho_{\alpha \beta}$ are symmetric rank 2 tensors, valid for any structure (no dependence on crystal symmetry).

$$
F=\frac{\lambda}{2}(\nabla \cdot \mathbf{u})^{2}+\mu u_{\alpha \beta}^{2}
$$

The (first) Brillouin zone is defined as the Wigner-Seitz cell in the reciprocal lattice.

Weak periodic potential $V(\mathbf{r})$

For $k \ll G_{n} \Rightarrow$ mass renormalization $m^{*}>m$. For $k \rightarrow G / 2=\pi / a \Rightarrow$ energy gap of $2\left|V_{1}\right|$

Separated atoms with small orbital overlap

$$
\begin{gathered}
\square \longrightarrow \longmapsto \\
-\longmapsto{ }^{\square} \longrightarrow{ }^{2 t} \\
\varepsilon(k)=\varepsilon_{0}+c o n s t-2 t \cos (k a)
\end{gathered}
$$

t is exponentially small \Rightarrow atomic levels expand to narrow bands and have large gaps.

Valence band and conduction band

band insulator/ semiconductor

metal

semi-metal
odd number of $e^{-} \Rightarrow$ metal
even number of e^{-}and no band overlap \Rightarrow insulator

$$
\begin{gathered}
\varepsilon_{\mathbf{k}} \text { is periodic: } \varepsilon_{\mathbf{k}}=-2 \tilde{t} \cos (k a) . \text { From } \\
\hbar \dot{k}=-e E \quad \text { and } \quad \dot{x}=\frac{\partial \varepsilon_{k}}{\partial \hbar k} \\
\Rightarrow \quad x(t)=\frac{2 \tilde{t}}{e E} \cos \left(\frac{e E a t}{\hbar}\right)
\end{gathered}
$$

The electron oscillates around its initial position. In real solids this effect is not realized due to scattering.

Bloch waves spatially uncertain \Rightarrow wave packet description:

$$
\begin{gathered}
\mathbf{v}(\mathbf{k})=\frac{\partial \varepsilon_{\mathbf{k}}}{\partial \hbar \mathbf{k}} \\
\hbar \frac{d \mathbf{k}}{d t}=-e \mathbf{E}(\mathbf{r}, t)-\frac{e}{c} \mathbf{v}(\mathbf{k}) \times \mathbf{H}(\mathbf{r}, t)
\end{gathered}
$$

The allowed values of the electron wave vector k are

$$
k_{n}=\frac{2 \pi}{L} n=\frac{2 \pi}{a} \frac{n}{N}
$$

The total number of atomic orbitals in a band including spin is 2 N .
p.25 Ziman

The current density vanishes for filled/empty bands

$$
\mathbf{j}=-2 e \int_{\mathrm{BZ}} \frac{d^{3} k}{(2 \pi)^{3}} n(\mathbf{k}) \frac{\partial \varepsilon_{\mathbf{k}}}{\partial \hbar \mathbf{k}}
$$

as well as for the Fermi distribution. Further

$$
-2 e \int_{\mathrm{BZ}} \frac{d^{3} k}{(2 \pi)^{3}} n(\mathbf{k}) \mathbf{v}(\mathbf{k})=2 e \int_{\mathrm{BZ}} \frac{d^{3} k}{(2 \pi)^{3}}[1-n(\mathbf{k})] \mathbf{v}(\mathbf{k})
$$

thus, we can sum either over filled (electrons) states or over empty holes states.

$$
C=\left.\frac{1}{V} \frac{\partial}{\partial T}\right|_{V} 2 V \int \varepsilon(\mathbf{p}) f(\varepsilon) \frac{d^{3} p}{(2 \pi \hbar)^{3}}
$$

Consider $\partial f / \partial \varepsilon$ and the particle conservation

$$
C=-\int \varepsilon \frac{\partial f}{\partial \varepsilon}\left(\frac{\varepsilon-\mu}{T}+\frac{d \mu}{d T}\right) N(\varepsilon) d \varepsilon
$$

which can be expanded and finally

$$
\mu(T)=\mu(0)-\frac{\pi^{2} T^{2}}{6} \frac{N^{\prime}(\mu)}{N(\mu)} \quad C=\frac{\pi^{2}}{3} T N(\mu)
$$

$$
N(E)=\sum_{\mathbf{p}, s} \delta(E-\varepsilon(\mathbf{p}))=2 \int \frac{d^{3} p}{(2 \pi \hbar)^{3}} \delta(E-\varepsilon(\mathbf{p}))
$$

Consider a surface $S(\varepsilon)$ with $\varepsilon(\mathbf{p})=$ const. and $d^{3} p=d S d p_{n}$ then

$$
N(E)=\frac{2}{(2 \pi \hbar)^{3}} \int_{\varepsilon=E} \frac{d S}{|\mathbf{v}(\mathbf{p})|}
$$

A conjugate to B if $A=X B X^{-1}$. Two groups are isomorphic if they have the same multiplication table. A linear representation of a Group G is a set of $n \times n$ matrices $D(G)$ which have the same multiplication table as the group itself.

$$
D(G)=\left(\begin{array}{cc}
D_{1}^{\prime}(G) & 0 \\
0 & D_{2}^{\prime}(G)
\end{array}\right)
$$

Decomposable to block form \Rightarrow reducible, and irreducible otherwise.

For nearest neighbour coupling orbitals with different symmetry do not mix and hence orthogonal orbitals do not couple. A mirror reflection is used to show this.

46

$$
n=n_{0}\left(\frac{T}{T_{0}}\right)^{3 / 2} e^{-E_{g} / 2 T}
$$

For $E_{g} \sim 5.5 \mathrm{eV} \Rightarrow n \sim 10^{-27} \mathrm{~cm}^{-3}$ in insulators
(diamond) and for $E_{g} \sim 0.5-1 \mathrm{eV} \Rightarrow$ $n \sim 10^{5}-10^{10} \mathrm{~cm}^{-3}$ which is $\ll n \sim 10^{23} \mathrm{~cm}^{-3}$ than for metals at room temperature.
$C \sim T N(\mu)$: Only electrons in a narrow region around the Fermi surface participate in the thermal
excitation. Linear temperature dependence typical for metals. For isotropic metal

$$
N(\mu)=\frac{p_{F} m^{*}}{\pi^{2} \hbar^{3}} \Rightarrow C=\gamma T
$$

where $\gamma=p_{F} m^{*} / 3 \hbar^{3}$. Note that $m^{*} \sim p_{F}^{2} / \Delta \varepsilon$ and small orbital overlap in transition metals leading to large specific heat values.

