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Abstract

Eigendecomposition is a fundamental tool in numerous scientific and
engineering disciplines, playing a critical role in a large number of prob-
lems. Efficient numerical methods for eigendecomposition are of crucial
importance due to the complexity and computational cost of this process,
especially for large-scale matrices. This thesis discusses the theoreti-
cal aspects of optimized eigendecomposition algorithms for symmetric
block-tridiagonal and symmetric broad arrowhead matrices, as well
as documenting the empirical results obtained by developing a robust
and high-performance implementation of these methods. Additionally,
practical applications of these techniques in numerical simulations of
ring-polymer instanton theory are discussed and evaluated with a set
of real-world test problems. The performance and accuracy results are
very promising, showcasing up to 20× speedup, for exact solutions,
compared to the state-of-the-art eigensolver routines implemented in
the Intel oneAPI MKL library. Moreover, up to 30× faster runtimes
were recorded for approximated solutions with a deviation of less than
10% from the exact results, demonstrating the validity of the proposed
methods.
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Chapter 1

Introduction

1.1 Introduction

Eigendecomposition, also known as diagonalisation, is a fundamental tool
in various scientific and engineering disciplines, playing a critical role in a
large number of problems. Its applications range from machine learning
and data science tasks, such as principal component analysis (PCA) [1],
to studying the physical properties of harmonic oscillator chains [2], to
solving radial Schrödinger’s equation in quantum mechanics [3]. Efficient
numerical methods for eigendecomposition are crucial due to the complexity
and computational cost of this process, especially for large-scale matrices.
Although very efficient eigensolvers for generic dense matrices are already
implemented in numerical libraries such as LAPACK [4] or Intel oneAPI MKL
[5], many physical systems can be described with matrices that exhibit specific
structural traits, which can be exploited to significantly reduce computational
expenses.

This work discusses the theory behind various optimized eigendecompo-
sition algorithms for certain classes of symmetric real matrices, as well as
documenting the empirical results obtained by developing a robust and
high-performance implementation of the discussed methods. Additionally,
practical applications of these techniques in numerical simulations of ring-
polymer instanton theory, as described in [6], are discussed and evaluated
with a set of real-world test problems.

Specifically, this research focuses on efficiently solving the eigenproblem for
two specific matrix classes: block-tridiagonal/banded and broad arrowhead
matrices. Block-tridiagonal matrices can be diagonalised efficiently by using
the Block divide and conquer algorithm (BD&C), which operates on the
off-diagonal blocks of the matrix directly by employing a binary tree divide
and conquer strategy. The eigendecomposition of broad arrowhead matrices
is instead obtained from an intermediate decomposition known as arrowhead
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1.1. Introduction

factorization (AF), which can then be exploited to compute the eigenvalues
and eigenvectors of the original matrix. Two additional methods, used to
diagonalise diagonal plus rank one (DPR1) and simple arrowhead matrices,
are also discussed as they are required internally by both the BD&C algorithm
and the AF eigensolver.

The thesis is structured into six main chapters: chapters 2-5 are each dedicated
to the theoretical discussion of a different eigendecomposition algorithm.
More precisely, chapter 2 describes the BD&C algorithm for block-tridiagonal
matrices, chapter 3 details an efficient method for DPR1 matrices, chapter 4
explains how the arrowhead factorization eigensolver works and chapter 5
illustrates an optimized approach for simple arrowhead matrices. Chapter
6 showcases the results of numerical experiments and benchmarks used
to evaluate the performance and accuracy of the BD&C and AF methods.
Finally, chapter 7 is dedicated to final remarks and conclusions.
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Chapter 2

Eigendecomposition of symmetric
banded and block-tridiagonal matrices

2.1 Introduction

In the realm of computational science, we are often confronted with the
problem of computing the eigenvalues and eigenvectors of a matrix, espe-
cially in the context of large-scale simulations. Banded and block-tridiagonal
matrices, in particular, often emerge as the natural mathematical representa-
tion of many physical systems. This is the case, for examples, of problems
related to the path-integral formulation of quantum mechanics [7]. More
precisely, numerical simulations based on instanton theory, as described in
[6], very often rely on an iterative optimization process that involves the
diagonalisation of block-tridiagonal matrices. Given the expensive nature of
this operation, it is essential to develop optimized strategies that allow to
reduce the computational cost of eigendecomposition.

