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Abstract

The Franck-Hertz experiment was conducted on a mercury tube and the data analysed using
the theory of non equal spacing in the Franck-Hertz curve. The acquired data revealed an increase
in distance to the successive maxima and minima. Using a linear fit the excitation energy of the
mercury atom was determined to be (4.88 ± 0.05) eV for the maxima and (4.52 ± 0.05) eV for the
minima. This was then used to calculate Plancks constant h to be (6.62 ± 0.07) · 10−34 Js which
deviates by 0.1% from the defined value.
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1 Introduction

In the beginning of the 19th century several experiments indicated a quantisation of physical quanti-
ties, which at that time could not be explained by classical mechanics nor by electrodynamics. The
discreetness of energy levels was first shown by James Franck and Gustav Hertz in the years of 1911
till 1914 [1]. The paper presenting the experiment mostly known as the Franck-Hertz experiment was
published on April 24, 1914. James Franck and Gustav Hertz were awarded the Nobel Prize in Physics
in 1925 �for their discovery of the laws governing the impact of an electron upon an atom �[2].

2 Theory

2.1 Energy Levels in Atoms

Considering an electron orbiting around a nucleus at constant radius, the electron is accelerated by
centripetal force and therefore must emit radiation. By energy conservation, the effective potential
energy of the electron must decrease which contradicts the possibility of a stable orbit. In 1913, Niels
Bohr found a solution of this apparent contradiction by introducing two postulates:

• The energy levels of an orbit can only take well-defined discrete energies En.

• At ground state, electrons do not emit any radiation. However, they emit radiation (photons)
while passing from a state with lower binding energy to a state with higher binding energy.
Contrariwise the electron can be excited into a state with lower binding energy by absorption of
light. This relation is described using the formula

En − Em = hν, (1)

where ν is the frequency of the photon and h the Planck’s constant.

Figure 1: A simplified energy level scheme of the first excited states of the mercury atom. The first
excited state is the 63P0 state at 4.67 eV. Illustration from [9].

A higher state is referred to a state with lower binding energy but higher potential energy. The lowest
state corresponds to the ground state and the remaining bond states are called excited states. By
absorption of a discrete amount of energy ∆E, an electron of the atom can be excited to a higher
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state. Such a transition can be achieved by inelastic collision between a free particle and an atom [4].
Usually, the excited states of an atom are unstable and will decay to the stable ground state by a
spontaneous emission of a photon. The energy of the emitted photon is given by

E = hν, (2)

where h is the Planck’s constant and ν is the frequency. Using the fact that photons travel at the
speed of light, it follows that

E =
hc

λ
, (3)

where λ is the wavelength of the photon and the relation c = λν was used. In order to convert the
energy E in eV, the value of E has to be divided by the elementary charge e. For a photon with
wavelength 2537 Å the energy is given by

E =
6.63 · 10−34[Js] · 2.998 · 108[ms ]

2537 · 10−10[m] · 1.602 · 10−19[C]
= 4.89[eV].

Franck and Hertz observed a line in the spectrum of the target gas at 2537 Å [4], which corresponds
to a photon with an energy of 4.89 eV. The line in the spectrum is relevant as it corresponds to the
first maximum in the Franck-Hertz curve and to the state 63P1.

2.2 Scattering in Gases

In the following, a collision between an electron with small mass and a mercury atom with much larger
mass is considered. If the kinetic energy of the electron is less than the lowest excitation energy of the
mercury atom Ea = 4.67 eV [5], the collision is elastic [3]. This would correspond to the 63P0 state,
which has a small cross section. In contrast to the 63P0 state, the 63P1 state has a greater cross section
[11] and has the energy of 4.9 eV as shown in Figure 1. Since the mass of the electron is negligible1

in comparison to the mass of the mercury atom, the loss in kinetic energy of the electron is very
small. If the energy of the electron exceeds Ea, inelastic collisions occur, where the electron transfers
a significant amount of energy onto the atom. Consequently the electron looses kinetic energy and
the mercury atom is in an excited state.