If G is the symmetry group of a Hamiltonian then $[H, G]=0$. For ψ_{n} eigenstate of $H, G \psi_{n}$ is also an eigenstate with same energy. The eigenvectors form a representation of G provided that H is diagonal. The dimensionality gives the degree of degeneracy.

$$
\mathcal{H}=E_{p}-\sum_{i, j}\left(t_{i j} c_{i}^{\dagger} c_{j}+h . c .\right)
$$

Diagonalization by Fourier transformation, no mixing of bands for nearest neighbour. Including next nearest neighbour but only intraband coupling results in similar model but with anisotropy of hoppings. Including inter-band coupling mixes orbitals with different symmetry.

Conductivity: $\sigma=n e^{2} \tau / m$ (Drude)

$n(T) \mid n$ is temperature independent, rather $\tau(T)$

Diamond structure: two intercalated fcc at ($0,0,0$) and $(1 / 4,1 / 4,1 / 4) .2 s$ and $2 p$ hybridized. Has cubic symmetry. It has an indirect gap of 1.12 eV . Intrinsic at room temperature: $n_{e}=n_{h} \sim 10^{10} \mathrm{~cm}^{-3}$ and doped with a donor concentration $n_{d} \sim 10^{17} \mathrm{~cm}^{-3}$ one gets $n_{e} \sim 10^{17} \mathrm{~cm}^{-3}$ and $n_{h} \sim 10^{3} \mathrm{~cm}^{-3}$ where

$$
n^{2}(T)=n_{0}^{2}\left(\frac{T}{T_{0}}\right)^{3} e^{-E_{g} / T}
$$

was used.
The conductivity of a semiconductor is not a good measure for the scattering rate. One rather uses the mobility μ with $v=\mu E$ and therefore the conductivity $\sigma=n e \mu$. The temperature dependence of conductivity mainly given by $n(T)$ is hence separated from the purity of the sampel characterized by μ.

Parabolic spectrum and $E_{g}-\mu \gg T$
Use Fermi function for n and conservation of electrons: $n_{c}+n_{v}=n$

$$
\mu=\frac{E_{g}}{2}+\frac{3}{4} T \log \left(\frac{m_{v}}{m_{c}}\right)
$$

For $T=0, \mu$ is at the center of the band gap and the carrier density is

$$
n_{c} \propto T^{3 / 2} e^{-E_{g} / 2 T}
$$

Zinc blende structure: diamond with alternating types of atoms. Has cubic symmetry.
$\omega_{c} \tau \gg 1$ In presence of a static \mathbf{B}-field the e^{-}and hole motion is

$$
m \frac{d \mathbf{v}}{d t}=\mp \frac{e}{c} \mathbf{v} \times \mathbf{B}
$$

\Rightarrow precession with cyclotron frequency $\omega_{c}=e B / m c$.
Applying AC E-field \perp to \mathbf{B} one gets resonance absorption at ω_{c} and measures the effective mass

$$
m^{*}=\left(\frac{\operatorname{det}\left(m_{\alpha \beta}\right)}{m_{z z}}\right)^{1 / 2}
$$

$$
\varepsilon_{c}(k)=E_{g}+\hbar^{2}\left(\frac{k_{1}^{2}}{2 m_{1}^{2}}+\frac{k_{2}^{2}}{2 m_{2}^{2}}+\frac{k_{3}^{2}}{2 m_{3}^{2}}\right)
$$

is in general anisotropic, but for GaAs at $k=0$ $m_{1}=m_{2}=m_{3}$ due to cubic symmetry in the top and the bottom of the band. In Si valence band meet at $k=0$ with $M=0.5 m_{e}$ and $m=0.16 m_{e}$. They remain symmetric due to cubic symmetry. Beware: bottom of conduction band has lower symmetry \Rightarrow different longitudinal and transverse masses.

Conductivity of a semiconductor can be enhanced by exciting electron-hole pairs via absorption of photons. But $\hbar \omega \sim E_{g} \Rightarrow k \ll 2 \pi / a$ and therefore only leading to direct excitations. For semiconductors with an indirect energy gap phonon absorption/emission is required but the transition rate is reduced.
e^{-}and holes have opposite charge \Rightarrow attraction and form a bound state with energy

$$
E(k)=E_{g}-\frac{\mu_{e x} e^{4}}{2 \varepsilon^{2} \hbar^{2} n^{2}}+\frac{\hbar^{2} k^{2}}{2 M_{e x}}
$$

where $\mu_{e x}$ reduced mass, $M_{e x}$ total mass. Typically exciton energy is $\sim 10^{-3} \mathrm{Ry}$.
Doping semiconductors

A p-doped is brought into contact with an n-doped version of the same semiconductor. In equilibrium the chemical potential is constant. The depletion layer is

Active: EB open and BC closed \Rightarrow maximum amplification of the base current.

The recombination of electrons and holes can lead to the emission of photons with the frequency E_{g}. An excess of electron-hole pairs can be produced in pn-diodes by applying current. Different gaps allow to tune the color of the emitted light.

In diamond: $2 s$ and $2 p^{3}$ hybridize to $s p^{3}$ orbitals which is gapped from the conduction band. In graphene and graphite: three valence e^{-} occupy hybrid $s p^{2}$ orbitals to form three strong σ-bonds in a hexagonal structure. The remaining atom is perpendicular to the plane forming a π-bond.

The e^{-}diffuse from the n -side to the p -side producing the diffusion current (same for holes). The electric field in the depletion layer produces the drift current in the opposite direction. In equilibrium these two currents compensate each other. Applying voltage that reduces the dipole field enhances the diffusion without changing the drift current. The opposite voltage will only change the width of the depletion layer without producing current.
Donors (n-type): group V giving additional carriers. Acceptors (p-type): group III produce holes. An additional e^{-}results in a hydrogen atom like S.E. with an effective radius of $30 \AA$ and hence forming an impurity band. The semiconductor can conduct in the impurity band by electron hopping from donor to donor. The chemical potential lies between the dopant level and the conduction band for n -doping.

Apply gate voltage on the metal gate which is separated by insulating SiO_{2}. Applying gate voltage bends down the conduction band.

For sufficiently large voltage $e V_{g}>E_{g}$ an inversion layer is created providing carriers that connect source and drain producing large current.