This chapter focuses on the theoretical aspects required for the implementa-
tion of an optimized algorithm used to compute the full eigendecomposition
of banded and block-tridiagonal matrices.

2.2 State-of-the-art eigensolver algorithms

The algorithms currently implemented in industry-leading numerical li-
braries, such as Intel oneAPI MKL [5] and LAPACK [4], rely on a three step
eigendecomposition process: first, the matrix is reduced to tridiagonal form
using a series of orthogonal transformations [8]. Then, its eigenvalues and
eigenvectors are calculated with one of three available algorithms for the tridi-
agonal eigenproblem: the QR algorithm [9], Cuppen’s divide and conquer
(DC) algorithm [10] [11] or the Multiple Relatively Robust (MRR) algorithm
[12]. Finally, the eigenvectors of the tridiagonal matrix are backtransformed
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2.3. Problem description

to reconstruct the final solution. In general, the cost of this procedure is dom-
inated by the last backpropagation step, which has a complexity of O(n3) for
dense matrices and O(n2b) for banded matrices with semi-bandwidth b [13].
LAPACK offers two main driver functions that implement this process: the
DSYEVR routine for dense matrices and the DSBEVD routine for banded ma-
trices. This work, however, considers an alternative approach, known as the
Block Divide and Conquer algorithm (BD&C), that is a direct generalisation
of Cuppen’s DC algorithm for the tridiagonal problem. With this strategy,
it is possible to operate directly on tri-block diagonal matrices without the
need of reduction to tridiagonal form. Figure 2.1 shows a diagram of the
different eigendecomposition strategies.

The work published in [13] discusses an in-depth comparison between the
previously mentioned methods, including the BD&C algorithm. Their find-
ings highlight the strength and limitations of both tridiagonalisation and
block operation based techniques.

In the upcoming sections, a detailed description of the BD&C algorithm
is given. The description of this algorithm has appeared in the literature
since the early late 90’s/early 2000’s and it is difficult to attribute it to a
single author. The work published by Gansterer in [14] is one of the earliest
papers discussing the topic. However, it is important to note that many
ideas, both theoretical and practical, proposed in this work were developed
independently.

2.3 Problem description

Consider a symmetric block tridiagonal matrix T ∈ Rn×n of the following
form:

T :=



A1 BT
1

B1 A2 BT
2

B2 A3
. . .

. . . . . . BT
p−1

Bp−1 Ap

 (2.1)

where Ai, Bi are dense matrices of size f × f and p is the number of diagonal
blocks. If T is banded, then the blocks Bi are upper triangular matrices.

The goal is to compute the eigenvalues and eigenvectors of T, that is, find
n × n matrices Λ and Q such that:

T = QΛQ⊤ (2.2)

Moreover, since T is a symmetric real matrix, the eigenvectors can always be
chosen so that Q is orthogonal. This additional constraint guarantees that
the inverse Q−1 must never be explicitly computed as it is equal to Q⊤.
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2.4. Overview of the algorithm

Tridiagonalization-based Dense Eigensolvers

Tridiagonalization-based Banded Eigensolvers

Block Divide and Conquer Algorithm

Figure 2.1: Diagram of the different methods for diagonalisation. After tridiagonalisation, dense
solver DSYEVR uses the MRRR algorithm with complexity O(n2), while the banded solver
DSBEVD implements the divide and conquer algorithm with complexity O(n3). The BD&C
algorithm has complexity O(n3).

2.4 Overview of the algorithm

The BD&C algorithm computes the eigendecomposition of a symmetric
tri-block diagonal matrix in a two-phase strategy of division and conquering.

1. The division step revolves around splitting the matrix T into two smaller
similar sub-problems, which are then diagonalised either by recursively
applying the BD&C algorithm again, or by invoking a dense eigensolver
routine.

2. Once the eigendecomposition of the sub-problems is known, the algo-
rithm transitions to its next step: conquering. During this phase, the
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partial solutions are merged in a tree-like order to generate the final
eigendecomposition of the matrix.

At the most fundamental level, BD&C is a classic binary tree divide and
conquer algorithm. This is a remarkable characteristic as by breaking the
matrix down into smaller and more manageable blocks, it is possible to
significantly reduce the work-depth of the algorithm and take advantage of
the many cores offered by modern CPUs. This trait emerges as a result of
the sparsity structure of the intermediate results, allowing for a hierarchical
approach to problem-solving similar to much simpler problems, such as, for
example, sorting a list.

