Diodes

Diode i-v Equation

$$i_D = I_S \left[\exp \left(\frac{q v_D}{n k T} - 1 \right) \right] = I_S \left[\exp \left(\frac{v_D}{n V_T} \right) - 1 \right]$$

 $I_s =$ reverse saturation current A $v_D =$ voltage applied to diode V

n = non-ideality factor dimensionless

Diode current for Reverse, Zero, and Forward Bias

Reverse bias: $i_D \approx I_s(0-1) = -I_s$ Zero bias: $i_D \approx I_s(1-1) = 0$ Forward bias: $i_D \approx I_s \exp\left(\frac{v_D}{2V_D}\right)$

Constant Voltage Drop Model for Diode

The ideal diode is either on or off:

Forward-biased: $\begin{vmatrix} v_D = V_{on} = 0.7V & i_D > 0 & \text{on} \\ v_D < V_{on} & i_D = 0 & \text{off} \end{vmatrix}$

Diode Circuit Analysis Procedure

- 1. Assume operation region of all the diodes (either on or off).
- 2. Analyze circuit using constant voltage drop model.
- 3. Check results to check consistency with assumptions: $v_D < 0.7 {\rm V~for~all~off~diodes~and}~i_D > 0~{\rm for~on~diodes}$
- 4. May need to iterate this process.
- 5. Obtain diode operating point = Q-point (i_D, v_d)

Field-Effect Transistors (FET)

Horizontal devices. Source and Drain are symmetric. $i_G = 0$.

MOS Capacitors

NMOS Structure and Qualitative I-V Behavior

NMOS Operating Regions

Op. Region	Condition	Equation
Cut-off	$V_{GS} < V_{TN}$	$i_D = 0$
Triode	$V_{GS} > V_{TN}$	$i_D =$
(linear)	$V_{GS} - V_{TN} > V_{DS}$	$K_n \left(V_{GS} - V_{TN} - \frac{V_{DS}}{2} \right) V_{DS}$
	$(V_{DS} > 0)$,
Saturation	$V_{GS} > V_{TN}$	$i_D =$
(pinch-off)	$\begin{vmatrix} V_{DS} > V_{GS} - V_{TN} \\ (V_{GS} - V_{TN} > 0) \end{vmatrix}$	$\frac{1}{2}K_n(V_{GS} - V_{TN})^2(1 + \lambda V_{DS})$
	$(V_{GS} - V_{TN} > 0)$	_

$$K_n = K'_n W/L = \mu_n C''_{ox} W/L$$
 $K'_n = \mu_n C''_{ox} (A/V^2)$ $C''_{ox} = \varepsilon_{ox}/T_{ox}$ $\varepsilon_{ox} = \text{oxide permittivity (F/cm)}$ $T_{ox} = \text{oxide thickness (cm)}$

NMOS: Transconductance

Relates the change in drain current to a change in gate-source voltage:

$$g_m = \left. \frac{\partial i_D}{\partial V_{GS}} \right|_{Q-pt} \qquad [g_m] = S$$

In Saturation mode: $g_m = K_n(V_{GS} - V_{TN}) = \mu_n C_{ox}'' \frac{W}{L}(V_{GS} - V_{TN})$ With channel length modulation: $\mu_n C_{ox}'' \frac{W}{L}(V_{GS} - V_{TN})(1 + \lambda V_{DS})$

PMOS Transistors

PMOS Operating Regions

Op. Region	Condition	Equation
Cut-off	$V_{SG} < V_{TP} $	$i_D = 0$
Triode	$V_{SG} > V_{TP} $	$i_D =$
(linear)	$V_{SG} - V_{TP} > V_{SD}$	$K_p \left(V_{SG} - V_{TP} - \frac{V_{SD}}{2} \right) V_{SD}$
	$(V_{SD} > 0)$,
Saturation	$V_{SG} > V_{TP} $	$i_D =$
(pinch-off)	$V_{SD} > V_{SG} - V_{TP} $	$\frac{1}{2}K_p(V_{SG} - V_{TP})^2(1 + \lambda V_{SD})$
	$(V_{SG} - V_{TP} > 0)$	_

MOSFET and BJT Biasing Circuits

Transistor Bias sets the DC operating point around which the device operates (off, triode, saturation). It determines the transistor small-signal behaviors (Gain, BW, noise, ...) and large-signal behaviors (linearity, compression points, slew rate, ...).

Bias Analysis Approach

- Assume an operating region (mostly saturation for MOSFETs, forward-active for BJTs
- 2. Use circuit analysis to find V_{GS} (biasing voltage) for MOSFETs or I_B for BJTs. (Often assume $V_{BE} = 0.7$ V)

C	open circuit	L	short circuit
AC current source	open circuit	AC voltage source	short circuit

- 3. MOSFETs: Use V_{GS} to calculate I_D and I_D to find V_{DS} .
 - \rightarrow NMOS Q-Point (I_{DS}, V_{DS}, V_{GS})
- \rightarrow PMOS Q-Point (I_{SD}, V_{SD}, V_{SG})
- 4. BJTs: Use I_B to calculate I_C and I_E and with these find V_{CE}
 - \rightarrow NPN Q-Point (I_C, V_{CE})
 - \rightarrow PNP Q-Point (I_C, V_{EC})
- 5. Check validity of operating region assumptions.
- 6. Change assumptions and analyze again if required.

Two-Resistor and Four-Resistor Biasing for FET and BJT Examples:

Four-Resistor Binning:

M1 yields IB => I., IE M2 yields VCE => check assumptions with determinable VDC = VDE -VZE

Bipolar Junction Transistors (BJT)

Vertical devices. Collector and Emitter are not symmetric. $i_B \neq 0$.

NPN: Operating Regions

Base-Emitter	Base-Collector Junction		
Junction	Reverse biased	Forward biased	
	$v_{BC} < 0$	$v_{BC} > 0$	
Forward biased	Forward-active Region	Saturation Region	
$v_{BE} > 0$	(good amplifier)	(closed switch)	
Reverse biased	Cutoff Region	Reverse-active Region	
$v_{BE} < 0$	(open switch)	(poor amplifier)	

NPN: Forward and Reverse Characteristics

NPN Transistor: Forward Characteristics

$$\begin{split} i_C &= i_F = I_S \left[\exp \left(\frac{v_{BE}}{V_T} \right) - 1 \right] \\ i_B &= \frac{i_C}{\beta_F} = \frac{I_S}{\beta_F} \left[\exp \left(\frac{v_{BE}}{V_T} \right) - 1 \right] \\ i_E &= i_C + i_B = \frac{I_S}{\alpha_F} \left[\exp \left(\frac{v_{BE}}{V_T} \right) - 1 \right] = (\beta_F + 1)I_B \end{split}$$

In forward-active region: $\beta_F = \frac{i_C}{i_B}$ and $\alpha_F = \frac{i_C}{i_E} = \frac{\beta_F}{\beta_F + 1}$

NPN Transistor: Reverse Characteristics

$$\begin{split} i_E &= -i_R = -I_S \left[\exp \left(\frac{v_{BC}}{V_T} \right) - 1 \right] \\ i_B &= \frac{i_R}{\beta_R} = \frac{I_S}{\beta_R} \left[\exp \left(\frac{v_{BC}}{V_T} \right) - 1 \right], \qquad \beta_R = \frac{\alpha_R}{1 - \alpha_R} \\ i_C &= i_B - i_E = -\frac{I_S}{\alpha_R} \left[\exp \left(\frac{v_{BC}}{V_T} \right) - 1 \right], \qquad \alpha_R = \frac{\beta_R}{\beta_R + 1} \end{split}$$

 $i_C =$ Collector current $i_B =$ Base current

 $i_E =$ Emitter current $V_T = 25 \text{mV}$ at room temp

 $I_S = \text{BJT saturation current}, 10^{-18} \text{A} \le I_S \le 10^{-9} \text{A}$

 $\beta_F = \text{forward common-emitter current gain, } 20 \le \beta_F \le 500$

(as high as possibe)

 $\alpha_F = \text{forward common-base current gain, } 0.95 < \alpha_F < 1$

 $\beta_R = \text{reverse common-emitter current gain, } 0 \le \beta_R \le 0.95$

(as low as possible)

 $\alpha_R = \text{reverse common-base current gain, } 0 \le \alpha_R \le 0.95$

NPN Transistor: Complete Transport Model for any bias

$$\begin{split} i_C &= I_S \left[\exp \left(\frac{v_{BE}}{v_T} \right) - \exp \left(\frac{v_{BC}}{V_T} \right) \right] - \frac{I_S}{\beta_R} \left[\exp \left(\frac{v_{BC}}{V_T} \right) - 1 \right] \\ i_E &= I_S \left[\exp \left(\frac{v_{BE}}{v_T} \right) - \exp \left(\frac{v_{BC}}{V_T} \right) \right] + \frac{I_S}{\beta_F} \left[\exp \left(\frac{v_{BE}}{V_T} \right) - 1 \right] \\ i_B &= \frac{I_S}{\beta_F} \left[\exp \left(\frac{v_{BE}}{v_T} \right) - 1 \right] + \frac{I_S}{\beta_R} \left[\exp \left(\frac{v_{BC}}{V_T} \right) - 1 \right] \end{split}$$

First term in both emitter and collector current expression gives current transported completely across base region.