Tight binding model and nearest neighbours hopping

$$
\mathcal{H}=-t \sum_{\mathbf{k}, s}\left[\gamma(\mathbf{k}) a_{\mathbf{k}, s}^{\dagger} b_{\mathbf{k}, s}+\gamma^{*}(\mathbf{k}) b_{\mathbf{k}, s}^{\dagger} a_{\mathbf{k}, s}\right]
$$

where $\gamma(\mathbf{k})$ is complex (lacks inversion symmetry). In matrix form and diagonalizing \Rightarrow Dirac points

$$
\begin{gathered}
N(E)=\frac{2}{(2 \pi \hbar)^{2}} \int_{\varepsilon=E} \frac{d S}{|\partial \varepsilon / \partial p|} \\
\text { and } \varepsilon=v_{F}|p| \text { leads to }
\end{gathered}
$$

$$
N(E)=\frac{E}{\pi\left(\hbar v_{F}\right)^{2}}
$$

Solving the Dirac equation and using continuity at the boundary shows that the transmission coefficient is 1 and there is no reflection for a Dirac electron.

Starting from a simple harmonic chain, small displacement expansion, go to Fourier space, periodic

For $k \rightarrow 0$ (acoustic mode) we get linear spectrum and the particles are moving together.

The π-bonding is usually weaker than the σ-bonding and is of the opposite sign.

From $\varepsilon(\mathbf{k})= \pm t|\gamma(\mathbf{k})|$ we get three K and three K^{\prime} points with $\varepsilon(\mathbf{k})=0$. K and K' are not connected by a reciprocal lattice vector. Undoped graphene is a perfect semimetal, due to half filling. The spectrum near a Dirac point is

$$
\varepsilon(\mathbf{p})= \pm v_{F}|\mathbf{p}|
$$

which results from solving the Dirac Hamiltonian

$$
H=\hbar v_{F} \hat{\sigma} \cdot \mathbf{p}
$$

One can "dope" graphene by applying a gate voltage $\Rightarrow n_{s}=p_{F}^{2} / \pi \hbar^{2}$. The effective mass is given by

$$
m^{*}=\frac{p_{F}}{|\partial \varepsilon / \partial p|}=\frac{\sqrt{\pi} \hbar}{v_{F}} \sqrt{n_{s}}
$$

which can be measured in a cyclotron resonance experiment. Beware that the mass in a relativistic spectrum is not as simple as in parabolic dispersion.

Replace \mathbf{p} by $\tilde{\mathbf{p}}=\mathbf{p}-e \mathbf{A} / c \Rightarrow$ Dirac Hamiltonian

$$
\tilde{H}=\hbar v_{F} \hat{\sigma} \cdot \tilde{\mathbf{p}}
$$

which is solved by considering \mathcal{H}^{2} and results in

$$
E= \pm \sqrt{2} \hbar v_{F}\left(\frac{e B}{c}\right)^{1 / 2} n^{1 / 2}
$$

Compare this to the the usual Landau level quantization

$$
E=\frac{\hbar e B}{m c}\left(n+\frac{1}{2}\right)
$$

For $M_{1} \neq M_{2}$ there is a gap and the zone boundary is at $\pi / 2 a$. The gap vanishes for $M_{1}=M_{2}$ but the actual Brillouin stretches from $-\pi / a$ to π / a

$$
\rho \ddot{\mathbf{u}}=\mu \boldsymbol{\nabla}^{2} \mathbf{u}+(\lambda+\mu) \operatorname{grad} \operatorname{div} \mathbf{u}
$$

There are two kinds of waves, $\mathbf{u}=\mathbf{u}_{l}+\mathbf{u}_{t}$ where \mathbf{u}_{l} satisfies rot $\mathbf{u}_{l}=0$ with sound velocity
$c_{l}=\sqrt{(2 \mu+\lambda) / \rho}$ and \mathbf{u}_{t} satisfies divu \mathbf{u}_{t} with sound velocity $c_{t}=\sqrt{\mu / \rho}$. There are one longitudinal and two transverse modes with dispersion $\mathbf{A}_{\mathbf{k}} \| \mathbf{k}, \omega_{l}=c_{l} k$ and $\mathbf{A}_{\mathbf{k}} \perp \mathbf{k}, \omega_{t}=c_{t} k$.

The internal energy density is given by

$$
E=\sum_{k} \hbar \omega_{k}\left(\left\langle n_{k}\right\rangle+1 / 2\right)=\sum_{k} \frac{\hbar \omega_{k}}{2}+\frac{\hbar \omega_{k}}{e^{\beta \hbar \omega_{k}}-1}
$$

Taking the derivative over temperature we obtain

$$
C_{v}=\frac{\partial E}{\partial T}=\sum_{k} \frac{\partial}{\partial T} \frac{\hbar \omega_{k}}{e^{\beta \hbar \omega_{k}}-1}
$$

$$
\begin{gathered}
C_{v}=V \frac{\partial}{\partial T} \sum_{s} \int_{\mathrm{BZ}} \frac{d^{3} k}{(2 \pi)^{3}} \frac{\hbar \omega_{s}(k)}{e^{\beta \hbar \omega_{s}(k)}-1} \\
C_{v}=V \frac{\partial}{\partial T} \frac{T^{4}}{\hbar^{3}} \sum_{s} \int \frac{d \Omega}{\left(2 \pi c_{s}(\hat{\mathbf{k}})\right)^{3}} \int \frac{x^{3}}{e^{x}-1} d x
\end{gathered}
$$

where $x=\hbar c_{s}(\hat{\mathbf{k}}) k / T$ and integration of $k \in \mathcal{R}$

$$
\frac{C_{v}}{V}=\frac{2 \pi^{2}}{5}\left(\frac{T}{\hbar \bar{c}}\right)^{3}
$$

Chain with alternating masses M_{1} and M_{2}, go to Fourier space, solve for the frequency which has two solutions: an acoustic branch and an optical mode which does not go to zero for $k \rightarrow 0$. The particles are
moving in the opposite directions.

$$
\mathcal{H}=\frac{\hat{p}^{2}}{2 m}+\frac{\chi \hat{x}^{2}}{2}
$$

$$
\text { with } \hat{p}=-i \hbar \partial / \partial x,[\hat{p}, \hat{x}]=-i \hbar
$$

$$
a, a^{\dagger}=\left(\frac{m \omega_{0}}{2 \hbar}\right)^{1 / 2}\left[\hat{x} \pm \frac{i \hat{p}}{m \omega_{0}}\right]
$$

which satisfy Bose commutation relations and the Hamiltonian $\mathcal{H}=\hbar \omega_{0}\left(a^{\dagger} a+1 / 2\right)$ with ground state wave function $\psi(x) \propto \exp \left(-m \omega_{0} x^{2} / 2 l \hbar\right)$ and thus

$$
\mathcal{H}|n\rangle=\hbar \omega_{0}(n+1 / 2)|n\rangle
$$

Bose statistics of phonons

$$
\left\langle n_{\omega}\right\rangle=\frac{1}{e^{\beta\left(\varepsilon_{\omega}-\mu\right)}-1}
$$

The density of phonons is not fixed but determined by $\partial F / \partial N=0=\mu$ and hence we get Planck's law

$$
\left\langle n_{\omega}\right\rangle=\frac{1}{e^{\beta \hbar \omega}-1}
$$

Alternatively use $E(n)=(n+1 / 2)$.