In the subsequent sections, we will discuss the mathematical details of the
two steps of the BD&C algorithm.

2.5 Computation of the leaf problems

For simplicity, we first consider the minimal case that arises when diagonal-
ising block-tridiagonal matrices such as T.

Consider the following matrix:

T :=
[

A1 BT

B A2

]
(2.3)

Again we focus on computing the eigendecomposition of T.

2.5.1 The division step

The first step is to express T as a low rank modification of a block diagonal
matrix:

T = T̃ + WW⊤ (2.4)

Where T̃ is a block diagonal matrix and WW⊤ is a rank- f modification. The
trick here lays in computing the singular value decomposition B = UΣV⊤.
This allows us to express T as:

T =

[
A1 − VΣV⊤ 0

0 A2 − UΣU⊤

]
+

[
VΣV⊤ VΣU⊤

VΣU⊤ UΣU⊤

]
=

=

[
A1 − VΣV⊤ 0

0 A2 − UΣU⊤

]
+

[
VΣ

1
2

UΣ
1
2

] [
Σ

1
2 V⊤ Σ

1
2 U⊤

]
= T̃ + WW⊤

(2.5)
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2.5. Computation of the leaf problems

We diagonalise T̃ by operating on the diagonal blocks with a dense eigen-
solver:

Ã1 = Q̃1Λ̃1Q̃⊤
1

Ã2 = Q̃2Λ̃2Q̃⊤
2

T̃ = Q0Λ0Q⊤
0 =

[
Q̃1

Q̃2

] [
Λ̃1

Λ̃2

] [
Q̃⊤

1
Q̃⊤

2

] (2.6)

We now have a partial solution of the form:

T = T̃ + WW⊤ = Q0Λ0Q⊤
0 + WW⊤ (2.7)

2.5.2 The synthesis step

Given the partial solution 2.7, we now seek to compute the full solution
T = QΛQ⊤. From 2.7 we obtain:

T = T̃ + WW⊤ = Q0Λ0Q⊤
0 + WW⊤ =

= Q0(Λ0 + Q⊤
0 WW⊤Q0)Q⊤

0 = Q0(Λ0 + ZZ⊤)Q⊤
0

(2.8)

The synthesis matrix S is defined as S := Λ0 + ZZ⊤. Given that Q0 is
orthogonal, T and S are similar matrices, sharing the same eigenvalues, and
as such we focus on solving the eigenproblem for S.

Computing the Eigenvalues and Eigenvectors of the Synthesis Matrix

We can express S as:

S = Λ0 + ZZ⊤ = Λ0 +
f

∑
i=1

ziz⊤i (2.9)

With zi representing the i-th column of Z. This paves the way for an iterative
approach where the rank f modification is represented as a series of f rank-1
updates. At each iteration, a diagonal plus rank 1 (DPR1) eigenproblem
is solved and the eigenvalues and eigenvectors are updated accordingly.
The solution of each DPR1 eigenproblem can computed efficiently in O(n2),
as will be explained in the upcoming chapters. This yields the following
recursive definition:


Λi, Qi = DPR1 eigh(Λi−1, z̃i) i ≥ 1

z̃i =

(
i−1

∏
j=1

Qj

)⊤
zi i ≥ 2

z̃1 = z1

(2.10)
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2.5. Computation of the leaf problems

The final solution T = QΛQ⊤ is given by:

T = QΛQ⊤

Q =
f

∏
j=0

Qj, Λ = Λ f

In practice, Q is computed by accumulating the product ∏
f
j=0 Q⊤

j . Algorithm
1 showcases the pseudocode for implicit construction of S and solution of
the low rank update eigenproblem in O(n3).

Algorithm 1: Compute eigenvalues of S
Input : Λ0, Q0, W
Output : Λ, Q
Λ := Λ0
Q := Q0
for i := 0 to f-1 do

z̃i := Q⊤W . col(i)
// Update Λ and Q.

Λtmp, Qtmp := DPR1 eigh(Λ, z̃i)
// Update Λ
Λ = Λtmp
// Accumulate Q
Q := Q · Qtmp

end
return Λ, Q

The most expensive operation of the whole algorithm is the accumulation of
the Qi matrices to form the eigenvector matrix Q. Figure 2.2 shows a diagram
of the full computation for this merge operation.
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2.6. Increasing the problem size

Figure 2.2: Graphical representation of the computational graph for the merge operation of two
partial solutions.