NPN: Simplified Operating Regions Models

П	Re.	Cutoff	Forward	Reverse
			active	active
	Co.	$v_{BE} \leq -4V_T$	$v_{BE} = 0.7 \text{V} \ge 4V_T$	
		$V_{BC} \leq -4V_T$	$V_{BC} \le -4V_T = -0.1V$	
	i_C	$\frac{I_S}{\beta_R}$	$I_S \exp\left[\frac{v_{BE}}{V_T}\right] = \beta_F I_B$	$-\frac{I_S}{\alpha_R} \exp\left[\frac{v_{BC}}{V_T}\right]$
	i_E	$-\frac{I_S}{\beta_F}$	$\frac{I_S}{\alpha_F} \exp\left[\frac{v_{BE}}{V_T}\right] = (\beta_F + 1)I_B$	$-I_S \exp\left[\frac{v_{BC}}{V_T}\right]$
	i_B	$-\frac{I_S}{\beta_F} - \frac{I_S}{\beta_R}$	$\frac{I_S}{\beta_F} \exp\left[\frac{v_{BE}}{V_T}\right]$	$\frac{I_S}{\beta_R} \exp\left[\frac{v_{BC}}{V_T}\right]$

PNP Transistor

For the PNP Transistor we can take the same I-V-equations and the same conditions for the operating regions as with the NPN, we just have to replace v_{BE} with v_{EB} and v_{BC} with v_{CB} everywhere.

BJT Transconductance

$$g_m = \left. \frac{\partial i_C}{\partial V_{BE}} \right|_{Q-pt} = \left. \frac{\partial}{\partial V_{BE}} \left(I_S \exp\left(\frac{v_{BE}}{V_T}\right) \right) \right|_{Q-pt} = \frac{I_C}{V_T}$$

BJT Early Effect

In a practical BJT, the output characteristics have a positive slope in forward-active region; collector current is not independent of v_{CE} . **Early effect:** When the output characteristics are extrapolated back to point of zero i_C , the curves intersect at a common point $v_{CE} = -V_A$ (between 15 - 150V). Simplified equations (Early effect):

$$i_{C} = I_{S} \exp\left(\frac{v_{BE}}{V_{T}}\right) \left(1 + \frac{v_{CE}}{V_{A}}\right), \quad r_{o} = \frac{\partial v_{CE}}{\partial i_{C}} = \frac{V_{A}}{I_{C}}$$

$$\beta_{F} = \beta_{FO} \left(1 + \frac{v_{CE}}{V_{A}}\right), \quad i_{B} = \frac{I_{S}}{\beta_{FO}} \exp\left(\frac{v_{BE}}{V_{T}}\right)$$

$$V_{T} = \frac{kT}{a}$$

Transistor Amplifiers

Amplifiers usually use electronic devices operating in the active region: Forward-active for BJT and saturation for MOSFET. The FET triode region. (BJT saturation region should NOT be used as amplifiers.)

DC and AC Analysis

Coupling Capacitor: DC blocking capacitor; their reactance at signal frequency is designed to be negligible i.e.

 $|Z| = |1/(\omega C)| \ll R_I + R_{in}$

Bypass Capacitor: AC blocking capacitor; provides low impedance path for AC current sources to the transistor terminals.

Since impedance of a capacitor increases with decreasing frequency, coupling and bypass capacitors reduce amplifier gain at low frequency.

Step 1: DC analysis

C		open circuit	L	short circuit
A	C current source	open circuit	AC voltage source	short circuit

- 1. Find DC equivalent circuit with these simplifications.
- 2. Find Q-Point fron DC equivalent circuit by using large-signal transistor model.

Step 2: AC analysis

C	short circuit	L	open circuit
DC current source	open circuit	DC voltage source	GND

- 1. Find AC equivalent circuit with these simplifications.
- 2. Replace transistor by its small-signal model.
- 3. Use small-signal AC equivalent to analyze AC characteristics of amplifier.
- 4. Combine end results of DC and AC analysis to yield total voltages and currents in the network.

Small Signal Modeling

Diode Small Signal Model

Diode Small Signal Conductance: (Slope of I-V Char. at Q-Pt)

$$g_d \!= \frac{\partial i_D}{\partial v_D}\bigg|_{\text{Q-Pt}} \!=\! \frac{I_S}{V_T} \!\exp\left[\frac{V_D}{V_T}\right] \!=\! \frac{I_D + I_S}{V_T} \!\approx\! \frac{I_D}{V_T} \!\approx\! 40I_D, \ \, (I_D >> I_S)$$

Diode Small Signal Resistance: $r_d = \frac{1}{q_d}$

Small-signal (linear) operation of the diode is valid for $v_d \leq 5 \text{mV}$

Hybrid-Pi Model

The hybrid-pi model assumes active region of operation.

We assume $\beta_0 = \beta_f$ in this lecture for simplicity.

	BJT	MOSFET
Transconductance g_m	$\frac{I_C}{V_T} \approx 40I_C$	$\frac{2I_D}{V_{GS} - V_{TN}} = \sqrt{2K_n I_D}$
Input Res. r_{π}	$\frac{\beta_0 V_T}{I_C} = \frac{\beta_0}{g_m}$	$r_{\pi} \to \infty$
Output Res. r_o	$\frac{V_A + V_{CE}}{I_C} pprox \frac{V_A}{I_C}$	$\frac{1+\lambda V_{DS}}{\lambda I_D} pprox \frac{1}{\lambda I_D}$
Intrinsic Voltage	$g_m r_o$	$g_m r_o$
Gain μ_f	$=rac{V_A+V_{CE}}{V_T}pproxrac{V_A}{V_T}$	$= \frac{1}{\lambda} \sqrt{\frac{2K_n}{I_D}}$
Small signal op.	$v_{be} \le 5 \text{mV} \text{ or}$	$\frac{i_d}{I_D} = \frac{g_m}{I_D} v_{gs} \le 0.4$
valid for (*)	$\frac{i_c}{I_c} = \frac{v_{be}}{V_T} \le 0.2$	

- (*) We ignore channel-length-modulation here.
- (*) We find the signal range by taylor expanding i_d with respect to v_d (Diodes)/with respect to v_{gs} (FETs) resp. i_c with respect to v_{be} (BJTs) and stating that quadratic term << linear term

Single Transistor Amplifiers (Terminology)

Common-Emitter Amplifier (Inverting Amplifier)

C-E-Amplifier AC equivalent AC equivalent AC equivalent R_{2} R_{2} R_{3} R_{4} R_{5} R_{1} R_{6} R_{7} R_{1} R_{7} R_{1} R_{8} R_{1} R_{1} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{1} R_{5} R_{7} R_{1} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{5} R_{5} R_{7} R_{7} R_{8} R_{1} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{5} R_{7} R_{7} R_{8} R_{1} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{5} R_{7} R_{7} R_{8} R_{7} R_{8} R_{7} R_{8} R_{8}

Emitter is common to input and output signals \rightarrow C-E-Amplifier

Terminal voltage gain from base to collector terminal:

$$A_{vt}^{CE} = \frac{v_c}{v_b} = -\frac{\beta_0 R_L}{r_\pi + (\beta_0 + 1)R_E} \approx -\frac{g_m R_L}{1 + g_m R_E}, \quad R_L = R_C \parallel R_3$$

Input resistance looking into the base terminal:

$$R_{iB} = \frac{v_b}{i_b} = r_\pi + (\beta_0 + 1)R_E \approx r_\pi (1 + g_m R_E), \quad (\beta_0 >> 0)$$