The mean free path λ is defined as the distance an electron travels after gaining kinetic energy of
the amount of Ea. The energy Ea corresponds to the energy required in order to excite an atom from
ground state into the first excited state. Figure 2 (a) shows the energy of the electron as a function of
the position, where the electric field points from right (G2) to left (G1). The gradient of the curve is
proportional to the magnitude of the electric field, where a steeper gradient corresponds to a stronger
electric field and therefore higher acceleration. The additional energy gained over the distance λ is
defined as δ1 (see Figure 2 (a)). In contrast to Figure 2 (a), Figure 2 (b) shows the energy of the
electron as a function of the distance for an electric field with increased magnitude. Similar to Figure
2 (a), the number of peaks in the distance L is an integer. Considering that the mean free path λ stays
constant, the additional gained energy δ2 is larger than δ1. The additional energy gained in Figure 2
(b) is E2 = 2E2 + 2δ2, which can be generalised to [3]

En = n(Ea + δn). (4)

The energy En corresponds to the total energy an electron gains in the electric field which has a
magnitude such that the electron scatters exactly n times within the distance L. The gradient of the
curve is given by nEa/(L− λ) which can be used to define δn as

δn = n
λ

L
Ea. (5)

1The mass of the electron is 2.75 · 10−6 times smaller than the mass of the mercury atom.
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Figure 2: The energy of the electron as a function of the distance travelled in the Franck-Hertz tube.
The gradient is proportional to the voltage applied on the Franck-Hertz tube, which induces an electric
field from right to left. Illustration from [3].

Inserting Equation (4) into Equation (5), the following term can be derived [3]:

∆E(n) = En − En−1 = [1 +
λ

L
(2n− 1)]Ea. (6)

The quantity ∆E(n) describes the additional energy an electron gains when an electric field with
greater magnitude is applied. Equation (6) reveals that ∆E(n) increases linearly in n and has a
temperature T dependence, since the free path λ is given by

λ =
kBT

pσ
, (7)

where kB is Boltzmann’s constant, σ the cross section for inelastic collisions and p the pressure [3].

2.3 Construction of a Franck-Hertz Tube

T ρHg

[◦C] [Torr]

170 6.2

180 8.8

190 12.4

200 17.3

Table 1: Vapor pressure of mercury as a function of the temperature [4].

In order to construct a Franck-Hertz tube the characteristics of the tube need to be defined initially.
A good Franck-Hertz tube should

• recreate a Franck-Hertz curve,

• have realizable feasible temperature and voltage range and

• show increasing spacing in dips of the Franck-Hertz curve.

In [4] the temperature has a range of 150 ◦C to 220 ◦C. Mercury drops can cause a short-circuit
between the anode and the cathode [4]. In order to measure an increase in spacing between the
dips λ from Equation (7) needs to be maximised. Table 1 shows that the quotient T/p increases for
decreasing temperature. Therefore the optimal temperature for the tube is 170 ◦C and the pressure
6.2 Torr. Assuming that σ is equal to 3.5 · 10−19m2 [9], the mean free path λ is 0.02 mm. This value
for λ can be found in [3] for the temperature of 190 ◦C. Therefore the value for σ found in [9] does
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not coincide with the value assumed in which is equal to (2.1 ± 0.1) · 10−19 m2. Even though this
deviation is about of the factor of two, the value for σ is taken as 3.5 · 10−19m2. If the voltmeter
has an error of 0.05 V, this gives an upper bound for the length L. Setting n equal to 2 results in
the smallest increase in spacing which should exceed the error of U2. The value for n equal to 1 is
not measurable since the Franck-Hertz curve has no distinct dip before the first peak. Therefore, the
length L should not exceed 0.6 cm as the increase cannot be measured for larger L values due to the
error of 0.05 V. This boundary can be found using Equation (5). Overall this can be summarized in
a possible temperature range of 150 ◦C to 170 ◦C at a tube length of 0.6 cm.

3 Experimental Setup

3.1 Franck-Hertz Curve

Figure 3: Schematic of the experimental setup for the Franck-Hertz experiment. Adapted from [4].

Figure 3 shows a schematic of the experimental setup the Franck-Hertz experiment. In the Franck-
Hertz experiment, electrons are accelerated in an electric field of a Franck-Hertz tube which is filled
with a dense gas consisting of mercury atoms2. The gas inside the tube can be heated from 150 ◦C to
220 ◦C [4]. In this experiment mercury is used due to the low electronegativity and easy availability
in high purity [4]. There are two gratings g1 and g2 inside the tube, which are connected to a voltage
source U1 ranging from 0−5 V and U2 ranging from 0−30 V as shown in Figure 3. The two gratings,
the cathode and the anode generate three different electric fields within the tube:

• between C and g1,

• between g1 and g2 and

• between g2 and A.

