ETH zürich MIE lab tu dortr

U technische universität dortmund

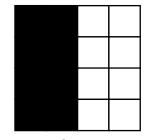
spatial modelling lab

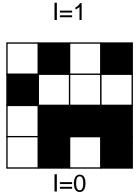
Estimation of Moran's I in the Context of Uncertain Mobile Sensor Measurements

Dominik Bucher^{1,*}, <u>Henry Martin^{1,*}</u>, David Jonietz², Martin Raubal¹, René Westerholt^{3,*} ¹Institute of Cartography and Geoinformation, ETH Zurich, Switzerland ²HERE Technologies Switzerland, Zurich, Switzerland ³School of Spatial Planning, TU Dortmund University, Germany *These authors contributed equally to this work 30.09.2021

Moran's I

$$I = \frac{n}{\sum_{i,j\neq i}^{n} w_{ij}} \cdot \frac{\sum_{i,j\neq i}^{n} w_{ij}(x_i - \bar{x})(x_j - \bar{x})}{\sum_{i,j\neq i}^{n} w_{ij}} \cdot \frac{\sum_{i,j\neq i}^{n} w_{ij}(x_i - \bar{x})^2}{\sum_{i}^{n} (x_i - \bar{x})^2}$$



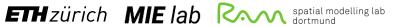


 x_i : observation at location i

 \bar{x} : mean of observations

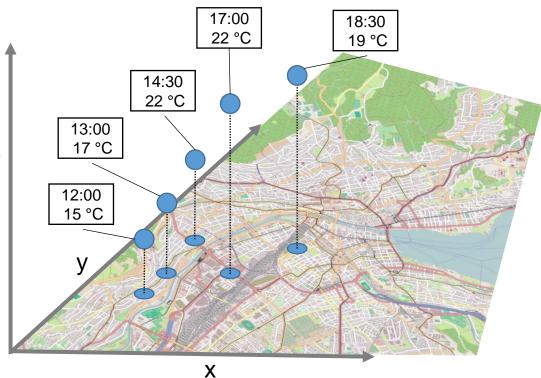
 w_{ij} : spatial weight between location i and j





Motivation

- Mobile sensors capture measurements at different locations at different points in time and space.
- Measurements may represent different processes of dynamic geographic phenomena.
- The validity of measurements from the past at different locations is therefore uncertain.
- Research question: How can we calculate
 Moran's / with data collected at different times at different locations while taking into account their pair-wise joint uncertainty?



Moran's / with Modified Weights

Given a pairwise measure of certainty between the latest observations at two locations u_{ij} we define two sets of new weights which lead to modified Moran's *I* values

$$w'_{ij} = w_{ij} \cdot u_{ij} \qquad \rightarrow I^{1}$$
$$w''_{ij} = w_{ij} \cdot (1 + u_{ij} - \bar{u}) \rightarrow I^{2}$$

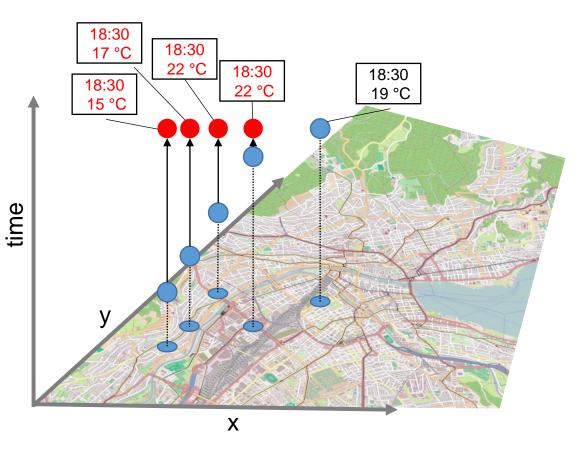
Global Moran's /	
$I = \frac{n}{1}$	$\sum_{i,j\neq i}^{n} w_{ij}(x_i - \bar{x})(x_j - \bar{x})$
$\begin{bmatrix} 1 & & \\ & \sum_{i,j\neq i}^n w_{ij} \end{bmatrix}$	$\sum_{i}^{n}(x_{i}-ar{x})^{2}$

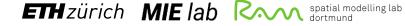
Intuition:

- *I*¹: Absolute approach. Lower the weights of locations with observations with high certainty.
- *I*²: Relative approach. Locations with observations with above average certainty have increased weights, those with below average have reduced weights.