Overall input resistance looking into the amplifier at C_1 :

$$R_{in}^{CE} = R_B \parallel R_{iB}$$

Signal source voltage gain (overall voltage gain):

$$A_v^{CE} = A_{vt}^{CE} \left(\frac{v_b}{v_i}\right) \approx \left(\frac{-g_m R_L}{1 + g_m R_E}\right) \left[\frac{R_B \parallel R_{iB}}{R_I + (R_B \parallel R_{iB})}\right] \approx \begin{cases} A_{vt}^{CE} & (*) \\ -g_m R_L & (\star) \end{cases}$$

Approx. (*) holds if $R_I \ll R_B \parallel R_{iB}$ and (*) if additionally $R_E = 0$

Resistance at the collector:

$$\begin{split} R_{iC} &= \left[r_O + \frac{r_O \beta_0 R_E}{R_{th} + r_\pi + R_E} \right] + (R_{th} + r_\pi) \, \| \, R_E \approx \left[r_O + \frac{r_O \beta_0 R_E}{R_{th} + r_\pi + R_E} \right] \\ &\approx r_O \left[1 + g_m (R_E \, \| \, r_\pi) \right] = \begin{cases} \approx r_O g_m (R_E \, \| \, r_\pi), & \text{if } r_\pi >> R_E \\ \leq \beta_0 r_O \approx \mu_f r_\pi, & \text{if } R_E >> r_\pi \end{cases} \end{split}$$

Overall output resistance:

$$R_{\text{out}}^{CE} = R_C \parallel R_{iC} = R_C \parallel \left[r_O + \frac{r_O \beta_0 R_E}{R_{th} + r_\pi + R_E} \right]$$

Common-Collector Amplifier (Follower Amplifier)

Collector is common to input and output signals \rightarrow C-C-Amplifier

Terminal voltage gain from base to emitter terminal:

$$A_{vt}^{CC} = \frac{v_e}{v_b} = -\frac{(\beta_0 + 1)R_L}{r_\pi + (\beta_0 + 1)R_L} \approx \frac{g_m R_L}{1 + g_m R_L}, \quad R_L = R_6 \parallel R_3$$

Input resistance looking into the base terminal:

$$R_{iB} = \frac{v_b}{i_b} = r_\pi + (\beta_0 + 1)R_L \approx r_\pi (1 + g_m R_L), \quad (\beta_0 >> 0)$$

Overall input resistance looking into the amplifier at C_1 :

$$R_{in}^{CC} = R_B \parallel R_{iB}$$

Signal source voltage gain (overall voltage gain):

$$A_v^{CC} = A_{vt}^{CC} \left(\frac{v_b}{v_i}\right) = A_{vt}^{CC} \left[\frac{R_B \parallel R_{iB}}{R_I + (R_B \parallel R_{iB})}\right]$$

Resistance at the emitter:

$$t_x = -i - \rho_0 t = \frac{r_\pi R_{th}}{r_\pi R_{th}} (-1 - \rho_0)$$

$$R_{iE} = \frac{r_{\pi} + R_{th}}{\beta_0 + 1} \approx \frac{1}{g_m} + \frac{R_{th}}{\beta_0}, \quad (\beta_0 >> 1)$$

Overall output resistance:

$$R_{\mathrm{out}}^{CC} = R_6 \parallel R_{iE} pprox rac{1}{q_m}$$

Common-Base Amplifier (Non-Inverting Amplifier)

Base is common to both input and output signals \rightarrow C-B-Amplifier

Terminal voltage gain from emitter to collector terminal:

$$A_{vt}^{CB} = \frac{v_o}{v_e} = g_m R_L$$

Input resistance looking into the emitter terminal:

$$i = \frac{v_e}{r_\pi} + g_m v_e, \quad R_{iE} = \frac{v_e}{v_i} = \frac{r_\pi}{\beta_0 + 1} \approx \frac{1}{g_m}, \quad (\beta_0 >> 1)$$

Overall input resistance looking into the amplifier at C_1 :

$$R_{in}^{CB} = R_6 \parallel R_{iE}$$

Signal source voltage gain (overall voltage gain):

$$A_{v}^{CB} = \frac{g_{m}R_{L}}{1 + g_{m}R_{th}} \left(\frac{R_{6}}{R_{I} + R_{6}}\right) \approx \begin{cases} \frac{g_{m}R_{L}}{1 + g_{m}R_{I}} & (*) \\ \frac{R_{L}}{R_{th}} & (\star) \\ g_{m}R_{L} & (\bullet) \end{cases}$$
 (R_{th} = R₆ || R_I)

Approx. (*) holds if $R_6 >> R_I$ and (*) if additionally $g_m R_{th} >> 1$.

Approx. (•) holds if $g_m R_I \ll 1$.

Resistance at the collector:

$$R_{iC} = r_o + \frac{r_o \beta_0 R_E}{R_{th}^{CE} + r_{pi} + R_E} = r_o + \frac{r_o \beta_0 R_{th}}{r_{\pi} + R_{th}} \approx r_o + r_o g_m (R_{th} \parallel r_{\pi})$$

Overall output resistance:

$$R_{\mathrm{out}}^{CB} = R_C \parallel R_{iC} = R_C \parallel r_o [1 + g_m (R_6 \parallel R_I \parallel r_\pi)]$$

Power Pp=ViI = VcEIc+VBEIB VpsIp+VasIq (Use DC circuits for this

MOSFET Single Transistor Amplifiers

We can take the same formulas as for the BJT single transistor amplifiers and just let:

$$R_E \to R_S, R_B \to R_G, R_C \to R_D$$

$$v_c \rightarrow v_d, \quad v_b \rightarrow v_g, \quad v_e \rightarrow v_g$$

$$r_{\pi} \to \infty$$
, $\beta_0 \to \infty$, $i_G = 0$

The resulting equations will look like this:

	CSource	CDrain	CGate
	(C-S) Amp	(C-D) Amp	(C-G) Amp
BJT eq	like C-E	like C-C	like C-B
Terminal	$A_{vt}^{CS} = \frac{v_o}{v_1} =$	$A_{vt}^{CD} = \frac{v_o}{v_1} =$	$A_{vt}^{CG} = \frac{v_o}{v_1} =$
Volt. Gain	$-\frac{g_m R_L^2}{1+g_m R_S}$	$ + \frac{g_m R_L}{1 + g_m R_L} \approx 1 $ $A_v^{CD} = \frac{v_o}{v_i} = $	$g_m R_L$
Signal Src	$\frac{-\frac{gmR_L}{1+g_mR_S}}{A_v^{CS} = \frac{v_o}{v_i}} =$	$A_v^{CD} = \frac{v_o}{v_i} =$	$A_v^{CG} = \frac{v_o}{v_i} =$
Volt. Gain	$A_{vt}^{CS} \frac{R_G}{R_I + R_G}$	$A_{vt}^{CD} \frac{R_G}{R_I + R_G}$	$\frac{g_m R_L}{1 + g_m R_{th}} \left[\frac{R_6}{R_I + R_6} \right]$ $R_{iS} = \frac{1}{g_m}$
Inp. Term.	$R_{iG} \to \infty$	$R_{iG} \to \infty$	$R_{iS} = \frac{1}{q_m}$
Res.			3111
Outp. Term.	$R_{iD} =$	$R_{iS} = \frac{1}{g_m}$	$R_{iD} =$
Res.	$r_o(1+g_mR_S)$	3 111	$r_o(1+g_mR_{th})$
Amp Inp.	$R_{in}^{CS} = R_G$		
Res.			
Amp Outp.	$R_{out}^{CS} =$		
Res.	$R_D \parallel R_{iD}$		
Inp. Signal	$0.2(V_{GS}-V_{TN})$	$0.2(V_{GS}-V_{TN})$	$0.2(V_{GS}-V_{TN})$
Range	$\cdot (1 + g_m R_S)$	$\cdot (1 + g_m R_L)$	$\cdot [1 + g_m(R_I \parallel R_6)]$
Term. Curr.	$A_i \to \infty$	$A_i \to \infty$	+1
Gain			

 $R_{th} = (R_I \parallel R_6)$ in the C-G Amplifier

C-E / C-S Amplifier Analysis without R_E resp. R_S (simple

=> Rout = rollRc

Differential Amplifiers

Any two signals can be decomposed into their differential-mode signal and its common-mode signal.