Temperature higher than the maximal phonon frequency

$$
\begin{aligned}
\frac{1}{e^{\beta \hbar \omega_{k}}-1} & =\frac{1}{\beta \hbar \omega_{k}+1 / 2\left(\beta \hbar \omega_{k}\right)^{2}+\ldots} \approx \frac{T}{\hbar \omega_{k}} \\
C_{v} & =\sum_{k} \frac{\partial}{\partial T} \hbar \omega_{k} \frac{T}{\hbar \omega_{k}}+\ldots=\sum_{k} 1
\end{aligned}
$$

The total number of modes is 3 times the number of atoms N (phonons) and hence $C_{v}=3 N$.

Replace the full anisotropic spectrum by three single modes with $\omega=c k$ and replace the integration of the BZ with a sphere of radius k_{D} which has the same volume as the BZ. k_{D} defines $\omega_{D}=c k_{D}$ and

$$
\Theta_{D}=\hbar \omega_{D} \sim 10^{2}-10^{3} \mathrm{~K}
$$

$$
C_{V}=9 N\left(\frac{T}{\Theta_{D}}\right)^{3} \int_{0}^{\Theta_{D} / T} \frac{x^{4} e^{x} d x}{\left(e^{x}-1\right)^{2}}
$$

Replace integral over momenta by integral over phononic frequencies

$$
\begin{gathered}
\int \frac{d^{3} k}{(2 \pi)^{3}}=\int d \omega g(\omega) \\
g(\omega)=\sum_{s} \int_{\omega_{s}(\mathbf{k})=\omega} \frac{d S}{(2 \pi)^{3}} \frac{1}{\left|\partial \omega_{s}(\mathbf{k}) / \partial \mathbf{k}\right|}
\end{gathered}
$$

small frequencies: $\omega_{s}(k) \propto k$ and $g(\omega) \propto \omega^{2}$. As $\omega_{s}(k)$ has extrema in the BZ, it produces Van Hove singularities $g(\omega) \propto \sqrt{\left|\omega-\omega_{0}\right|}$.

Interaction between atoms has cubic term and the frequencies in the phonon gas depend on volume.

$$
F=\frac{1}{2} K\left(\frac{\Delta V}{V}\right)^{2}+T \sum_{k, s} \log \left[2 \sinh \left(\frac{\hbar \omega_{s}}{2 T}\right)\right]
$$

Taking derivative over ΔV

$$
\alpha=\frac{\gamma}{K} c_{v} \propto T^{3}
$$

at low temperatures.

The calculation of the specific heat contribution of phonons in the low temperature regime is almost identical to the derivation of the Stefan-Boltzmann law which is given by

$$
E=\frac{\pi^{2}}{15} \frac{T^{4}}{(\hbar c)^{3}}
$$

which differs by an additional factor of $2 / 3$ and $c_{t}=c$.

Optical branch is replaced by the single frequency ω_{E} and spherical Brillouin zone. Each mode contributes

$$
\frac{\hbar \omega_{E}}{e^{\hbar \omega_{E} / T}-1}
$$

and the specific heat is

$$
C_{V}^{o p t}=3 N\left(\frac{\hbar \omega_{E}}{T}\right)^{2} \frac{e^{\hbar \omega_{E} / T}}{\left(e^{\hbar \omega_{E} / T}-1\right)^{2}}
$$

Phonons are bosons and the energy is $\varepsilon \sim T$ and $\varepsilon \sim k$ $\Rightarrow \int d^{3} k \sim k^{3} \sim T^{3}$. Multiplying by the energy and taking the derivative $\Rightarrow C_{v} \sim T^{3}$
Beware, lower dimensions yield different results. Electrons are fermions and $\varepsilon \sim T$ and hence number of excitations $\sim N\left(\varepsilon_{F}\right) T$. Again multiplied by the energy T and taking the derivative gives $C_{v} \sim T$.

Electron-phonon interaction leads to an effective attraction between electrons. Lattice frequency is about Debye frequency $\omega_{D} \sim c k_{F} \sim \varepsilon_{F} \sqrt{m / M}$ and thus the ion trace is $L \sim a \sqrt{M / m}$. An electron moving in the opposite direction lowers the energy

The strength of the electron phonon interaction is $V_{e-p h} \sim \varepsilon_{F} \operatorname{divu}$, where the interaction with the longitudinal phonons are important.

$$
\mathcal{H}_{e-p h}=\frac{i}{2} \sum \mathbf{q}\left(V_{-\mathbf{q}} \mathbf{u}_{\mathbf{q}} a_{\mathbf{k}+\mathbf{q}}^{\dagger} a_{\mathbf{k}}-V_{\mathbf{q}} \mathbf{u}_{\mathbf{q}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}+\mathbf{q}}\right)
$$

The Hamiltonian corresponds to emission or absorption of phonons.

One-dimensional metal with half filling and lattice
deformation by $u(x)=u_{0} \cos (Q x)$

The potential leads to a gap opening at $k= \pm Q / 2$. If $Q=2 k_{F}$ there is a gain in energy as all the states
below go further down in energy. Thus a 1-D metal is unstable with respect to a lattice deformation \Rightarrow

Charge density wave state.

