
General System : Properties Controllabilitycan 1 steer <clt) with u(t)?
Linear Algebra & ODEs n prem Modeling u(t) -> ((t) = f(t,

x(t),
u(t)+ y(t) & (0) = I

,
( (t) = (t)=> P(t)[(t) =E

↑ ↑General Matrix Properties : Let A-1hxm System Classification Input State Output

range (A) = Spandan, ..., am3 is a subspace of Rh Time - Invariant Linear Autonomous = AF(t)
,

(tc ++2) = E(t).(+2)
I

↑Perform Gausselimin: For all pivots take the corresponding original
no explicit dependence time- Rinput-

column in A .
on time invariant Impulse Transition & Impulse Response

null (A) = ExER" : Ax= 03 is a subspace of Am To make a system time invariant
, introduce t as a new Let u(t) = S(t) and =

= 0
= Set of vectors Orthogonal to the rows of AE

Perform Gausselimin. for homogeneous Linear system :

state withE = 1
.

The new system has dimension n + 1
Impulse Transition :

Introduce a parameter (s, +, ...) for every linearly dependent set of columns

Span of solution with parameters in IR is the nullspace. LTI Systems Istate Space Representation) sc(t)(n(t)
= S(t)

: = H(t) = P(t)B ZSTicc(t)=(H= u)(t)
A invertible ) det(A) + OE) Acc = y has a unique sol. -SystemDynamics

= null (1) = 303 E) range(A) = IR"E) Alle-values are nonzer
(c(t) = Ax(t)+ Bu(t)) =ten +E Impulse Response :

Matrix Inverse & Always unique if it exis S y(t)(ncu = xx)
: = k(t) = C(t)B + DS(t) ZSR: y(t)= (kxu)(t)

2x2

(6)
YADAutumn StabilityACIRLXY BEIRM CEIRPXn DER

pxm

invertible Definitions : A System is calledCoordinate Transforms => System properties remain unchanged

(c(t) = Ax(t) + Bu(t)z(t) =T((t)z(t) = z(t) + Bu(t) A = TATY
,

B = TB
-> stable if FE0 7670 : /Koll 8 => 1ktill E

y(t) = (x(t) + Du(t)c(t) =T z()y(t) = (z(t) + Bu(t) = CT
,

D = D
-> asymptotically stable if the system is stable andhimkt)l-0

Modeling equations : Physical background ZIT Stability We have <(t)= [ (t)x =ett
Electrical circuit
Inductor : Equation: state : Energy :

A diagonalizablet or A non-diagonalizable but no e-value)
L The system iss...

(with Restib = O is repeated

Fut (t)=Ex(t) = in(t) Ey(t) = Lig(t) -> stable if Reli = O Vi
Trick: UseV

Capacitor:
-> asymstable if Re[Xi3<0 Fi Hurwitz-Criterion

ich== V(t) ECCrict) -> unstable if Zi : ReEtiS > O
I

-
-> Kirchhoff eq -> State Space representation * non-diagonalizable => Repeated e-values -=

... t = -jw Observability
Can1 determine x(t)

Mechanical system => (t) contains terms of form eit
, tefit, ...,t

* eZit knowing u(t) & y (t)?

Spring :
Free body : Equation : State : Celastic) Energy : 6) 0 = 1thgit) -> * = unstable

K t + x

↑m#
,

Fs(t)= kp(t) (C(t)= p(t) Es(t) = Ekph(t) 6. = 0 - v = 1 = letit= const =) Stable
# &r = Hetitt

, ..., leit/es * = unstable

Damper : (Kinetic) Energy :

6 0 => It eity Es0 = asymptotically stable
.