Common-mode signal = $0 \rightarrow$ two signals are called fully differential

Differential-mode signal component: $V_{id} = V_{i+} - V_{i-}$

Common-mode signal component: $V_{icm} = \frac{V_{i+} + V_{i-}}{2}$

BJT Differential Mode

$$A_{dd} = \frac{v_{od}}{v_{id}}\bigg|_{v_{id} = 0} = -g_m R_C$$

If v_{c1} or v_{c2} is used alone as output, output is called single-ended. $A_{dd1} = \frac{v_{c1}}{v_{id}}\bigg|_{v_{ic}=0} = -\frac{g_m R_C}{2} = \frac{A_{dd}}{2}, \qquad A_{dd2} = +\frac{g_m R_C}{2} = -\frac{A_{dd}}{2}$

BJT Common Mode

$$A_{cc} = \left. \frac{v_{oc}}{v_{ic}} \right|_{v_{id}=0} = -\frac{\beta_0 R_C}{r_\pi + 2(\beta_0 + 1) R_{EE}} \approx -\frac{R_C}{2R_{EE}}$$

Half Circuit Analysis

Half circuits must be fully symmetric:

Q-pt of $Q_1 = \text{Q-Pt}$ of Q_2

Power supplies: split into 2 equal halves in parallel. (halve in may)

Emitter resistor: seperated inter two equal resistors in parallel. (doubles in magn)

→ <u>Example</u>:

Differential Mode Half Circuits

Points on the line of symmetry are virtual grounds and connected to ground for AC analysis.

If $R_E = 0$, following equations hold:

$$v_{c1} = -g_m(R_C \parallel r_o) \frac{v_{id}}{2}, \qquad v_{c2} = +g_m(R_C \parallel r_o) \frac{v_{id}}{2}$$

$$v_{od} = v_{c1} - v_{c2} = -g_m(R_C \parallel r_o)v_{id}$$

$$R_{id} = \frac{v_{id}}{i_b} = 2r\pi, \qquad R_{od} = 2(R_C \parallel r_o)$$

Common Mode Half Circuits

Points on the line of symmetry are replaced by open circuits.

Diff mode Half-

both non-neglected!

If $R_E = 0$, following equations hold:

$$v_{c1} = v_{c2} = -\frac{\beta_0 R_C}{r_\pi + 2(\beta_0 + 1) R_{EE}} v_{ic} \approx -\frac{R_C}{2R_{EE}} v_{ic}$$

$$v_e = v_{ic} \frac{2(\beta_0 + 1)i_b R_{EE}}{r_{\pi} + 2(\beta_0 + 1)R_{EE}} \approx v_{ic}$$

$$R_{ic} = \frac{v_{ic}}{2i_b} = \frac{r_{\pi} + 2(\beta_0 + 1)R_{EE}}{2} = \frac{r_{\pi}}{2} + (\beta_0 + 1)R_{EE}$$

Common Mode Rejection Ratio

$$CMRR = \frac{A_{dd}}{2} \frac{1}{A_{cc}} = \frac{1 + g_m R_x + \frac{R_x}{r_{\pi}}}{2\left(1 + g_m R_E + \frac{R_E}{r_{\pi}}\right)} \stackrel{R_E = 0}{\approx} g_m R_{EE}$$

 $CMRR_{dB} = 20 \cdot log_{10}(CMRR)$

MOSFET Differential Amplifiers

Frequency Response

Bode Plot Guide

1. Factorize: $\underline{F}_{tot}(s) = K_0 s^r \underbrace{\underline{F}_1(s) \cdot \underline{F}_2(s) \cdot \dots \underline{F}_n(s)}_{F^*}$

	$\frac{1}{t}tot(3)$		
Singularity	$\mathbf{F_i}(\mathbf{s})$	Amplitude	Phase
LHP Zero	$1 + sT_{z,i}$	$+20 \mathrm{dB/dec}$	$+\frac{\pi}{2}$ (over $0.1s_i \& 10s_i$)
RHP Zero	$1 - sT_{z,i}$	$+20 \mathrm{dB/dec}$	$-\frac{\pi}{2}$ (over $0.1s_i \& 10s_i$)
LHP Pole	$\frac{1}{1+sT_{p,i}}$	$-20 \mathrm{dB/dec}$	$-\frac{\pi}{2}$ (over $0.1s_i \& 10s_i$)
RHP Pole	$\frac{1}{1-sT_{p,i}}$	$-20\mathrm{dB/dec}$	$+\frac{\pi}{2}$ (over $0.1s_i \& 10s_i$)
Zero at $s=0$	$\frac{s}{s_0}$	$+20\mathrm{dB/dec}$	const. $\frac{\pi}{2}$
Pole at $s=0$	$\frac{s_0}{s}$	$0dB \text{ at } s = s_0$ -20dB/dec	const. $-\frac{\pi}{2}$
	s	0 dB at $s = s_0$	2

2. Sort partial systems by ascending corner frequencies: $s_i = 1/T_{n,i}$ resp. $s_i = 1/T_{p,i}$, $(s_1 = \text{smallest corner freq.})$

Amplitude Plot (log-log plot)

- 3. Starting point at s_1 : $20 \cdot \log_{10}(|\underline{F}_{tot}(js_1)|)$ Don't forget the $\cdot j$ and the absolute value!
- 4. Starting point to the left: Line with slope $r \cdot 20 dB/dec$ (For r = 0 horizontal)
- 5. Starting point to the right: At each corner frequency s_i , the amplitude slope changes according to the corresponding partial system $F_i(s)$. Higher order poles/zeros: Change slope multiple (= order of this pole) times.

Phase Plot (logarithmic x-axis)

6. Starting frequency s_1 to the left:

$$\varphi(0) = \begin{cases} r \cdot \frac{\pi}{2}, & \text{if } K_0 F_{tot}^*(0) > 0\\ -\pi + r \cdot \frac{\pi}{2}, & \text{if } K_0 F_{tot}^*(0) < 0 \end{cases}$$

- 7. Starting frequency to the right: At each corner frequency s_i , the phase changes according to the corresponding partial system $F_i(s)$
- 8. $s \to \infty$: Phase ϕ_{tot} approaches $(m-n) \cdot \frac{\pi}{2}$ $(n = \deg(\operatorname{denominator}), m = \deg(\operatorname{numerator}) \text{ of } \underline{F}_{tot}(s))$

Frequency Dependent Hybrid-Pi Model

Remember the hybrid-pi model assumes active region operation! $C_{\mu} = C_{\mu 0} / \sqrt{1 + (V_{CB}/\phi_{jc})}, \quad C_{GS} = 2/3C_{GC} + C_{GSO}W,$ $C_{GD} = 2/3C_{GDO}W$, $C_{GC} = C_{ox}^{"}WL$

Operational Amplifiers (Op-Amps)

Basic Op-Amp Circuits

Voltage Comparator

 $V_{out} = sign(V_{in}) \cdot V_{cc}$

Voltage Follower

 $V_{out} = V_{in}$

Non-Inverting

 $V_{out} = \left(1 + \frac{R_2}{R_1}\right) V_{in}$

Integrator

$$\begin{aligned} &V_{out} = -\frac{V_{in}(s)}{sRC} \\ &= V_{out}(0) - \frac{1}{RC} \int_0^t V_{in}(\tau) d\tau \end{aligned}$$

Diffentiator

$$V_{out} = V_{in}(s)sRC = -RC\frac{dV_{in}(t)}{dt}$$

Assumptions for Ideal On-Amps

Assumptions for Ideal Op-Amps			
Ideal Op-Amp	Non-ideal	Practical	
Infinite input impedance	Finite	$10^7 \text{ to } 10^1 2\Omega$	
Zero output impedance	Non-Zero	1 to 100Ω	
Infinite differential	Finite	80 to 120dB	
open loop gain			
Infinite (OL) bandwidth	Finite	1 to 1000MHz	
Infinite CMRR	Finite	70 to 120dB	

Contstraints for ideal Op-Amps with a negative feedback loop

Input Voltage Constraint: $V_{id} = 0 \Leftrightarrow V_{+} = V_{-}$

Input Current Constraint: $I_{+} = I_{-} = 0$

More Op-Amp Circuits

Floating Resistor Output

$$A_{V} = \frac{V_{out}}{V_{in}}$$

$$= \frac{R_{L}(R_{1} + R_{F})}{R_{L}(R_{1} + R_{2}) + R_{2}(R_{1} + R_{F})}$$

Negative R Converter
$$R_{in} = \frac{V_{in}}{I_{in}} = -\frac{R_1}{R_F}R$$

General Impedance

Converter
$$R_{in} = \frac{V_{in}}{I_i n} = + \frac{Z_1 Z_3 Z_5}{Z_2 Z_4}$$

Resistive Ladder Feedback $V_{in} = -R_1I_2, \ I_1 = \frac{V_{out}}{R_4 + (R_2 \parallel R_3)}$

$$V_{in} = -R_1 I_2, \quad I_1 = \frac{Sat}{R_4 + (R_2 \parallel R_3)}$$

$$I_2 = \frac{R_3}{R_2 + R_3} I_1$$

$$R_{in} = R_1, \quad R_{out} = 0$$

$$A_{re} = V_{out} = \frac{R_4 R_2}{R_4 R_2} = \frac{R_4 + R_2}{R_4 + R_2}$$

Instrumentation Amplifiers (InAmps)

Used for precise amplification of weak sensor signals in the presence of distortion and noise, typically at microvolt level.