Uncertainty Estimation

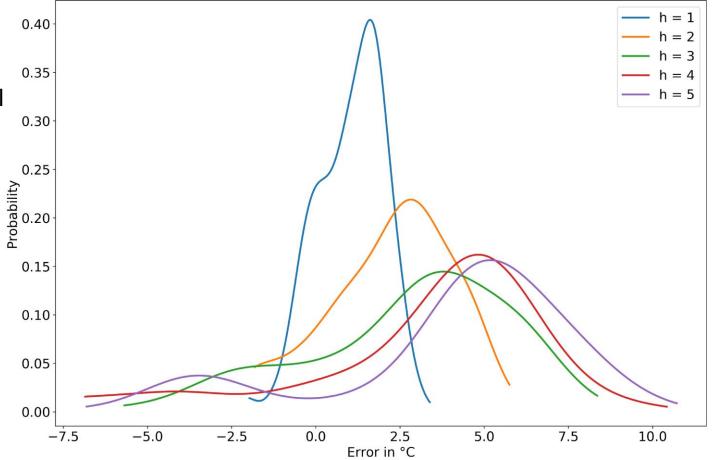
- Create a probabilistic forecast to project all past datapoints to the timestamp of the analysis.
- The probabilistic forecast assigns a distribution to all observations.
- Use shape of distribution to quantify the uncertainty.





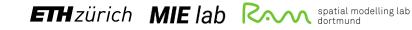
Probabilistic Forecast using Empirical Prediction Intervals

- Empirical prediction intervals [1] can be used to transform deterministic forecasts into probabilistic forecasts by adding the distribution of historical forecast errors to the deterministic forecast (dressing).
- Error distributions are location and forecast horizon dependent.



Example of error distributions for different forecast horizons

[1] Yun Shin Lee and Stefan Scholtes. Empirical prediction intervals revisited. *International Journal of Forecasting*, 30(2):217–234, 2014.



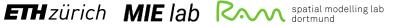
Joint Uncertainty Estimation

- Required: Pair-wise **joint (un)certainty** of all observations which can be estimated via the joint • distribution of two observations.
- Problem: Via the forecast we only have access to the (non-independent) marginal distributions of each ٠ observation. Estimating joint distribution from marginals is often a very complicated problem.
- Hint: Estimating (tight) bounds of the sum of two (potentially) dependent marginal distribution is much • easier [1].

$$u_{ij} \le P(\mathbf{X} + \mathbf{Y} \le e)$$

 \succ u_{ii} is the (lowest) probability that the sum of the marginals (absolute forecast errors) is below the threshold e. Therefore, *u* is a measurement of joint certainty.

[1] Michel Denuit, Christian Genest, and Étienne Marceau. Stochastic bounds on sums of dependent risks. Insurance: Mathematics and Economics, 25(1):85–104, 1999.

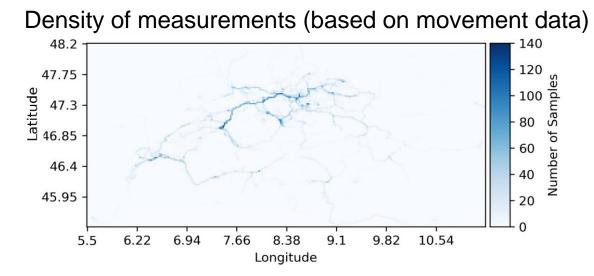


Case Study 1 – Real data: Temperature sensors on cars

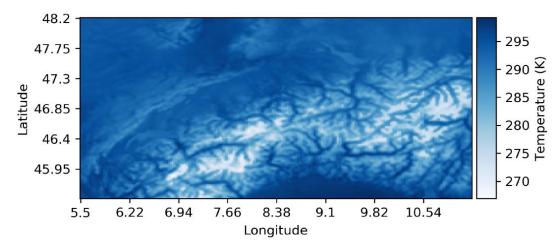
- GPS data of car movement from a tracking study in Switzerland are used as moving sensors.
- Car data is used to sample from a 0.018° cell grid (~2x2 km in Switzerland) with ambient temperature data (max 1 sample per cell).