#TE Fy(t) = dp(t)((t) = p(t) Eq()= Emp(t) = system with non-diagonalizableA repeated 1; with Restib =0
-> asym. stable iff ReEti3< O Vi Trick : Use-

Continuous LT1 in Time Domain -> unstable if Fi : Re[ti3 > O 3 Hurwitz-Criterion

si(t) = Ax(t) + Bu(t) = f(x(t), u(t), t) Stability with Inputs
y(t) = (x(t) + Du(t) = h(x(t)

,
u(t) , t)Sx(0) = Ko Call LTI Systems have a unique solution)

State & Output Solution
t

x(t) = E(t)x +SF(t -t)Bu(t)d[ Energy, Controllability, Observability
Zit ZST

(u(t) = 0) (xj= 0)
ZSR Energy: E(t)=ETQ , Q =Q0 (

ZIR t

y(t) = (E(t) +SC(t-t) Bu(t)dt + Du(t) Power: P(t) =EH-R+ E[uCTBTQx(t) + xtsTQBu()
O

--& = O if ZITE) u(H) =0

State Transition Matrix Lyapunov Stability (ZIT) R = RT= (ATQ + QA)
D

#(t) = e
At

=& FITAtto Att... System is asym· stable (e-values of A have Redt;310 Vi)
k = 0

If A diagonalizable : A =WMW = e
* t

= WentW
, ,We

If for any R = RT > O there exists anque Q = QT &

such that ATQ + QA = - R (Lyapunoveg .) holds
If A = N + D d N

,
D commute : ett= ePt . eNt

XX E. G .: A, R given -> Find Q
hilpotent diagonal -> 7 ! Q with Q = QT30 E asym,

stability
If A nilpotent, calculate evtAthm f all lower powers + -> Q or Q not unique or Qnot sym. pos . def. E) no asym · stability/

of State Transition Matrix

Def: Exc(o= o V( Ju() : (0 , t]- Rm s .
t

. x(t)= x,

=> F <(0) =( Ju(0) : [0, t] - Rm s.

t .

((t) = 0

= fx, EIR 7 n ( : [0,t] + 1Rm s. t .

<(t) =
,

rank(A) = dim(range(t) Additivity & Homogeneity => controllable over [0,T]E) controllable over [0,T] FF -0* (t)
,
B(t)

, ((t)
,
D(E) can dependant

. St) = +(*(t))
Controllability-Gramian symmetric,positive semi definite

1phn= Wi (t)
=NetEBBreat = WELt) = O

controllable over [0,t] =) Wilt) invertible E)def (W,(t) # 0

Controllability Matrix

P = [B AB ARB ... AnB] E/RUx(nom)
Matrix Matrix For m = 7

controllable over [0,t] E) runk(P) = n = de+(P) + 0

des chiei Reachable States :

det(A) = ad-bC det(A) =
-thassameer as as they are similar. The set of reachable resp. controllable states is range (P)

Block Diagonal Matrix a def[n] - > ·det[e+co de+ (ge) The set of uncontrollable states is Null (P)
-1

Determinant with Laplace expansion;
PHB test : E

+, . . . In e-values of A
A=[i & = [1] FI) < signs rank(AF-A B) = n hi is a controllable mode

> if In controllable Vi => System controllableE-Values & -Vectors: Ax = 2x
, zek > if alt unstable Zi controllable => system stabilizable

-> det (A-XI) = chp(2) = 0 -> solve for Z :
Vi with meEt; 370 system controllable => system stabilizable

system stable => System stabilizable
-> insert found to in Av= Er

,
-> solve for Vi M inimum Energy input:

Hurwitz-Criterion: Conly for 2x2 matrix) Thm : Assume system is controllable· Input that drives the system
-

chp(x) = xx2 +1x + y = 0 from <(0) = 0 to co(t) = EIRV
,

+ > 0 and has minimum energy
-

If <
,B, ) have same sign #Reti30 Vi

is given by :
Um(t) = BeAct-t) Wi(t)" ( for teto,t]

If <,B, 8 not same sign Fi : Resti3 > O

Diagonalizability: (AM = Algebraic
GM= Geometric Multiplicity)

# System is called observable over [0, t] if given
If AMi = GM ; VXi => A is diagonalizable u () : (0, t] + 1R

*
and y() : (O,t] + Ro

, we can uniquely determine
Ihm : AMIGM17 always if no Zi repeated => diagonalizable (() : [0 , t]+ 1Rh