Spherical approximation, Jellium model, slowly varying electric field, constant chemical potential

$$
\mu=\varepsilon_{F}\left(n_{0}+\delta n(\mathbf{r})\right)-e \phi(\mathbf{r})=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n_{0}\right)^{2 / 3}
$$

Use Taylor, $\varepsilon_{F} \propto n_{0}^{2 / 3}$ and Poisson equation

$$
\nabla^{2} \phi-\frac{\phi}{\lambda_{\mathrm{TF}}^{2}}=-4 \pi \rho_{\mathrm{ind}}
$$

$\phi=Q \exp \left(-r / \lambda_{\mathrm{TF}}\right) / r$. The coulomb interaction is screened on the Thomas Fermi length $\lambda_{\mathrm{TF}}^{2} \sim 0.55 \AA$,

$$
\begin{equation*}
\lambda_{\mathrm{TF}} \sim k_{F}^{-1} \cdot \varepsilon(\mathbf{q}, 0)=1+k_{T F}^{2} / q^{2} \tag{91}
\end{equation*}
$$

The amplitudes of the two phonon- e^{-}scattering processes is

$$
\sim \frac{\hbar^{3}}{p_{F}} \frac{\omega^{2}(\mathbf{k})}{\left(\omega^{2}-\omega^{2}(\mathbf{k})\right)}
$$

which is attractive for the energy transfer $\hbar \omega=\varepsilon\left(\mathbf{p}_{1}\right)-\varepsilon\left(\mathbf{p}_{1}^{\prime}\right)<\omega(\mathbf{k})$. For $\omega \ll \omega(\mathbf{k})$ the interaction doesn't depend on \mathbf{k} which corresponds to point like interaction. Important phonons are at $\omega(\mathbf{k}) \sim \omega_{D}$. The attraction occurs for e^{-}in a narrow layer near the Fermi surface with thickness $\hbar \omega_{D}$.

Small deformation and different but similar tunneling amplitudes t_{1} and t_{2} Start from the tight binding approximation, go to Fourier space, \mathcal{H}^{2} eigenvalues, include elastic energy and sum over all k states

$$
\Delta(0)=8 t e^{-1 / g^{2}}
$$

$\kappa \propto 1 / g^{2}$ and thus for stiff lattice the gap is small.

Long wave dielectric response $\varepsilon(\omega, 0)$ of an electron gas can be obtained from $m \ddot{x}=-e E$ and

$$
\begin{gathered}
\varepsilon \mathbf{E}=\mathbf{E}+4 \pi \mathbf{P} \Rightarrow \\
\varepsilon=1-\frac{\omega_{p}^{2}}{\omega^{2}} \\
\nabla^{2} \mathbf{E}=\frac{1}{c^{2}} \frac{\partial^{2} \varepsilon \mathbf{E}}{\partial t^{2}}=-\frac{\omega^{2}}{c^{2}} \varepsilon(\omega) \mathbf{E}
\end{gathered}
$$

$\omega<\omega_{p} \Rightarrow$ exponential decay. For $\omega>\omega_{p} \Rightarrow$ transparent and at $\omega=\omega_{p} \Rightarrow$ plasma resonance.

Classical electron gas

$$
\delta n(\mathbf{r})=n_{0} e^{-U(\mathbf{r}) / T}-n_{0} \approx \frac{n_{0} e \phi}{T}
$$

leads to

$$
\lambda_{D}^{2}=\frac{T}{4 \pi e^{2} n_{0}}
$$

Adiabatic switching of weak time- and position dependent external potential.

$$
\mathcal{H}=\sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}}+\sum_{\mathbf{q}} V(\mathbf{q}, \omega) c_{\mathbf{k}+\mathbf{q}}^{\dagger} c_{\mathbf{k}}
$$

Linear response EOM for the density operator $i \hbar d / d t \rho_{\mathbf{k}, \mathbf{q}}=\left[\rho_{\mathbf{k}, \mathbf{q}}, \mathcal{H}\right]$. Thermal average and $\left\langle\rho_{\mathbf{k}, \mathbf{q}}\right\rangle \propto \exp (-i \omega+\eta t)$
$\delta n_{\mathrm{ind}}=\frac{1}{\Omega} \sum_{k} \frac{n_{\mathbf{k}+\mathbf{q}}-n_{\mathbf{k}}}{\varepsilon_{\mathbf{k}+\mathbf{q}}-\varepsilon_{\mathbf{k}}-\hbar \omega-i \hbar \eta} V(\mathbf{q}, \omega)$

Induced charge of a point charge at the origin:

$$
\delta n(r) \rightarrow \pi A n_{a 0} \frac{\cos \left(2 k_{F} r\right)}{r^{3}}
$$

The total electron charge exactly compensates the

Weakly excited states of a system in a general case have energy level structure similar to the energy levels of an ideal gas. These elementary excitations (quasiparticles) are result of collective interaction of particle. The number of quasiparticles nor their statistics have to be the same as the number or statistics of the underlying particles. These excitations should have lifetime $\tau \ll \hbar / \varepsilon(p)$.

The quasiparticle energy $\varepsilon(k)$ is defined as the variational derivative of the total energy with respect to the quasiparticle distribution function

$$
\delta E=2 V \int \varepsilon(k) \delta n(k) \frac{d^{3} k}{(2 \pi)^{3}}
$$

$\mathrm{T}=0$, use the expression for the effective mass and the definition $2 F(\theta)=N\left(\varepsilon_{F}\right) f(\theta) \Rightarrow$

$$
\begin{aligned}
& \frac{m^{*}}{m}=1+\langle F(\theta) \cos \theta\rangle_{\theta} \\
& u^{2}=\frac{k_{F}^{2}}{3 m m^{*}}(1+\langle F(\theta)\rangle)
\end{aligned}
$$

Static case $\omega=0$

$$
n_{\mathbf{k}+\mathbf{q}}=n_{\mathbf{k}}+\frac{\partial n}{\partial \varepsilon_{\mathbf{k}}} \mathbf{q} \cdot \nabla_{\mathbf{k}} \varepsilon_{\mathbf{k}}
$$

with $n_{\mathbf{k}}$ Fermi function at $T=0$

$$
\partial n / \partial \varepsilon_{\mathbf{k}}=-\delta\left(\varepsilon_{\mathbf{k}}-\varepsilon_{F}\right)
$$

$$
\chi_{0}(\mathbf{q}, \omega \rightarrow 0)=-\frac{1}{\pi} \frac{k_{F}^{2}}{\hbar v_{F}}=-\frac{3 n_{0}}{2 \varepsilon_{F}}
$$

and thus $\varepsilon(\mathbf{q}, 0)=1+k_{\mathrm{TF}}^{2} / q^{2}$ with $k_{\mathrm{TF}}^{2}=6 \pi e^{2} n_{0} / \varepsilon_{F}$.