spatial modelling lab

ETH zürich MIE lab



Temperature in Switzerland (2nd of July 2013 09:00)



Estimation of Moran's I in the Context of Uncertain Mobile Sensor Measurements

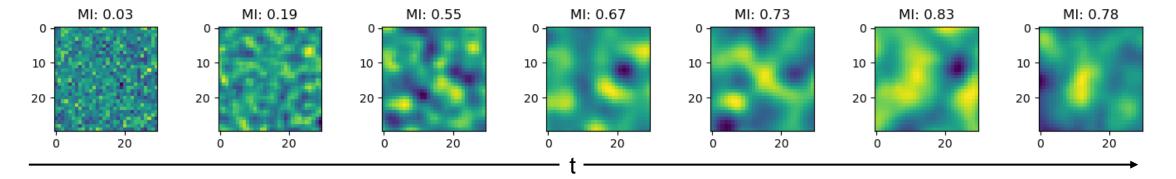
8

Case Study 2 - Synthetic Data with Spatial Non-Stationarity

- Generate 60 time steps with a 60x60 grid cells resolution.
- Simple Kriging based on a Gaussian spatiotemporal variogram.
- Data has non-stationary spatial autocorrelation.

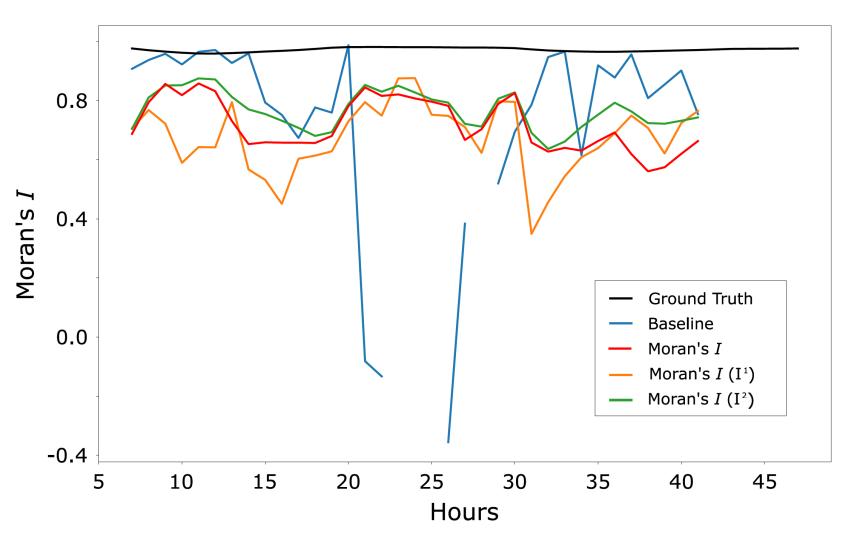
ETH zürich MIE lab R

$$\begin{split} \gamma(h,r_i) &= (s-n) \left(1 - \exp\left(-\frac{h^2}{\frac{1}{3}r_i^2}\right) \right) + n \quad \begin{array}{l} r_i: \text{range} \\ s: \text{sill (1)} \\ n: \text{nugget (0)} \\ r_i &= 0.5 + |10 \cdot \sin\left(2i/2\pi\right)| \end{split}$$