Cayley- Hamilton Thm: ESCCEO is the only unobservable state

Every Matrix Atl satisfies its characteristic polynomial. #) observable over (0
, 5) E) observable over [0,F']

An +ayA" + azAn +... + anI =0 An = - (ayA"
-

+azA" +...+ anl) x ER" is unobservable) (A" 1 = 0 VkeSo, ...,
n - 13

=> If all powers of A are 0 until An
,

all higher terms A
,
Ant -> O

Symmetric Matrices have reale-values forthogonale-vectors Observability Gramian symmetric,positive semi definite

=> are always diagonalizable through Orthogonal transformation
. 1phn= Wo (t)=Next Cettdt = Wolt) :O

· ccTAcC > O Yx #Ol) A positive definite # 1 : >0 Fi (EST)
· xTACIO FC +O # A positive semidefinite) iz0 Fi

BIBS- stability : 1lu(t)IIIBu <D => IcH)ll[ Bx > *
observable over [0,t] =) Wolt) invertible E)def (Wolt) #0

Canonical Jordan forms : BIBO-stability : 11 ult)/l[Bu < 1 => llyCtll[By < a Observability Matrix

Observable over [0, t]

Fordanmatricearediagonalizabetent ZIT asymptotically stable => ZSR is BIBSQBIBO PC onSt

# rank[Q] = n Es det(a)+ 0
arc 1x 1 matrices

.

Futu= T

GMi = #Blocks for Zi
, AMi = #7;

-> x(t) = (Hxu)(t) Observable States:
Lipschitz, Existence &Uniqueness of solutions:

-> y(t) = (k *u)(t) The set of observable states is range (Q)

Def: 11 f(x,n) - f(x, n)/l"= llAc-AcIR= 8
.
11 -"IRE flipschitz The set of unobservable states is Null(Q)

· exists & is bounded => f lipschitz of linear =f lipschitz ↑HB test: E
, ..., In e-values of A

rank[tiF-A:Ifeither tonomous) is Lipschitz in s(t)
a) = n => Xi is an observable mode

> if Zi observable Vi => System observable
2) f(x(t),

u(t), t) is Lipschitz in(c(t)
,

continuous in ust) kint > if alt unstable Zi observable => system detectable
and n(t) continuous for almost all t Vti withTheEt; 370 system observable => system detectable

=> State solution exists & is unique system stable => System detectable

Complex Analysis : Partial fraction decompos .:
Observers Error dynamicsobserver

K
sin(z)=(e= eiz)

,
cos(z)= =(ei+ e

+)
I

double poles : e(t) = (A -L()e[t) ,
e(t) =

-

in complexos System Observable E FL S. t
. (A-LC) is asym , stable

=)elt) 0 Estate estimate Ct) converg

2

x3

E x(t)- gestimate
Ax + B

(2 +p + q
x es to true sc(t)



Closed Loop Systems :
↑(S) =

KG(s)

LTI-Systems in Frequency Domain
R() + Es k (G(s) · > Y(s)

1 +KG(s)
·R() Discrete LTl-Systems in Time Domain

1

Laplace Transform : F(s)= 2 (f(t)) (s) = f(t)eat E(s) =

1 + KG(s)
· R(s)

xk+1 = Axx + Buk k- 1

a f(t) + bg(t)o aF(s)+ bG(s) tf(t)o-a- F(s) D) eduction : See Block diagrams with Gy(s) = KG(s)
, Gz(s) = E S ( =Ax + [qk

- i-

Bui·

e-d+
f(t)o F(s +x) tf(t)o - (1) F(s) We want elt) -> 0 Casymptotic stability) Ym = (xy + Duk

f'(t) o osF(s) - f(0) (f*g)(t)o 0 F(s) . G(s) t +x

i =0

f(n)(t) a os"F(s)= s f(0) -

...