Linear circuit → Analysis by signal superposition

Basic Instrumentation Amplifier

- 1. Enable Vi+, Vi- = 0 resp shorted to GND
- 2. This is a non-inverting Amp with input = $V_{i+} \cdot R_2/(R_1 + R_2)$ $V_O(V_{i+}) = \frac{R_2}{R_1 + R_2} \cdot \frac{R_3 + R_4}{R_3} V_{i+}$
- 3. Enable Vi-, Vi+=0 resp shorted to GND
- 4. This is a simple inverting amp with input = V_{i-}

$$V_O(V_{i-}) = -\frac{R_4}{R_3} V_{i-}$$

$$R_2(R_3 + R_4) V_{i-} = R_4$$

 $V_O = V_O(V_{i+}) + V_O(V_{i-}) = \frac{R_2(R_3 + R_4)}{R_2(R_1 + R_2)} V_{i+} - \frac{R_4}{R_2} V_{i-}$

For a fully differential amplifier, we need
$$R_2/R_1 = R_4/R_3 = G \implies V_O = G(V_{i+} - V_{i-})$$

However, the input impedance of the two inputs are not the same: $R_{V_{i\perp}} = R_1 + R_2, \quad R_{V_{i\perp}} = R_3$

Buffered Instrumentation Amplifier

Goal: Obtain high input impedance

$$\begin{split} V_0 &= V_{icm} \left(\frac{R_2(R_3 + R_4)}{R_3(R_1 + R_2)} - \frac{R_4}{R_3} \right) + \frac{V_{id}}{2} \left(\frac{R_2(R_3 + R_4)}{R_3(R_1 + R_2)} + \frac{R_4}{R_3} \right) \\ &A_{cm} = \frac{V_O}{V_{icm}} = \frac{R_2(R_3 + R_4)}{R_3(R_1 + R_2)} - \frac{R_4}{R_3} \\ &A_d = \frac{V_O}{V_{id}} = \frac{1}{2} \left(\frac{R_2(R_3 + R_4)}{R_3(R_1 + R_2)} + \frac{R_4}{R_3} \right) \\ &CMRR = \frac{A_d}{A_{cm}} = \frac{V_O/V_{id}}{V_O/V_{icm}} = \frac{R_2(R_3 + R_4) + R_4(R_1 + R_2)}{2(R_2R_3 - R_4R_1)} \end{split}$$

Input Stage Gain

Goal: Achieve higher CMRR

Input Stage: (Differential and common mode gain)

$$V_{B-} = \frac{R_5 + R_7}{R_7} V_{i-} - \frac{R_5}{R_7} V_{i+}, \quad V_{B+} = \frac{R_6 + R_7}{R_7} V_{i+} - \frac{R_6}{R_7} V_{i-}$$

$$A_B = \frac{V_{BD}}{V_{id}} = \frac{V_{B+} - V_{B-}}{V_{i+} - V_{i-}} = \frac{R_5 + R_6 + R_7}{R_7}$$

$$A_{cm,B} = \frac{V_{B+} + V_{B-}}{V_{i+} + V_{i-}} = 1$$

(No current through R_5, R_6, R_7)

Total: (Differential and common mode gain)

$$A_{d'} = \frac{V_O}{V_{id}} = \frac{A_B}{2} \left(\frac{R_2(R_3 + R_4)}{R_3(R_1 + R_2)} + \frac{R_4}{R_3} \right)$$

$$A_{cm} = A_{cm,B} \left(\frac{R_2(R_3 + R_4)}{R_3(R_1 + R_2)} - \frac{R_4}{R_3} \right)$$

$$\text{CMRR} = \frac{A'_d}{A_{cm}} = A_B \frac{A_d}{A_{cm}}$$

 \rightarrow CMRR increased by factor A_B due to an input stage!

Intermezzo. Bode plut transfer fet reconstruction

Non-Ideal Operational Amplifiers Circuit Analysis

Negative Feedback Theory

Closed Loop Gain Analysis

$$A_v = \frac{v_o}{v_i} = \frac{A}{1+A\beta} = \frac{1}{\beta} \left(\frac{A\beta}{1+A\beta} \right) = A_v^{\text{ideal}} \left(\frac{T}{1+T} \right)$$

 $\begin{array}{c|c} A = \text{ open loop gain} & T = A\beta = \text{ loop gain/loop transmission} \\ A_v = \text{ closed loop gain} & A_v^{\text{ideal}} = \frac{1}{\beta} \text{ ideal gain (if } T \to \infty) \end{array}$

Gain Error: (ideal gain)-(actual gain)

$$GE = A_v^{\text{ideal}} - A_v = A_v^{\text{ideal}} \left(1 - \frac{T}{1+T} \right) = \frac{A_v^{\text{ideal}}}{1+T}$$

Fractional Gain Error: (ideal gain)-(actual gain)/(ideal gain)

$$FGE = \frac{A_v^{\text{ideal}} - A_v}{A_v^{\text{ideal}}} = \frac{1}{1+T} \approx \frac{1}{T}, \quad (T >> 1)$$

Different Kinds of Feedback

means the feedback voltage signal and the input voltage signal are connected in series. Because input voltage

(2) Current → Shunt Feedback. "Shunt" connection means the feedback current signal and the input current signal are connected in series. Because input current subtraction needs series connection

nput Voltage (Series) - Output Voltage (Shunt):

Open the Feedback, apply test voltage source at the output kmeasure the Feedback voltage:

$$\beta = \frac{V_{fb}}{V_{test}} = \frac{R_1}{R_1 + R_2} \Rightarrow A_V = \frac{V_{out}}{V_{in}} = \frac{1}{\beta} = 1 + \frac{R_2}{R_1}$$

(1) Voltage -> Shunt Feedback. To measure the load output voltage, "Shunt" connection means the feedback voltage signal is sensed in parallel with the load. Measuring a voltage, you need a voltage meter placed in shunt.

(2) Current → Series Feedback. To measure the load output current. "Series" connection means the feedback current signal is sensed as a voltage across a sensing resistor in series with the load. Measuring a current, you

Input Current (Shunt) - Output Voltage (Shunt)

Open the Feedback, apply test voltage source at

$$\beta = \frac{I_{fk}}{V_{rest}} = \frac{1}{R_2} \Rightarrow \frac{V_{out}}{I_{in}} = \frac{1}{R_2} \Rightarrow R_2$$

$$\frac{V_{in}}{I_{in}} = -R_1 \Rightarrow \frac{V_{out}}{V_{in}} = \frac{V_{out}}{V_{in}} \cdot \frac{V_{in}}{V_{in}} = R_2 \cdot \left(\frac{-1}{R_2}\right) = -\frac{R}{R_2}$$

Non-Ideal Non-Inverting Amplifier

Closed Loop Voltage Gain Calculation:

- 1. Set all input sources to zero
- 2. Cut the loop open between Av_{id} and R_O
- 3. Insert a test source v_{test} where the loop was cut
- 4. Find Av_{id} using standard circuit analysis $\begin{aligned} &v_O = v_{test} \cdot \frac{R_L \| (R_2 + (R_1 \| (R_{id} + R_I)))}{R_O + (R_L \| (R_2 + (R_1 \| (R_{id} + R_I))))} = K_1 \cdot v_t \\ &v_+ = v_O \cdot \frac{(R_{id} + R_I) \| R_1}{R_2 + ((R_{id} + R_I) \| R_1)} = K_2 \cdot K_1 \cdot v_{test} \\ &v_{id} = v_+ \cdot \frac{R_{id}}{R_I + R_{id}} = K_3 \cdot K_2 \cdot K_1 \cdot v_{test} = K \cdot v_{test} \end{aligned}$
- 5. Calculate Loop Gain $T = \frac{Av_{id}}{v_{test}} = A \cdot K$
- 6. Calculate $\beta = \frac{R_1}{R_1 + R_2}$
- 7. Calculate $A_v = A_v^{ideal} \left(\frac{T}{1+T} \right)$, where $A_v^{ideal} = \frac{1}{\beta}$

Input Resistance Calculation:

- 1. Apply a test source V_x at V_{in}
- 2. Break the loop between Av_{id} and R_O & ground R_O
- 3. Use property of input voltage (series) feedback & calculate R_{in} $R_{in} = R_{in,ol}(1+T), (R_{in,ol} \text{ is input resistance with broken loop})$ $R_{in,ol} = \frac{v_x}{i_x} = R_I + R_{id} + (R_1 \parallel (R_2 + (R_O \parallel R_L)))$

Output Resistance Calculation:

$$\begin{array}{c} \stackrel{i_{\mathsf{X}}}{\underset{\stackrel{\leftarrow}{\longrightarrow}}{\mathbb{R}_{\mathsf{Z}}}} \mathsf{v}_{\mathsf{v}} \stackrel{\downarrow}{\underset{\stackrel{\leftarrow}{\longrightarrow}}{\mathbb{R}_{\mathsf{Z}}}} \mathsf{v}_{\mathsf{v}} \stackrel{\downarrow}{\underset{\stackrel{\leftarrow}{\longrightarrow}}{\mathbb{R}_{\mathsf{Z}}}} \stackrel{\downarrow}{\underset{\stackrel{\leftarrow}{\longrightarrow}}{\mathbb{R}_{\mathsf{Z}}} \stackrel{\downarrow}{\underset{\stackrel{\leftarrow}{\longrightarrow}}{\mathbb{R}_{\mathsf{Z}}}} \stackrel{\downarrow}{\underset{\stackrel{\leftarrow}{\longrightarrow}}} \stackrel$$

- 1. Apply a test source V_o at the output
- 2. Break the loop between Av_{id} and R_O & ground R_O
- 3. Set the input voltage source to zero (ground) & simplify circuit
- 4. Use property of output voltage (shunt) feedback & calculate R_{out} $R_{out} = \frac{R_{out,ol}}{1+T}$, $(R_{out,ol} \text{ is output resistance with broken loop})$ $R_{out,ol} = \frac{\dot{v_O}}{i_O} = R_L \parallel R_O \parallel (R_2 + (R_1 \parallel R_I \parallel R_{id}))$

TABLE 11.3

inverting and Noninverting Amplifier Frequency Response Comparison			
	$\beta = \frac{R_1}{R_1 + R_2}$	NONINVERTING AMPLIFIER	INVERTING AMPLIFIER
	de gain	$A_v(0) = 1 + \frac{R_2}{R}$	$A_v(0) = -\frac{R_2}{R}$
	Feedback factor	$A_{v}(0) = 1 + \frac{R_{2}}{R_{1}}$, $T = A_{B} = \frac{1}{A_{v}(0)}$	$A_{v}(0) = -\frac{R_{2}}{R_{1}}$ $\beta = \frac{1}{1 + A_{v}(0) }$
	Bandwidth	$f_B = \beta f_T$	$f_B = \beta f_T$
	Input resistance	$R_{ic} \ R_{id} (1 + A\beta)$	$R_1 + \left(R_{ID} \frac{R_2}{1+A}\right)$
	Output resistance	$\frac{R_o}{1+A\beta}$	$\frac{R_o}{1+A\beta}$

Fractional Gain error 14

Frequency Response and Bandwidth of Op Amps

Most general purpose op-amps are low-pass amps designed to have high gain at DC and a single-pole frequency response described by:

$$A(s) = \frac{A_0 \omega_B}{s + \omega_B} = \frac{\omega_T}{s + \omega_B} = \frac{A_0}{1 + \frac{s}{\omega_B}}$$

 $A_0 = DC$ open loop gain, $\omega_B = open loop bandwidth <math>(f_B = \frac{\omega_B}{2\pi})$, ω_T = unity gain frequency at which $|A(j\omega)| = 1$ (0dB)

$$|A(j\omega)| = \frac{A_0\omega_B}{\sqrt{\omega^2 + \omega_B^2}} = \frac{A_0}{\sqrt{1 + \frac{\omega^2}{\omega_B^2}}} \approx \begin{cases} \text{const. for } \omega << \omega_B \\ \frac{\omega_T}{\omega} \text{ for } \omega >> \omega_B \end{cases}$$

Gain Bandwidth Product: GBW = $|A(j\omega)|\omega \approx \omega_T$

Non-Inverting Amplifier

$$\begin{split} A_v(s) &= \frac{A(s)}{1 + A(s)} = \frac{\frac{A_0 \omega_B}{s + \omega_B}}{1 + \frac{A_0 \omega_B}{s + \omega_B} \beta} = \frac{A_0 \omega_B}{s + \omega_B (1 + A_0 \beta)} = \frac{A_v(0)}{\frac{s}{\omega_H} + 1} \\ \beta &= \frac{R_1}{R_1 + R_2}, \quad \omega_H = \omega_B (1 + A_0 \beta) = \omega_T \frac{(1 + A_0 \beta)}{A_0} = \frac{\omega_T}{A_v(0)} \end{split}$$

 $\omega_H = \text{upper cutoff frequency} = \text{closed loop bandwidth} \xrightarrow{A_0\beta >> 1} \beta \omega_T$ $A_v(0) = \frac{A_0}{1+A_0\beta} = \text{closed loop DC gain } \xrightarrow{A_0\beta >>1} 1/\beta$

Inverting Amplifier

$$\begin{split} A_v &= \left(-\frac{R_2}{R_1} \frac{A(s)\beta}{1 + A(s)\beta} \right), \text{ where } \beta = \frac{R_1}{R_1 + R_2} \\ A_v(s) &= \left(-\frac{R_2}{R_1} \right) \frac{\frac{A_0 \omega_B}{s + \omega_B} \beta}{1 + \frac{A_0 \omega_B}{s + \omega_B} \beta} = \left(-\frac{R_2}{R_1} \right) \frac{A_0 \beta \omega_B}{s + \omega_B (1 + A_0 \beta)} \\ A_v &\xrightarrow{A_0 \beta >> 1} \left(-\frac{R_2}{R_1} \right) \frac{1}{\frac{s}{\omega_H} + 1}, \quad \omega_H = \frac{\omega_T}{\frac{A_0}{1 + A_0 \beta}} \xrightarrow{A_0 \beta >> 1} \beta \omega_T \\ &\approx \omega_B \left(A + A_0 \beta \right) \end{split}$$

Non-Ideal Op Amp Characteristics

Output Voltage & Current Limitations

 V_{out} is limited by the supply voltage: $\max(V_{out}) \leq V_D D$

$$I_{out} = \frac{V_{out}}{RL} \le I_{out,max}$$

$$\implies R_{L,min} = \frac{V_{DD}}{I_{out,max}}$$

Slew Rate: Large Signal Dynamic Limitation

maximum rate of change of the output voltage of a physical circuit

$$SL = \max \frac{dv_O}{dt}$$

Ex.: $v_O = \sin(\omega t) \implies SL = \max(\omega \cos(\omega t)) = \omega$

Common Mode Rejection Ratio

CMRR = $\frac{A}{A_{cm}}$ which is typically around $60 \sim 120 \text{dB}$

Filters

First Order Passive Filters

Low Pass Filter

Amplitude Response: $\left| \frac{V_{O}(j\omega)}{V_{I}(j\omega)} \right| = \frac{1}{\sqrt{1+(\omega RC)^2}}$

Phase Response: $\angle \left(\frac{V_o(j\omega)}{V_c(j\omega)} = -\arctan(\omega RC) \right)$

High Pass Filter

Amplitude Response: $\left| \frac{V_o(j\omega)}{V_i(j\omega)} \right| = \frac{\omega RC}{\sqrt{1 + (\omega RC)^2}}$

Phase Response: $\angle \left(\frac{V_o(j\omega)}{V_i(j\omega)} = \frac{\pi}{2} - \arctan(\omega RC) \right)$

First Order Active Filters

Active Low Pass Filter

Set
$$Z_1(s) = R_1$$
 and $Z_2(s) = R_2 \parallel \frac{1}{sC} = \frac{R_2 \frac{1}{sC}}{R_2 + \frac{1}{sC}} = \frac{R_2}{sR_2C + 1}$

$$A_v(s) = -\frac{R_2}{R_1} \frac{1}{1 + sR_2C} = -\frac{R_2}{R_1} \frac{1}{1 + \frac{s}{sC}}, \quad (\omega_H = 2\pi f_H = \frac{1}{R_2C})$$