2.6 Increasing the problem size

Let us now consider the general case as defined in 2.1. The same principles
apply and we start by splitting the matrix T into a series of rank f updates
as follows:

9



2.6. Increasing the problem size

T =


A1 − V1Σ1V⊤

1
A2 − U1Σ1U⊤

1 − V2Σ2V⊤
2

. . .
Ap − UpΣpU⊤

p

+

+


V1Σ1V⊤

1 B⊤
1 0 · · ·

B1 U1Σ1U⊤
1 0 · · ·

0 0 0 · · ·
...

...
...

. . .

+


0 0 0 · · ·
0 V2Σ2V⊤

2 B2⊤ · · ·
0 B2 U2Σ2V⊤

2 · · ·
...

...
...

. . .

+ . . . =

=


Ã1

Ã2
Ã3

. . .
Ãp

+


V1Σ

1
2
1

U1Σ
1
2
1

0
0
...


[
V1Σ

1
2
1 U1Σ

1
2
1 0 0 . . .

]
+

+



0

V2Σ
1
2
2

U2Σ
1
2
2

0
...


[
0 V2Σ

1
2
2 U2Σ

1
2
2 0 . . .

]
+ . . . =

= T̃ +
p−1

∑
i=1

WiW⊤
i = T̃ +

p−1

∑
i=1

f

∑
j=1

zi,jz⊤i,j

(2.11)

This process can be rewritten equivalently as:


Ãi = Ai − Ui−1Σi−1U⊤

i−1 − ViΣiV⊤
i for 2 ≤ i ≤ p − 1

Ã1 = A1 − V1ΣV⊤
1

Ãp = Ap − Up−1Σp−1U⊤
p−1

(2.12)

The synthesis step does not change significantly, however in this case there
are p − 1 synthesis matrices Si = Λi,0 + WiW⊤

i of varying size. Given the
sparsity structure introduced by the 0-padding present in the Wi matrices
from Eq. 2.11, it is possible to merge the partial solution in parallel using a
binary tree strategy to significantly reduce the work-depth of the algorithm.
Figure 2.3 displays am example diagram showcasing the computational tree
for a block-tridiagonal matrix with 8 blocks of size 5 × 5.
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2.6. Increasing the problem size

Figure 2.3: Computational graph of the BD&C algorithm for a block-tridiagonal matrix with 8
blocks of size 5 × 5. The gray blocks represent off-diagonal blocks of smaller subproblems. The
black dashed lines show the splitting location for the division step. The red off-diagonal blocks
represent the low rank update applied to the two partial solution during the merge operation.
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2.7. Computing approximate eigenpairs

2.7 Computing approximate eigenpairs

In many cases, full accuracy when computing the eigendecomposition of
a matrix is not required and it is sufficient to guarantee orthogonality of
the eigenvectors. This is specifically true, for example, when dealing with
iterative optimization algorithms that are inherently influenced by a certain
level of heuristics and approximations. One of the major advantages of the
BD&C algorithm over tridiagonalisation-based solvers is that it is possible to
sacrifice a certain degree of accuracy in exchange for significant performance
improvements. Recall that the SVD decomposition of a matrix yields its best
low rank approximation [15]. Consequently, the first r columns of the Wi
matrices of Eq. 2.11 already implicitly represent the best rank-r approximation
of their respective off-diagonal blocks Bi. Given that the cost of merging two
partial solutions is determined virtually exclusively by the number of DPR1
updates computed, approximating each Bi block with the first r columns of
its Wi matrix can lead to significant performance improvements, especially
when r is chosen to be much smaller than f . Moreover, given that merging
two partial solutions of size n × n returns a matrix of quadruple size 2n × 2n,
it is easy to see that the computational cost of the merge operations gets
progressively more expensive for nodes closer to the root of the tree. We can
leverage this fact to conditionally decide when to approximate the Wi updates
with lower rank matrices: by ensuring that only merge operations on large
matrices are approximated, it is possible to maximize performance while
minimizing the error introduced by the approximation. The performance-
accuracy of the tradeoff is thus controlled by two parameters: the rank r < f
for the low rank approximation of the Bi matrices, and the threshold τ used
to determine the minimum problem size where approximation should be
applied.
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Chapter 3