=sof*%) Sof(t)dTo- F(s)
=> closed loop stability determined by roots of 1 + KG(s)

x(0) =xg (zIT) (zst)
Fact : Open loop poles = closed loop zeros

· A diagonalizable : A =W1W = A = WMW-
Initial valuethm : f(0) = Limf(t) =hims ·Es

L · at equilibrium : =k
Final value thm :

t +x

t+ 0 Principle of the Argument:f
-

Lim f(t) = Lims . Es
Assume clockwise D-curve that does Stability:

Important : 107,0
Ant pass through poles/zeros of G(s)

A diagonalizable , The System is 000
* non-diagonalizable

.
The System is ...

Transformations
th, o eatsin (6t)0 alwaysymm + stable if Ai in -> asym. stable iff 17i/7 Fi

-

sinationsan,
sona N: # clockwise encirclements of 10

, 0) by L-curve -> asym .Stable If 17ik1 Vi -> unstable if Zi : (xik1
N = z - P Z : #of (pos.) zeros in D -> unstable If Zi : Aik 1 -> else : No statement. It depends

i on e-value with 11 = 1

LTI-Systems: cos(at)o-
for K(s)= KEIR

Lyapunor Stability: (in the discrete case(
Nyquist Stabi

of (spoleSie
17 : / < 7 Vi If FR = RT>O the eg . ATQA-Q= -R

&Lett)(i) = 2 (IC](s) = (SI-A)" ->
* h

consider Nyquist plot of < + KG(s)/KG(s)/G(s) has a unique solution with Q = QT
X (s) = (sI-A)x + (SI - A) BU()

-> N = #times Lencircles (0, 0) /(, 0)/EE, 0) clockwise
Deadbeat Response :[Y(s) = (X(s) + DU(s) = C(sI-A) co + G(s)U(s) = z = #closed loop unstable (RHP) poles (roots of <+KG(s) = 0)

-> P = # Open loop unstable (RHP) poles (poles of G(s))
For co = 0 : Y(s) = (C (SI-A)" B + D] U(s)= G(s)U(s) Controllability & Observability
(ZIT) Principle of the Argument => N = Z-P

G (s) transfer function For closed loop stability we aim for Z= 0

=n E)G(s) proper
Closed loop system is asym .

stable f N= - P

G(s) =
(s - z1)(s- zz) ...

(f - zk) => Lim1Giw)l < 0 Corollary : If open loop system is stable
,

the closed loop system is
Sampling

(S - P1)(s - P2) ... (s - Pn) k <n] strictly propef =>him/G(Ejw)) = 0

stable If Nyquist plot makes no encirclements of (7, 0)/(*,0)
No pole-zero-cancellation E) Denominator = chp(A) Bode Plots : Gab = 20 . log10(G)Thm :

-> e-values of A = poles of G(s)
· SISOG(s) from LTT-Systems are always proper
· SISOG(s) from LTl-Systems are strictly proper IfED=0 -Transform

(single) Frequency Response :
G(s) = (G(s)) · eixG(s)

u(t) = sin (wt), y(t) = Ksin(wt + y)
= Kein

Stability : (Requirement: no pole-zero cancellations!)

Sasym . stable Redpidistinct poles : stable

unstable If Fi : ReEP;3 > 0
I

S asym , stable If RePi3 < 0 Vi
repeated poles : unstable if 7;: Re[Pi3 > O

else : further investigation necessary

Marginally stable ERe[Pi 3=0
,

Redp3=0kJmEPi+ O
->If we have pole-zero cancellations, only BIBO -

Nonlinear Systems
stability is ·

Pole-zero cancellation corresponds Bode Stability Criterion:

to a loss of controllability and/or observability Assume G(s) asym · Stable and magnitude phase bode
-> If G(s) has less poles than the dimension of A , we know that plot are monotonically decreasing. Then the closed loop

pole-zero cancellations happened. sysem (LS) is asymptotically stable If
1kG(iw)( < 1 at the frequency where G(i)

Small Gain Thm : Under above conditions
,

if IKG(w)k]
Block Diagrams : Vw-> CLS is asym . Stable

·

U(s) ·<Y For GM
, PM : Assume OLS G is asym . stable

·

< G
,(s) G2(s) < Yz(s) Gain Margin : = maximum gain km s .

t
.