Active High Pass Filter

Set
$$Z_1(s) = R_1 + \frac{1}{sC} = \frac{sR_1C+1}{sC}$$
 and $Z_2(s) = R_2$
 $A_v(s) = -\frac{R_2}{R_1} \frac{s}{s + \omega_L} = \frac{A_0}{1 + \frac{\omega_L}{sC}}, \quad (A_0 = -\frac{R_2}{R_1}, \quad \omega_L = 2\pi f_L = \frac{1}{R_1C}$

Other Configurations Other Transfer Functions

$$Z_1 = R_1 \parallel \frac{1}{sC_1}, Z_2 = R_2 \parallel \frac{1}{sC_2} \qquad Z_1 = R_1 + \frac{1}{sC_1}, Z_2 = R_2 + \frac{1}{sC_2}$$

$$H(s) = -\frac{C_1}{C_2} \frac{s + \frac{1}{R_1C_1}}{s + \frac{1}{L_2C_2}} = -k \frac{s + z}{s + p} \qquad H(s) = -\frac{R_2}{R_1} \frac{s + \frac{1}{R_2C_2}}{s + \frac{1}{R_1C_1}} = -k \frac{s + z}{s + p}$$

Bilinear Transfer Function Synthesis

With the previous Filters we can only realize LHP zeros and poles. To realize RHP zeros and poles, we can use following circuits:

Second Order Transfer Functions

$$H(s) = \frac{N(s)}{\left(\frac{s}{\omega_0}\right)^2 + 2\zeta\left(\frac{s}{\omega_0}\right) + 1} = \frac{N(s)}{\left(\frac{s}{\omega_0}\right)^2 + \frac{1}{Q}\left(\frac{s}{\omega_0}\right) + 1}$$

 $N(s) = \text{polynomial with deg}(N) \le 2$. Defines the zeros of the system ω_0 = natural frequency of the second order system

 $Q = \frac{1}{2\zeta}$ = Quality factor, where ζ = dimensionless damping factor

 $P_{1,2} = (-\zeta \pm \sqrt{\zeta^2 - 1})\omega_0$ are the two poles of the system.

Second Order Low Pass Filter (LP)

Set
$$N(s) = 1 \rightarrow H_{LP}(\omega) = \frac{1}{1 - \left(\frac{\omega}{\omega_0}\right)^2 + \frac{1}{Q}\left(\frac{j\omega}{\omega_0}\right)} \quad \begin{array}{c} \mathsf{v_{in}} \\ \downarrow \\ \downarrow \end{array} \quad \begin{array}{c} \mathsf{c_1} \\ \downarrow \\ \downarrow \end{array} \quad \begin{array}{c} \mathsf{c_2} \\ \downarrow \\ \downarrow \end{array}$$

Second Order High Pass Filter (HP)

$$\begin{array}{c|c} \mathrm{Set}\ N(s) = \left(\frac{s}{\omega_0}\right)^2 \to H_{HP}(\omega) = \frac{-\left(\frac{\omega}{\omega_0}\right)^2}{1-\left(\frac{\omega}{\omega_0}\right)^2 + \frac{1}{Q}\left(\frac{j\omega}{\omega_0}\right)} \\ \mathrm{low}\ \mathrm{freq}\ \frac{\omega}{\omega_0} << 1 & \mathrm{high}\ \mathrm{freq}\ \frac{\omega}{\omega_0} >> 1 & \mathrm{characteristic}\ \mathrm{freq}\ \frac{\omega}{\omega_0} = 1 \\ |H_{LP}| : +40\mathrm{dB/dec} & H_{LP} \approx 1 = 0\mathrm{dB} & H_{LP} = jQ \to \frac{\pi}{2}\ \mathrm{phase}\ \mathrm{shift} \\ \end{array}$$

Second Order Band Pass Filter (BP)

Set
$$N(s) = \frac{1}{Q} \left(\frac{s}{\omega_0} \right) \to H_{BP}(\omega) = \frac{\frac{1}{Q} \left(\frac{\omega}{\omega_0} \right)}{1 - \left(\frac{\omega}{\omega_0} \right)^2 + \frac{1}{Q} \left(\frac{j\omega}{\omega_0} \right)}$$

low freq $\frac{\omega}{\omega_0} << 1$ | high freq $\frac{\omega}{\omega_0} >> 1$ | characteristic freq $\frac{\omega}{\omega_0} = 1$ | $|H_{LP}|$: +20 dB/dec | $|H_{LP}|$: -20 dB/dec | $|H_{LP}| \approx 1 = 0 \text{dB}$

Band-Stop Notch Filter

Set
$$N(s) = 1 + \left(\frac{s}{\omega_0}\right)^2 \to H_N(\omega) = 1 - H_{BP}(\omega)$$

 $\begin{array}{|c|c|c|c|} \hline \text{Set } N(s) = 1 + \left(\frac{s}{\omega_0}\right)^2 \to H_N(\omega) = 1 - H_{BP}(\omega) \\ \hline \text{low freq } \frac{\omega}{\omega_0} << 1 & \text{high freq } \frac{\omega}{\omega_0} >> 1 & \text{characteristic freq } \frac{\omega}{\omega_0} = 1 \\ \hline H_N(j\omega) \approx 1 & H_N(j\omega) \approx 1 & H_N = -j \left[1 - \left(\frac{\omega}{\omega_0}\right)^2\right] Q \\ \hline \end{array}$

Second Order All Pass Filter (AP)

Second Order All Pass Filter (AP)
$$\begin{array}{c|c} N_{\text{Vin}} & N_{\text{Out}} &$$

$$\angle H_{AP}(j\omega) = -2\arctan\left[\frac{\frac{1}{Q}\left(\frac{j\omega}{\omega_0}\right)^2}{1-\left(\frac{\omega}{\omega_0}\right)^2}\right] \in [-\pi, +\pi]$$

Sallen Key Filters (KRC Filters)

Problem with 2nd order passive filters: Q<0.5 => Two real poles => overdamped => no complex peaking & no sharp roll off

Goal: Increase Q to boost amplitude response at wa Sallen Key Lowpass (LP) Filters

$$V_{Gut} = V_{X} \cdot K = K \frac{7}{R_{2}C_{2}s + 7} V_{1}$$

$$V_{out} \quad KcL@V_{1} : \frac{V_{in} - V_{1}}{R_{1}} + \frac{V_{out} / K - V_{1}}{R_{2}} + \frac{V_{out} - V_{1}}{\frac{1}{3}C_{1}} = 0$$

$$H(s) = \frac{V_{out}}{V_{in}} = K \cdot \frac{1}{(s)^{2} + \frac{1}{3}(s) + 1}$$

$$H(s) = \frac{v_{out}}{V_{in}} = K \cdot \frac{\left(\frac{s}{S}\right)^{2} + \frac{1}{Q}\left(\frac{s}{\omega_{0}}\right) + 1}{1}$$

$$= K \cdot \frac{1}{R_{1}C_{1}R_{2}C_{2}s^{2} + [(1-K)R_{1}C_{1} + R_{1}C_{2} + R_{2}C_{2}]s + 1}$$

$$H_{0LP} = K = 1 + \frac{R_B}{R_A}, \qquad \omega_0 = \frac{1}{\{R_1 C_1 R_2 C_2\}}, \qquad Q = \frac{1}{(1 - K) \sqrt{\frac{R_1 C_1}{R_1 C_2} + \frac{R_2 C_2}{R_1 C_1} + \frac{R_2 C_2}{R_1 C_1}}}$$

 \Rightarrow 5 unknowns K, R, C1, R2, C3 but 3 equations $H_{10}(s=0)$, W_{0} , Q \Rightarrow under-determined design problem

$$\rightarrow$$
 Equal-component KRC Filter: Set $R_1=R_2=R$, $C_1=C_2=C$
 $H_{OLP}=K=1+\frac{Rg}{R_A}$, $W_0=\frac{1}{RC}$, $Q=\frac{1}{3-K}$ \Longrightarrow Q is completely set by K

However,
$$Q = \frac{1}{3 - (1 + \frac{Ra}{RA})} = \frac{1}{2 - \frac{Ra}{RA}} = \frac{3 - K}{2 - \frac{Ra}{RA}} = \frac{3 -$$

Sallen Key Highpass (HP) Filters

$$H(s) = K \cdot \frac{\left(\frac{s}{\omega_0}\right)^2}{\left(\frac{s}{\omega_0}\right)^2 + \frac{\Lambda}{Q}\left(\frac{s}{\omega_0}\right) + 1}$$

$$H_{0LP} = K = 1 + \frac{R_B}{R_A}$$
, $\omega_0 = \frac{1}{\sqrt{R_1 C_1 R_2 C_2}}$
 $Q = \frac{1}{\sqrt{R_1 C_1 R_2 C_2}}$