Results Case Study 1

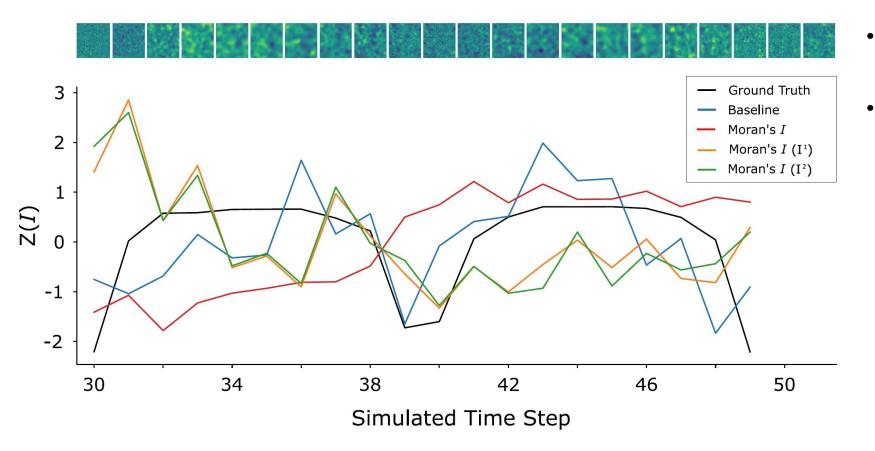
ETH zürich MIE lab Row spatial modelling lab



- Moran's *I*² shows improvement over other methods.
- I¹ and I² stable in periods with low data availability (causes gaps in baseline).
- As opposed to *I*², *I*¹ does underestimate Moran's *I* by design. Especially in a regime of low certainty.
- I^2 is less stable and more volatile than I^1 .

Results Case Study 2

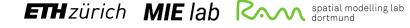
ETH zürich MIE lab Row Spatial modelling lab



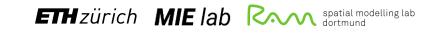
- *I*¹ and *I*² not suitable for dealing with non-stationarity.
- Due to the low spatiotemporal correlation between time steps, baseline has best performance.

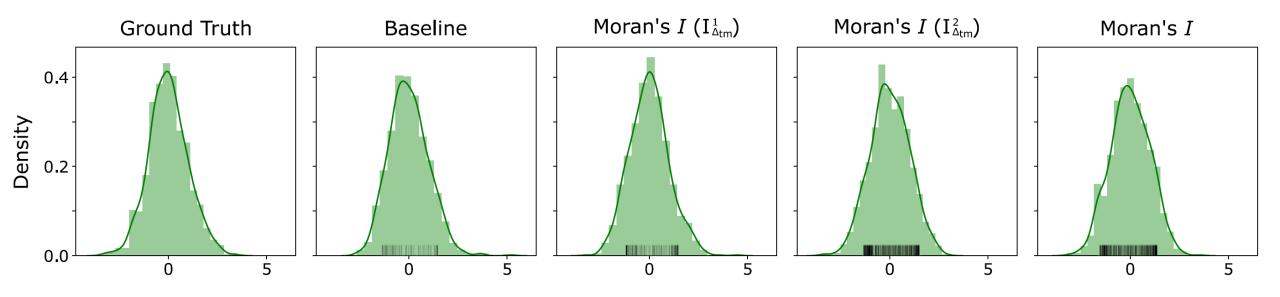
Conclusions & Future Work

- Two novel ways to incorporate uncertainty related to moving sensors in the calculation of Moran's *I*.
- We show that incorporating uncertainty as a relative metric has significant advantages over the approach that incorporates absolute uncertainty values.
- Extend framework to local Moran's *I* to take into account spatial heterogeneity.
- Analyse impact of forecast performance on Moran's *l* estimate.



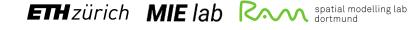
Back Up





Main Contributions

- Presentation of two modifications of Moran's I that take pair-wise spatio-temporal uncertainty of mobile sensor readings into account.
- Non-parametric approach for the estimation of pair-wise spatio-temporal uncertainty of mobile sensor readings.
- Validation of methods using two case studies.