In the absence of phase transitions a non interacting ground state evolves smoothly or adiabatically into the interacting ground state as the strength of the interaction is increased. \Rightarrow The low temperature properties of strongly interacting electrons are the same as those of non interacting fermions with renormalized parameters.

Fermi sphere and excitations similar to ideal gas: For $\varepsilon_{1}=\varepsilon_{F}$ and ε_{2} occupied (hence $\varepsilon_{2}<\varepsilon_{F}$) as well as $\varepsilon_{3}, \varepsilon_{4}$ unoccupied $\left(\varepsilon_{3}, \varepsilon_{4}>\varepsilon_{F}\right)$ the allowed wave vectors are at the Fermi surface (by energy conservation) which has zero volume. For $\varepsilon_{1}>\varepsilon_{F}$ and considering momentum conservation

$$
\frac{\hbar}{\tau} \sim \frac{\left(\varepsilon_{1}-\varepsilon_{F}\right)^{2}}{\varepsilon_{F}}
$$

Energy quasiparticles $\sim T$. For $\varepsilon_{F} \sim \mathrm{eV}, T \sim 1 \mathrm{~K}$ we get $l \sim \mathrm{~cm}$ mean free path. Scattering rate

$$
\begin{equation*}
\hbar / \tau \sim T^{2} \varepsilon_{F} \tag{101}
\end{equation*}
$$

$f\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=f\left(\mathbf{k}^{\prime}, \mathbf{k}\right)$ describes the interaction of two quasiparticles ($f=0$ in Fermi gas). Using the Galilean invariance:

$$
\frac{1}{m^{*}}=\frac{1}{m}-\frac{k_{F}}{(2 \pi)^{3}} \int f(\theta) \cos \theta d \Omega
$$

Solution of the form $\delta \varepsilon=-\tilde{g} \mu_{B} \sigma \cdot \mathbf{H}$. In isotropic liquid: $f\left(\mathbf{k}, \sigma ; \mathbf{k}^{\prime}, \sigma^{\prime}\right)=f\left(\mathbf{k}, \mathbf{k}^{\prime}\right)+\sigma \sigma^{\prime} \zeta\left(\mathbf{k}, \mathbf{k}^{\prime}\right)$. Recast this into
$\delta \varepsilon=-\mu_{B} \sigma \cdot \mathbf{H}+\sum_{\sigma^{\prime}} \int f\left(\mathbf{k}, \mathbf{k}^{\prime}\right) \frac{\partial n_{0}^{\prime}}{\partial \varepsilon^{\prime}} \delta \varepsilon\left(\mathbf{k}^{\prime}, \sigma^{\prime}\right) \frac{d^{3} k^{\prime}}{(2 \pi)^{3}}$
leads to
$\chi=\mu_{B}^{2} \frac{N\left(\varepsilon_{F}\right)}{1+\langle Z(\theta)\rangle}$
$\mathbf{E}=\mathbf{E}_{\omega} \exp (-i \omega t)$ leads to $1 / \tau \rightarrow 1 / \tau-i \omega$ and for absence of magnetic field $\sigma(\omega)=\sigma_{0} /(1-i \omega \tau)$. For an electric field varying in space and linear response equation one obtains using the Maxwell equations

$$
\varepsilon(\omega)=1+\frac{4 \pi i \sigma(\omega)}{\omega}
$$

$\varepsilon(\omega)$ and $\sigma(\omega)$ satisfy the Kramers-Kronig relations.

Semiclassical approximation, no spin Distribution function $d f(\mathbf{k}, \mathbf{r}, t) / d t$ describes the change due to external fields.

$$
\frac{\partial f}{\partial t}+\mathbf{v} \frac{\partial f}{\partial \mathbf{r}}+\mathbf{F} \frac{\partial f}{\partial \mathbf{k}}=I(f)
$$

Ansatz with Isotropic, elastic scattering and $f=f_{0}+f_{1} \Rightarrow I(f)=-\left(f-f_{0}\right) / \tau$ (relaxation time approximation) \Rightarrow integro-differential equation.

Use the wave equation and the boundary conditions at a transition into a metal. For $\omega \tau \ll 1 \ll \omega_{p} \tau \Rightarrow \varepsilon(\omega)$ is practically imaginary and the electric field decays inside the metal within the skin depth $\delta(\omega)$. For $1 \ll \omega \tau \ll \omega_{p} \tau \Rightarrow$ the field decays inside the sample within $\delta=c / \omega_{p}$ and $R \rightarrow 1$. For $\omega>\omega_{p}$ the reflectivity R drops to very small values. The shiny white arises from the fact that all of the visible frequencies are completely reflected since ω_{p} lies well above the visible light.

Fermi gas, $\mathrm{g}=2$, Zeeman term $\varepsilon(k)=\frac{k^{2}}{2 m}-\mu_{B} g \mathbf{s} \cdot \mathbf{H}$ and the distributions $\left(n_{+}\right)$and $\left(n_{-}\right)$lead to

$$
M=\frac{\mu_{B}}{2} \int_{\mu-\mu_{B} H}^{\mu+\mu_{B} H} N(\varepsilon) d \varepsilon
$$

and using $M=\mu_{B}^{2} N\left(\varepsilon_{F}\right) H$ finally

$$
\chi_{P}=\mu_{B}^{2} N\left(\varepsilon_{F}\right)
$$

105

Drude formula for conductivity: $\mathbf{j}=\sigma \mathbf{E}$ where $\sigma=n e^{2} \tau / m$. If magnetic field is present:

$$
\mathbf{E}=\frac{m \mathbf{j}}{n e^{2} \tau}+\frac{\mathbf{j} \times \mathbf{B}}{n e c}
$$

with the Hall resistivity $\rho=B /$ nec.
above the visible light.

Fermi golden rule for scattering probability. τ is transport relaxation $(\neq \tilde{\tau}$ life time $)$. Defects are point charges and Thomas-Fermi model for screened potential $\Rightarrow \sigma=n e^{2} \tau / m$. Beware: quadratic dependence of resistivity on the charge and temperature independence. This is called residual resistivity and vanishes for a perfect metal.