Sallen Key Bandpass Filters

$$H(s) = H_{oHP} \frac{\overline{Q}(\overline{\omega_0})}{\left(\frac{s}{\omega_0}\right)^2 + \frac{1}{Q}\left(\frac{s}{\omega_0}\right) + 1}$$

$$H_{oHP} = \frac{K}{1 + (1 - K)\frac{K_2}{R_3} + (1 + \frac{C_1}{C_2})\frac{R_1}{R_2}}, \quad \omega_0 = \frac{\sqrt{1 + \frac{R_1}{R_3}}}{\sqrt{R_1C_1R_2C_1}}$$

$$Q = \frac{\kappa_s}{\left(1 + \left(1 - \mathcal{K}\right) \frac{R_1}{R_3}\right) \left[\frac{R_2 C_2}{R_1 C_1} + \sqrt{\frac{R_1 C_2}{R_2 C_1}} + \sqrt{\frac{R_1 C_1}{R_2 C_1}}\right]}$$

$$= \frac{\kappa_s}{\left(1 + \left(1 - \mathcal{K}\right) \frac{R_1}{R_3}\right) \left[\frac{R_2 C_2}{R_1 C_1} + \sqrt{\frac{R_1 C_2}{R_2 C_1}} + \sqrt{\frac{R_1 C_2}{R_2 C_1}}\right]}$$

Equal-component design: R1=R2=R3=R, C1=C2=C

Sallen Key Notch Filters

Equal-component KRC notch filter design yields:

$$H(s) = K \cdot \frac{\left(\frac{s}{\omega_0}\right)^2 + 1}{\left(\frac{s}{\omega_0}\right)^2 + \frac{1}{Q}\left(\frac{s}{\omega_0}\right) + 1}$$

$$H(s) = K \cdot \frac{1}{Q} \cdot \frac{R_B}{Q} \cdot \frac{1}{Q} \cdot \frac$$

$$H_{ON} = K = 1 + \frac{R_B}{R_A}$$

$$\omega_0 = \frac{1}{RC}$$
, $Q = \frac{1}{4-2K}$

Cascade of Op-Amp Based Active Filters

Any high order fct. can be decomposed into multiplication of 1st and 2nd order fat: 1st order filters & Bilinear op-amp filters 2nd order filters (> KRC Op-amp filters

$$T(s) = \frac{N(s)}{D(s)} = \frac{\sum_{i=0}^{m} b_{i} s^{i}}{\sum_{j=0}^{m} a_{j} s^{j}} = N \frac{\prod_{i=0}^{m_{1}} (s-k_{1}) \prod_{p=0}^{m_{1}} (s-k_{p}) (s-k_{p}^{*})}{\prod_{j=0}^{m_{1}} (s-p_{j}) \prod_{q=0}^{m_{2}} (s-p_{q}) (s-p_{q}^{*})}$$

K is real, 2; are real, either positive or negative (RHP or LHP zeros) Zp, ≥* are complex conjugate, either on LHP or RHP

P; real, must be negative (only LHP), Pa, Pa complex conjugate, must be on LHP

Example: KRC/Sallen-Key Active Filters

Task: Design Sallen-Key LP Filter to realize following complex poles 1 im Assume C=5nF and Ra=10ks given

$$W_0 = 2\pi \cdot 2.5 \text{krad/s} \Rightarrow R = \frac{1}{w_0 C} = \frac{1}{2\pi \cdot 2.5 \cdot 10^3 \cdot 5 \cdot 10^{-4}} = 12.7 \text{k}\Omega$$

$$\theta = \cos^{3}\left(\frac{1}{2Q}\right) = 60^{\circ} \Rightarrow \frac{1}{2Q} = \cos 60^{\circ} = \frac{1}{2} \Rightarrow Q = 1$$

$$K = 3 - \frac{1}{Q} = 3 - 1 = 2 = 1 + \frac{R_B}{R_A}$$
 Since $R_A = 10k\Omega \Rightarrow R_B = 10k\Omega$

How would you modify the circuit's input without using any additional op-amp, to realize a total DC-gain of 3dB and still maintain the desired filter response (location, of the complex poles unchanged)? (Assuming ideal op-amps)

The Sallentkey LP Filter has DC gain = K = 2 before modification The desired gain is $3dB = \sqrt{2}$

=) We need to attenuate the signal by 12

Using the equivalent voltage source concept

Solve Syst. of eq.; Ry=17.96kl RIR = 43.36k JL

Example: Multiple Feedback All-Pass Filter

$$(voltage divider at v_+) \Rightarrow V_x = \frac{1}{\left(\frac{sRC}{2}+1\right)} \left(\frac{5}{6} V_{in} + \frac{1}{2} V_{out} + \frac{sRC}{2} V_{out}\right)$$

$$(3) = \textcircled{h} \Rightarrow \frac{1}{3} V_{in} + \frac{1}{sRC} \left(\frac{1}{3} V_{in} - V_{out}\right) = \frac{1}{\left(\frac{sRC}{2}+1\right)} \left(\frac{5}{6} V_{in} + \frac{1}{2} V_{out} + \frac{sRC}{2} V_{out}\right)$$

$$\Rightarrow \frac{1}{6} \text{ sRC } V_{in} + \frac{1}{3} V_{in} + \left(\frac{1}{2} + \frac{1}{3RC}\right) \left(\frac{1}{3} V_{in} - V_{out}\right) = \frac{5}{6} V_{in} + \frac{1}{2} V_{out} + \frac{SRC}{2} V_{out}$$

$$\Rightarrow \frac{1}{6} SRC V_{in} + \frac{1}{3} V_{in} + \frac{1}{6} V_{in} + \frac{1}{3 SRC} V_{in} - \frac{1}{2} V_{out} - \frac{1}{SRC} V_{out} = \frac{5}{6} V_{in} + \frac{1}{2} V_{out} + \frac{SRC}{2} V_{out}$$

$$\Rightarrow \frac{1}{6} sRC V_{in} - \frac{1}{3} v_{in} + \frac{1}{3sRC} v_{in} = V_{out} + \frac{1}{sRC} V_{out} + \frac{sRC}{2} V_{out}$$

$$\Rightarrow H(s) = \frac{V_{out}}{V_{in}} = \frac{\frac{1}{6} sRC - \frac{1}{3} + \frac{1}{3sRC}}{\frac{sRC}{2} + 1 + \frac{1}{5RC}} = \frac{1}{3} \frac{s^2 R^2 C^2 - 2sRC + 7}{s^2 R^2 C^2 + 2sRC + 7} = \frac{1}{3} \cdot \frac{s^2 - \frac{2}{RC} s + \frac{2}{R^2 C^2}}{\frac{s^2 R^2 C^2 + 2sRC + 7}{2}} = \frac{1}{3} \cdot \frac{s^2 - \frac{2}{RC} s + \frac{2}{R^2 C^2}}{\frac{s^2 R^2 C^2 + 2sRC + 7}{2}}$$

General all-pass transfer function:
$$H_{AP}(s) = H_{AP0} \cdot \frac{s^2 - \frac{3\omega_0}{Q} + \omega_0^2}{s^2 + \frac{5\omega_0}{Q} + \omega_0^2}$$

The given circuit is an all-pass filter with $H_{APD} = \frac{1}{3}$, $W_0 = \sqrt{\frac{2}{RC^2}} = \frac{12}{RC}$, $Q = \left(\frac{2}{RC}\right)^2 = \left(\frac{2}{RC}\right)^2 = \frac{1}{12}$ Let R=10k1, C=1nF => Wo= 12 . 10 5 rad/s

$$Q = \frac{1}{\sqrt{2}} > \frac{1}{2} \Rightarrow \text{ complex Zeros and poles}$$

$$Q = \frac{1}{\sqrt{2}} > \frac{1}{2} \Rightarrow \text{ complex Zeros and poles}$$

$$Q = \frac{1}{\sqrt{2}} > \frac{1}{2} \Rightarrow \text{ complex Zeros and poles}$$

=) Pole-Zero plotin 5-Plane:

Multiple feedback All-pass filter

Must satisfy: $\frac{R_2R_3}{R_1R_4}=4$

For given frequency wo, Quality factor Q and chosen value C R1 & R2: Must gatisfy: $R_{\Lambda} = \frac{1}{2Q\omega_{0}C}$ $R_{2} = \frac{2\alpha}{\omega_{0}C}$

$$\Rightarrow \text{ filter Gain } g = \frac{R_y}{R_z + R_y} = \frac{Q^2}{1 + Q^2}$$