CLS still stable

G(s) = Gz(s)Gy(s), Yz(s) = G(s)Uy(s)
G(s) = G

, (s)+ Gz(s), Y(s) = G(s)U(s) GM=T
where G(jWn) = - 1800

U(s) < k
,
(s)

+

k,
(s)) G(s)o < Y(s)

R(s) T
E(s) error

, y Plant SC

Phase Margin : = maximum phaseIm S.t
. CLS still stable

G(s) = Gz(s)Controller
Ky(s)[ (I+ G+(s)Gz(s))

=

G
,
(s) PM = KG(jW) + 1800 where IG(jw) = 1 = OdB

Y(s) = (1+ G(s)kz(s) kg (s))
-

[G(s)kz(s)k+ [s)U(s)
E = R= G2Y= R- GzGE = E[1+ GyGt] = R

↑
gain crossover frequency

= = G

Stability of Equilibria : Letc be an equilibrium

&ef: 5 is stable V6707870 : /Ko-Ell <S =11Ct)-cilKdVtzO
State solution:

Otherwise the equilibrium is unstable

f(at)
Local asymptotic stability (LAS): The equilibrium 2 is called

f(t -a) e
-as F(s) LAS if (i) i is stable and

and (ii) =M > 0 : 110-11 M = Limcc(t) = E
t+A

Global asymptotic Stability (GAS) : Same as LAS but must hold MEG

system has more than one equilibrium =># a GAS equilibrium

Lyapunov first/indirect Method (y Linearization)

5(t)0- 7 E -
-

: = Sic(t)rAI
e-values ofA : 2 = 0 Vi

If ReSti3 < 0 Vi = linearized system asym .
stable

(not possible in continuous) AV = 0 NIU Chilpotent Matrix) => nonlinear system is locally asym .
Stable around

=> ZIT = Ac = 0 VKIN If Fi : ReExi5 >0 => unstable

(Power is the same as in cont) Inconclusive if Zi : Medi3 = 0 & Others have negative real part.

(no information about domain of attraction)

checkthe samewhyasinContinuouscase.Differemmen Lyapunov second/direct Method
least kIn (system dim

.
) steps tosteersystem from initial to finalste Assume Jopen set SXR" with CES

,
V() : IR"-IR differentiableA discrete

((k+ 1)T)= T) + -EBUT) C= C T= D (i)Ve = 0 (ii)Vo FotSid] (iii)AVO
sampling autonomous cont · time systems never leads to hilpotent discrete time sys. => the equilibriumc is stable

is locally
Forward euler approx: k If additionally (iv) #V((t) > 0 Face asym . stable

G (i) =
%
· (wit · G - (in) · G2 (in) ...

-

x((k+ 1)() = eAbx(kf) = (I+AS)xS := = Step
If additionally (v) (lx1+ 0 => IV(x)/) +0 = x is globally

Minimum Energy input:U= F(FPT)
" GEN-AYio), P= CB AB ... AB) asym . Stable

start with smallest nonzero w
, Fap (w) = 20 - Logio (G(in) 1)

F(z) = z(fu3= fuz
·V6(t) = (OV())T f(x)

Magnitude 1 Phase

Ist Integrator -20 ·NdB/des everywhere - 900.N everywhere L a Salle's TheoremSN Differentiator + 20 . NdB/des everywhere + 90 %N everywhere Linearity : ZEfrtogn3 = aF(z) + G(z) 1na (E =7410 sonst 0

Y(x+ s)v LHP pole -20oN dB/de - 90 %N 0
.10-10W

Time shift : Etr-no3 = EnoF(z) S1 160 = >
, Su= 0 Eheo) Assume 7 compact (bounded & closed) invariant set SCIR"

*(-S)v RHP pole - 20 ·N dB/de + 90 %N 0
.-10

Convolution: ZE(f* 9)43= F(z) · G(z) ako and 7VC : S-I differentiable such that

(a + s)v LHP zero + 20 .N dB/des + 90 % N 0
.
10-10w Final value thm ! Limsn = Lim(-zX( & V((t)) = (V())T· f(x)-0 FCESz + 7

(x- s)N RHP zero + 20 . NdB/dec = 90 %N 0.
10-10w Initial valuethm : Limcn =him Xz

n + 0

1. For stability need SIC
-Resonance : G(s)=Kws2. For 62 overdamped creal pol e

-ransfer function : G()=E CCEF-A)"B + D <G Let 5 = Exes : xt)) = 03 S
(2nd ordersys.)