Probabilistic Forecast using Empirical Prediction Intervals

Empirical prediction intervals [1] can be used to transform deterministic forecasts into probabilistic forecast using historical forecast errors (dressing).

$$\hat{O}_{t_n,h} = f(O_{t \le t_i})$$

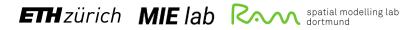
$$e_{t_n,h} = O_{t_n} - \hat{O}_{t_n,h}$$

$$\hat{F}_h(e) = k^{-1} \sum_{t=1}^k \mathbb{I}(e_{t,h} \le e)$$

$$\hat{O}_{t_n,h}$$
 + $\hat{F}_h(e)$ = probabilistic forecast

[1] Yun Shin Lee and Stefan Scholtes. Empirical prediction intervals revisited. *International Journal of Forecasting*, 30(2):217–234, 2014.

 \hat{O}_{t_nh} : Forecasted observation for time t_n with horizon h e_{t_nh} : Forecast error for time t_n with horizon h $\hat{F}_h(e)$: Empirical cumulative distribution function of Forecast errors



Uncertainty Estimation 2

- Required: Pair-wise **joint uncertainty** of all observations which can be estimated via the joint ٠ distribution of two observations.
- Problem: Via the forecast we only have access to the (non-independent) marginal distributions of each ٠ observation.
- Approach: Estimate (tight) lower bound of the probability that the forecast error (of the sum of both ٠ observations) is below a specified threshold [1].

$$u_{o_{il \to n}, o_{jm \to n}} = b_l(e) = \sup_{x \in \mathbb{R}} \max\{F_1^-(x) + F_2^-(e - x) - 1, 0\} \le P(\mathbf{X} + \mathbf{Y} \le e)$$

 $u_{o_{il} \rightarrow n, o_{jm} \rightarrow n}$: Joint certainty of o_{il} and o_{jm} projected to t_n $b_l(e)$: Lower bound of probability to stay below forecast error e_{t_nh} : Forecast error for time t_n with horizon h

 $F_{1/2}^-$: Left side limit of the CDF of the 1st or 2nd marginal distribution

 $u_{o_{il \rightarrow n}, o_{im \rightarrow n}}$ is the (lowest) probability that the sum of the absolute errors (of both forecasts) is below the threshold *e*. Therefore, *u* is a measurement of certainty.

[1] Michel Denuit, Christian Genest, and Étienne Marceau. Stochastic bounds on sums of dependent risks. Insurance: Mathematics and Economics, 25(1):85–104, 1999.

Uncertainty Estimation 2

- Required: Pair-wise **joint uncertainty** of all observations which can be estimated via the joint distribution of two observations.
- Problem: Via the forecast we only have access to the (non-independent) marginal distributions of each observation.
- Approach: Estimate (tight) lower bound of the probability that the forecast error (of the sum of both observations) is below a specified threshold [1].

$$u_{o_{il \to n}, o_{jm \to n}} = b_l(e) = \sup_{x \in \mathbb{R}} \max\{F_1^-(x) + F_2^-(e - x) - 1, 0\} \le P(\mathbf{X} + \mathbf{Y} \le e)$$

 $u_{o_{il} \rightarrow n, o_{jm} \rightarrow n}$: Joint certainty of o_{il} and o_{jm} projected to t_n $b_l(e)$: Lower bound of probability to stay below forecast error e_{t_nh} : Forecast error for time t_n with horizon h

 $F_{1/2}^-$: Left side limit of the CDF of the 1st or 2nd marginal distribution

 $u_{o_{il \rightarrow n}, o_{im \rightarrow n}}$ is the (lowest) probability that the sum of the absolute errors (of both forecasts) is below the threshold *e*. Therefore, *u* is a measurement of certainty.

[1] Michel Denuit, Christian Genest, and Étienne Marceau. Stochastic bounds on sums of dependent risks. Insurance: Mathematics and Economics, 25(1):85–104, 1999.