At the cathode C electrons are ejected into the gas due to thermionic emission induced by a constant
DC-current. After ejection the electrons are pre accelerated by the electric field. After gaining the
energy eU1, the electrons pass through the grating g1. Here the electrons are accelerated by the electric
field and scatter from the mercury atoms. Finally the electrons pass through g2, where the repulsive
electric field is applied on the electrons. At the anode A the electrons which surpassed the repulsive
potential U3 ranging from 0 − 5 V are detected. In this experimental setup, the potential difference
UA is measured over a resistance R.

2The Franck-Hertz experiment is not limited to mercury atoms, but can also be done using neon atoms. See [3] for
more information.
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Figure 4: The expected Franck-Hertz curve. In the notation introduced in Section 3, I is proportional
to UA and U corresponds to U2. Illustration from [4].

Figure 4 shows the expected signal measured as UA at the anode (A) shown in Figure 3. The typical
form arises from the fact that the energy levels in an atom are discreet and where the first maxima is
expected at 4.89 V.

Rise of the curve: As the voltage U2 increases, the gain in kinetic energy of the electron increases
which leads to a higher probability for the electron to reach the anode. The fact that for each
collision the electron looses a small amount of energy results in electrons which cannot surpass U3 and
eventually are absorbed at g2. This explains the rising current I of the curve in dependence on the
applied voltage U in Figure 4.

Peak and decline: An electron with higher energy than Ea has to possibility to scatter inelastically
with a mercury atom. This leads to a decrease in kinetic energy of the electron as described in
Section 2.2. Hence, the electron does not gain enough energy in the remaining distance to the grating
g2 and will be absorbed by the grating. This phenomenon can be seen in Figure 4 where the curve
decreases for the first time. The minima then corresponds to the situation where most of the electrons
are scattered inelastically.

Second rise of the curve: The following increase of the curve can then be explained by the same
argument as initial rise. The electrons gain enough energy in the remaining distance to g2 to surpass
the electric field between g2 and A even though they might have been scattered inelastically before.

Periodicity: The periodicity of the occurring minima was reported to constantly be Ea [6] even
though the data contradicts equal spacing of the minima [3]. At the minima the amount of electrons
detected at the anode is a local minimum as a function of the applied voltage U2. This requires
that the electrons have the least energy and, therefore, have scattered in the vicinity of the grating
g2. Figure 2 shows the situation where an electron is scattered inelastically close to the grating g2.
Therefore, Equation (6) can be used to calculate the total kinetic energy of the electron at the minima.
Since the charge of the electron stays constant, the increase in energy can only result by an increase
in applied voltage. Therefore, the distance between minima ∆U2 increases as a function of the order
of minima. Further the temperature T has an impact on the curve, where higher temperature leads
to a faster increase in spacing between the minima according to Equation (7).

The intrinsic resolution of the anode is less than 2 mV which is prone to noise in the signal. The
signal-to-noise ratio is:

κ =
Vmax − Vmin

Vmax + Vmin
. (8)

The goal is to find the parameters of the setup which result in the maximum value for κ.
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4 Measurement and Data Analysis

In order to measure Franck-Hertz curves with maximum κ value, the setup needs a preliminary cali-
bration. The goal of this part is to find the optimal values for U1, U3 and T which result in the largest
κ value. This is done by initially taking a fixed value for U1. For three different temperature T and
three different braking voltage U3 the Franck-Hertz curve is measured. The calibration measurements
are shown in Figure 5, Figure 6 and Figure 7.

Figure 5: Data of the described measurement in Section 3 for the temperature T set to 168 ◦C

Figure 6: Data of the described measurement in Section 3 for the temperature T set to 187 ◦C
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Figure 7: Data of the described measurement in Section 3 for the temperature T set to 210 ◦C.

After finding the optimal temperature T at 174 ◦C, it is left constant throughout the experiment.
Further the pre-accelerating voltage U1 is then changed and the Franck-Hertz curve is measured for
different U3 values. In the same way as the temperature T was found, the optimal values for U1 and
U3 are determined and the measurement shown in Figure 8, Figure 9, Figure 10 and Figure 11. The
optimal parameters were found to be 174 ◦C for the temperature T , 2.74 V for U1 and 3.57V for U3.