3. For 5 = 1 critically damped Creal equalp)
no pole-zero canc .=> denominator of G(z) = def(A-zI) = Kasym · stability E)(P; /7 Vil)

et. spring mass damper: 4. For OLS(1 underdamped (complex p.)
=>System is both observable AND controllable Let M be the largest invariant set in 5

5. For 5 = 0 undamped limaginary 0 Geometric Series : &1
* [qkqNatural 6. For SI magnitude plot decreasing in w

n = 0q =  1 1 - q All trajectories (c(t) ES
t +x

> M = LAS

7
. For 02 Se magnitude plot has If S -> IR" and all conditions above still hold => GASmatimum (Resonance)

determinable
No info on marginal stability etc

at w =

Warten
, IGliwil=Es We only look at autonomons

,
time - invariant systems

ic(t) = f(x(t)) x(t)EIR"
, flipschitzEsol. exists & is unique

Invariant Sets
A set ofStates SCIR" is called invariant if EES VtzO : <(E)ES

Equilibrium Let i be an equilitrium
·

conditions for c : continuous =0 discrete =***
If you start at e

, you will stay there forever

all equilibrium points of a system form an invariant set

Linearsys: A regular => 1 eg. pt. A singular -> X eg. pt.

nonlinearsys : f(c) = 0 with (C(t) = 1 -c(t) p(t) (poly) integer cardinality subspace

has # solutions =
0 1 finitely many counto uncount.

A

Shifting Equilibria to the origin: W(t) : =x(t)-

Periodic Urbitsequil are trivial periodic orbits (T=0)
sol (C(t) S. t .

-T> 0
. VtzOx(t +T) = x(t)

Van der Pol Oscillator: = (t) - 3( - E
-(t) (t) + f(t) = 0

G

*

+ 1
= (I + SA)xx + SBur S1x]=

If autonomous :

#exissaulteandstartmagn. thephase

&

Elsa :

mostlygiven

1)
2)

+2
3)

Then :

We eitherget: Su = Ex(t) EIR: V(c)[K3
2V(x(t))
- > FeS => Su is invariantde

-Find JISu
,
-Find M35 (mostly (0, 0)
-> show that M is themaximal invariant set in 5

-> Find number of pole-zero cancellations:

calculate which modes& are uncontrollable and/or unobservable = - 1880
i. e

.
show that all cMwould leave the invariant set

using PHB-test
.

If observability and/or controllability PHB= Matrix
La SalleEsHESm Es M

,
If 450 can be chosen arbitrarily

for a ti do not have full rank => Zi gets pole-zero cancelled. Count these Zi when 1k((till + 0 => V(x) + 1 => GAS
Or we get: S =Sx : < (9 , 6)

,
<2 + [c

, d]]
proves invariant by calculating derivatives on boundary

=> Trajectories starting in S never leaves => S is invariant.
Find 5

,
Find M . (f(x(t)ll+ * => V((t)) + x = GAS

* Phase crossover frequency Nyquist from Bode : Nyanist from Transfer Function :

set w =0 and read Magn .
&Phase from Bode 1

. Plug in S=W -> G(in)
set w + 0 and read Magn . (0) Aphase from 2

· Separate Gliw) = Re[G(W) +j]m[Gliwl]
For a couple of angles

3. Find intersections with real Qimaginary atis

e .g .. & = 1800
, 900 ,

450....
4. Analyse phase as we o

read Magn . & Phase from Bode Katib :

-Textan" (2) if a < 060

&If wy does not exist => GM + 0
,

If we does not exist PME & plot in Nyquist: Izei* -> a + ib tan(a) if 930
x + +an

- T(t) if a <0628