Relaxation time approximation, isotropic metal, elastic scattering, weak uniform electric field $\left(f=f_{0}+f_{1}\right), \partial f_{0} / \partial \varepsilon=-\delta\left(\varepsilon-\varepsilon_{F}\right)$

The Drude result is obtained:

$$
\sigma=\frac{n e^{2} \tau}{m^{*}}
$$

Lifetime of quasiparticle in Fermi liquid:

High temperature: $\rho \sim m T / n e^{2} \hbar$
Low temperature: \#phonons $\sim T^{3}$, scattering angle $\theta \sim T / \Theta_{D}$ and $\left\langle 1-\cos \theta \sim T^{2} / \Theta_{D}^{2} \Rightarrow\right.$

$$
\frac{1}{\tau_{e-p}} \sim T^{5}, \quad \rho \propto T^{5}
$$

(Bloch-Grüneisen law)

Relaxation time approximation:

$$
\frac{\varkappa}{\sigma T}=\frac{\pi^{2}}{3 e^{2}}
$$

For inelastic scattering (phonons at low temperature), forward and back scattering have the same effect:

$$
\frac{\varkappa}{\sigma T} \propto\left(\frac{T}{\Theta_{D}}\right)^{2}
$$

$$
\begin{array}{r}
T \ll \tau, \mathbf{B}\|\mathbf{z}, \quad \mathbf{E}\| \mathbf{x} \text { and } f_{1}=a k_{y} \\
e(\mathbf{E} \cdot \mathbf{v}) \frac{\partial f_{0}}{\partial \varepsilon}=\frac{f_{\chi}}{\tau}-\frac{e[\mathbf{v} \times \mathbf{B}]}{c} \frac{\partial f_{1}}{\partial \mathbf{k}}
\end{array}
$$

For closed and open electron-like Fermi-surface

$$
\sigma_{x y}=-\frac{\left(n_{e}-n_{h}\right) e c}{B}
$$

Closed:

$$
k_{F}=\frac{\pi}{2 a}
$$

$$
\frac{1}{\tau} \simeq \frac{T^{2}}{\varepsilon_{F}}
$$

hence $\sigma \simeq \frac{n e^{2} \varepsilon_{F}}{m T^{2}}$ and

$$
\rho \simeq \frac{m \varepsilon_{F}}{n e^{2}}\left(\frac{T}{\varepsilon_{F}}\right)^{2}
$$

which is temperature dependent.

Diffusion coefficient is defined by $\mathbf{j}_{D}=-D \nabla n$ which in the case of electric current can be calculated to be

$$
\mathbf{j}=e D N\left(\varepsilon_{F}\right) \mathbf{E}, \quad \sigma=e^{2} D N\left(\varepsilon_{F}\right)
$$

Einstein relation. $\partial f / \partial \varepsilon=-\delta\left(\varepsilon-\varepsilon_{F}\right)$ was assumed.
\mathbf{E} small $\left(f=f_{0}+f_{1}\right)$, relaxation time approximation, B $\neq 0$

$$
\mathbf{E}=\rho_{0} \mathbf{j}+\frac{e \tau}{m c} \rho_{0}[\mathbf{j} \times \mathbf{B}]
$$

with Hall resistivity $\rho_{x y}=B / n e c$, but absent magnetoresistance. If $\tau(\theta)$ depends on $\theta \Rightarrow$

$$
\frac{\Delta \rho(B)}{\rho} \propto B^{2}
$$

Electron-electron in Fermi liquid: $\rho(T) \propto \rho_{0}+A T^{2}$ Electron-phonon (Bloch Grüneisen):

$$
\rho(T)= \begin{cases}\rho_{0}+A T^{5} & T<\Theta_{D} \\ T & T>\Theta_{D}\end{cases}
$$

Transfer matrix equation $\Rightarrow\langle t\rangle=\prod t_{n}$ and transmission is a multiplicative function \Rightarrow only transmission of unreflected waves contribute to total transmission \Rightarrow resistance grows exponentially.

$$
R=\frac{h}{e^{2}}\left|\frac{r}{t}\right|^{2}
$$

and $R(L)=\pi \hbar / e^{2} \exp \left(L / L_{c}\right)$.

$$
L_{c} \sim l|x|^{-\nu} \text { and }
$$

$\sigma \sim \frac{e^{2} g^{*}}{\hbar l} x^{\nu}$ close to the unstable fixed point g^{*}.

For magnetic field: $\Psi \rightarrow \Psi \exp \left(\pm i \pi B S / \Phi_{0}\right)$ leading to

$$
\delta G_{d}(H)-\delta G_{d}(0) \sim \frac{e^{2}}{\hbar} \begin{cases}\log \left(e B D \tau_{\varphi} / \hbar c\right) & d=2 \\ (e B / \hbar c)^{1 / 2} & d=3\end{cases}
$$

The appearance of a phase difference results in destruction of the interference, i.e., in a decrease of the resistivity.

$$
\mathcal{H}=1 / 2 m(-i \hbar \boldsymbol{\nabla}-e / c \mathbf{A})^{2} \text { leads to }
$$

$$
\varepsilon=\frac{k_{z}^{2}}{2 m}+\hbar \omega_{c}\left(n+\frac{1}{2}\right)
$$

Discrete and highly degenerate Landau levels.

$E_{m 1} \rightarrow E_{m 2}$, all states are localized. If E_{F} crosses the mobility edge, we have the Metal Insulator transition.

Consider two blocks where the coupling is $\sim E_{c}$ and the spacing between energy levels $\sim \Delta \Rightarrow$ tight binding model. If $E_{c} \gg \Delta$ then Ohms law. For $E_{c} \ll \Delta$ then localization. For a wire with small length $R<\hbar / e^{2}$ (quantum resistance $4 \mathrm{~K} \Omega$) and

Ohms law. For length exceeding L_{c} we get $R \propto \exp \left(L / L_{c}\right)$, where $L_{c} \sim l\left(S k_{F}^{2}\right)$.
$\lambda \ll l$ and $T \rightarrow 0$ Due to self intersection, interference is enhanced leading to a decrease in conductivity.

$$
\delta G_{d} \sim-\frac{e^{2}}{\hbar} \begin{cases}L_{\varphi} & d=1 \\ \log \left(L_{\varphi} / l\right) & d=2 \\ 1 / l-1 / L_{\varphi} & d=3\end{cases}
$$

with $L_{\varphi}=\sqrt{D \tau_{\varphi}}$ and $\tau_{\varphi} \sim T^{-p}$. Note that that the divergence of L_{φ} supports localization in 1d and 2d.