Figure 8: Data of the described measurement in Section 3 for the temperature T set to 171 ◦C and
U1 set to 1.0 V.
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Figure 9: Data of the described measurement in Section 3 for the temperature T set to 171 ◦C and
U1 set to 1.5 V.

Figure 10: Data of the described measurement in Section 3 for the temperature T set to 171 ◦C and
U1 set to 2.0 V.
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Figure 11: Data of the described measurement in Section 3 for the temperature T set to 171 ◦C and
U1 set to 2.5 V.

Using the parameters found, five measurements of the Franck-Hertz curve are conducted. Through-
out the whole experiment the uncertainties were predicted by linear error propagation theory using
the python package uncertainties [7]. Rounding was done using the rule recommended by PDG [8].
Figure 12 shows the five measured Franck-Hertz curves at optimal parameters

Figure 12: After the best condition for the measurement was found as described in Section 3, five
measurements were done at U1 equal to 2.74 V and T at 174 ◦C.

The analysis of the curve are shown in Table 2 for the maxima. In order to identify the minima and
maxima of the measurements, the package NumPy was used for analysis. The peaks were found by
using the numpy.max and numpy.min function in the specific range, where the peaks were expected.
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The measured Franck-Hertz curve has the characteristic form which is proposed in the theory. The
first maxima can not be fully determined which is fine as it can be calculated using Equation (6) for
the value of E(0.5). The uncertainty of U2 was found to be 0.04 V which was propagated to 0.05 V
for ∆U2.

Order of maxima 1 2 3 4 5 Error

U2 [V] 9.40 14.30 19.35 24.50 29.68 0.04

∆U2 [V] 4.90 5.05 5.15 5.18 - 0.05

Table 2: Data acquired from the 5 measurements at best condition which is further illustrated in
Figure 12. U2 describes the voltage of U2 at which the peak was detected. In the second row, the
spacing between the successive U2 values corresponding to the peak are noted.

Figure 13 and Figure 14 illustrate the correspondent linear fits of the data acquired in the five mea-
surements.

Figure 13: Linear fit of ∆U2 as a function of order of maximum.

Figure 13 shows the spacing between the peaks as a function of the order, where the fit lies within the
error bound for every measurement. This does not coincide with [3] since the model proposes equal
distances between maxima.
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Figure 14: Linear fit of ∆U2 as a function of order of minimum.

Figure 14 shows the spacing between the dips as a function of the order. The fit does not lie within
the error bound which can be explained by the fact that the first dip could not be precisely identified.

∆E(0.5) [eV] h [10−34 Js]

Maxima 4.88 6.62 ± 0.07

Minima 4.52 6.13 ± 0.07

Table 3: For the calculated value of Ea the Planck’s constant h is calculated using Equation (3).

Table 3 shows the values found for Ea, which are in accordance with [9] where values of 4.89 V
are given with an uncertainty of a few tenths of a volt. Equation (3) was then used to determine
the Planck’s constant h using the calculated values of Ea. The calculation revealed the values of
(6.62 ± 0.07) · 10−34 Js for the fit of the maxima spacing. This has a deviation from the literature
value [10] of 0.1%. Likewise the h value was calculated using the fit for the minima spacing. By a
deviation of 7.5% the value for h was calculated to be (6.13 ± 0.07) · 10−34 Js. This deviation arises
from the fact that the first dip could not be determined precisely.

5 Conclusion

The Franck-Hertz experiment shows that mercury atoms have discreet energy levels. This could be
quantitatively observed in this experiment, after the optimal parameters were found by calibration.
At the expense of the first dip, the κ value was maximised to gain best signal-to-noise ratio. The
measured Franck-Hertz curve is in accordance to the theory of non equal distance. The fit of the
minima spacing does not lie within the error bound for the acquired data which can be explained
by the first dip which could not be identified precisely. Therefore, the determination of the h value
was less accurate revealing the value of 6.13 · 10−34 Js. Overall the Franck-Hertz experiment offers
an opportunity to see discreetness in nature without doing optical spectroscopy and using a rather
simple experimental setup.
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