For $g \rightarrow \infty$ we obtain $\beta(g)=d-2-$ const $/ g$.
$E_{F}<E_{m 1}$, conduction by hopping from localized states costs thermal energy and quantum tunnelling energy

$$
P \propto \exp \left(-\frac{\Delta \varepsilon}{T}-\frac{2 R}{L_{c}}\right)
$$

optimizing R leads to $\sigma \propto \exp \left(T_{0} / T\right)^{1 /(d+1)}$ (Mott's
law) and including Coulomb energy $\sigma \propto \exp \left(-\left(T_{1} / T\right)^{1 / 2}\right)$ (Coulomb gap law) .

$$
\chi_{L}=-\frac{\mu_{B}^{2} N\left(\varepsilon_{F}\right)}{3}
$$

Beware: Without Fermi liquid corrections, paramagnetic has free electron mass and Landau susceptibility has the band mass:

$$
\left|\chi_{L}\right| / \chi_{P}=\left(m / m^{*}\right)^{2} / 3 . \text { Note that } \chi_{P} \sim 10^{-5}
$$

130

Use the Bohr-Sommerfeld quantization rule

$$
\oint \mathbf{P} \cdot d \mathbf{r}=2 \pi \hbar(n+\gamma)
$$

Comparing trajectories in real $\left(S_{n}\right)$ and reciprocal $\left(A_{n}\right)$ space leads to

$$
A_{n}=(n+\gamma) \frac{2 \pi \hbar e B}{c}
$$

quantization of the orbit area in k-space.
Atomic contribution may well exceed Pauli and
Landau contribution. Most diamagnetic nonsuperconducting material has $\chi_{a} \sim 10^{-4}$.

Landau levels bring oscillatory behaviour in the DOS and hence oscillations in magnetization.

Close to the transition point

$$
\mathbf{F}_{L}=a_{0}+a_{2}(T) \mathbf{M}^{2}+a_{4} \mathbf{M}^{4}
$$

with $a_{2}(T)=a_{2}^{\prime} t, t=\left(T-T_{c}\right) / T_{c}$ and finally for $B=0$ we get $M \propto \sqrt{T_{c}-T}$ and
$\chi_{T}(B)=\left\{\begin{array}{ll}1 / 2 a t & t>0 \\ -1 / 4 a t & t<0\end{array} \quad\right.$ Curie Weiss law and a jump in the specific heat.

Take magnetism of the closed and completely filled

$$
\chi_{a}=-\frac{e^{2}}{6 m c^{2}} \frac{N}{V}\left\langle r^{2}\right\rangle
$$

The degeneracy of a Landau level is equal to the total number of flux quanta threading the system.

$$
N(\varepsilon, n)=\frac{(2 m)^{3 / 2} \omega_{c}}{(2 \pi \hbar)^{2} \sqrt{\varepsilon-\hbar \omega_{c}(n+1 / 2)}}
$$

$M=\mu_{B} \tanh \left(\mu_{B} B / T\right)$ thus for $B \rightarrow 0$ we get $\chi=\mu_{B}^{2} / T$ (Curie law). In mean field approximation

$$
\langle s\rangle=\frac{1}{2} \tanh \left(\frac{J\langle s\rangle+\mu_{B} B}{T}\right)
$$

self-consistent mean field equation for $\langle s\rangle$. For $B=0$, solve graphically and $T_{c}=J / 2$. Close to T_{c} we get $\langle s\rangle \propto\left(T_{c}-T\right)^{1 / 2}$ and slightly above T_{c}
$\langle s\rangle=\frac{\mu_{B} B}{2\left(T-T_{c}\right)} \quad$ (Curie Weiss law)

Consider conduction electrons with a repulsive contact interaction (approximation of screened Coulomb interaction) and localized spin then

$$
\mathcal{H}=\sum_{\mathbf{k}, s}\left(\varepsilon_{\mathbf{k}}+u n_{-s}\right) c_{\mathbf{k} s}^{\dagger} c_{\mathbf{k} s}-U V n_{\uparrow} n_{\downarrow}
$$

and assuming $m \ll n_{0}$ we get

$$
\frac{U N\left(\varepsilon_{F}\right)}{2}=1 \quad \text { (Stoner criterion) }
$$

For $U N\left(\varepsilon_{F}\right) / 2>2$, transition to ferromagnetic state.

Mott transition estimate for critical density	Hubbard model	
${ }^{137}$		138
Mott - Hubbard transition Figure/concept	Ground state of the Mott insulator	
		140
Classical antiferromagnet Bipartite lattice	Landau theory of antiferromagnet	
		142

Replace Coulomb interaction with on site repulsion and half filling

$$
\mathcal{H}=-t \sum_{i, j, s}\left(c_{i s}^{\dagger} c_{j s}+h . c .\right)+U \sum_{i} \hat{n}_{i \uparrow} \hat{n}_{i \downarrow}
$$

Two limiting cases: $t=0$ (insulating limit, highly degenerate 2^{N} states, first excited state is hole and one doubly occupied) and $U=0$ (metallic state,

$$
\begin{aligned}
& \varepsilon_{k}=-2 t\left(\cos k_{x} a+\cos k_{y} a+\cos k_{z} a\right) \\
& \quad \text { with band width } W=2 z t=12 t)
\end{aligned}
$$

For a two-site Hubbard model at half filling there are
Compare kinetic energy $\varepsilon_{k i n}=\hbar^{2} / m \lambda_{T F}$ to potential energy $\varepsilon_{p o t}=e^{2} / \lambda_{T F}$ and use definition $\lambda_{T F}=\sqrt{r_{0} a_{0}} / 2$ and $a_{0}=\hbar^{2} / m e^{2}$ leading to

$$
\begin{array}{ll}
r_{0}>4 a_{0} & \text { insulating state } \\
r_{0}<4 a_{0} & \text { metallic state }
\end{array}
$$

two possible spin states in presence of a hopping t :

This superexchange process produces
antiferromagnetic interaction

$$
\mathcal{H}=J \hat{\mathbf{s}_{\mathbf{i}}} \cdot \hat{\mathbf{s}} \mathbf{j}, \quad J=\frac{4 t^{2}}{U}
$$

At half filling the lower Hubbard band is fully occupied \Rightarrow insulator.

Consider two sublattices, then magnetic response above T_{N} is isotropic in contrast to the magnetic response below T_{N} which depends on the orientation
of the field \mathbf{B}.

For bipartite lattice, the n.n. interaction can be presented as the interaction between the different sublattices. Introducing new spin variables leads to the ferromagnetic Heisenberg model. Thus transition temperatures as well as all thermodynamic properties in the absence of field are the same for ferro- and antiferromagnets on bipartite lattices. Note that the magnetic susceptibility does not diverge at T_{N} and
$\langle s\rangle=\mu_{B} B /\left(T+T_{N}\right)$.