Eigendecomposition of DPR1 matrices

3.1 Introduction

This chapter focuses on the stable and efficient eigendecomposition of diago-
nal plus rank one (DPR1) matrices. These special matrices are of particular
interest as they appear in the “conquer” step the BD&C algorithm described
in the previous chapter. The accuracy of the BD&C strategy depends on the
precision in solving the DPR1 eigenproblem. This is because, when merging
two partial solutions, the eigendecomposition of the synthesis matrix is cal-
culated by diagonalising a series of rank-one updates of a diagonal matrix.
Inaccuracies in this step can propagate errors to the final solution and drasti-
cally impact both the accuracy of the eigenvalues, as well as the orthogonality
of the eigenvectors. This chapter outlines the DPR1 eigenproblem and details
the methods implemented to achieve accurate solutions.

3.2 Problem description

The eigenproblem for DPR1 matrices consists in computing the eigendecom-
position of an n × n symmetric real matrix of the form:

A = D + ρzz⊤

where D is a diagonal matrix, ρ is a non-zero scalar and z is a vector.

Historically, this has been a notably difficult task to solve accurately, mainly
due to numerical instability and orthogonality issues that arise when the
eigenvalues are not computed with sufficient accuracy [16]. LAPACK imple-
ments the ?LAED family of routines to solve this problem for the tridiagonal
divide and conquer algorithm [17]. However, given that these are internal
computational routines with a very specific purpose, their use cases are
limited and it was impossible to repurpose them for the BD&C algorithm.

13



3.3. Solving the eigenproblem for irreducible DPR1 matrices

Thus, a more recent approach to solving this problem was chosen and
implemented for this work. This algorithm was proposed by Jakovčević Stor,
Slapničar and Barlow in 2013 [16] and offers many attractive qualities such
as better numerical accuracy than LAPACK’s ?LAED routines, low O(n2)
complexity and a high degree of parallelism, while still being simpler than
the alternatives [16]. At the time of writing, only an early development Julia
implementation of this algorithm exists, authored by the original designers of
the algorithm. As part of this work, a high-performance C++ implementation
of this algorithm was written.

The following sections are dedicated to discussing the most important con-
cepts and equations needed for a stable and efficient implementation of this
algorithm. While theoretical discussions on accuracy and error analysis are
omitted, as they are thoroughly covered in [16], the focus is set on the details
required for a practical implementation of the algorithm.

3.3 Solving the eigenproblem for irreducible DPR1 ma-
trices

We first discuss the diagonalisation of irreducible DPR1 matrices. Further
explanations on the topics of the general DPR1 eigenproblem, as well as the
deflation process will be provided in the upcoming sections.

Without loss of generality, consider the eigenproblem generated by the
irreducible matrix

A = D + ρzz⊤ (3.1)

where

D = diag(d1, d2, ..., dn) z = [ ξ1, ξ2, ..., ξn ]⊤ (3.2)

such that:

• ρ > 0

• ξi ̸= 0 ∀i

• i ̸= j ⇒ di ̸= dj ∀i, j (the elements of D are unique)

• i < j ⇒ di > dj ∀i, j (D is sorted decreasingly)

Given the special structure of this matrix, the eigenvalues can be computed
as the roots of the secular function according to Theorem 3.1.

14



3.3. Solving the eigenproblem for irreducible DPR1 matrices

Theorem 3.1 The eigenvalues of an irreducible DPR1 problem are given by the
zeros of the secular function:

f (λ) = 1 + ρ
n

∑
i=1

ξ2
i

di − λ
(3.3)

Proof The following proof was adapted from [11]. The eigenvalues of the
DPR1 matrix are the roots of its characteristic polynomial:

det(A − λI) = det(D + ρzz⊤ − λI) = 0

Notice that D − λI is invertible as λ cannot be an eigenvalue of D, otherwise
there would be a zero entry in z making the problem not irreducible as
described in Eq. 3.2.

Thus, we can rewrite the left side of the above equation as:

det(D + ρzzT − λI) =

= det((D − λI)(I + ρ(D − λ)−1zzT)) =

= det(D − λI)det(I + ρ(D − λ)−1zzT)

Using again the fact that D − λI is invertible, it is clear that det(D − λI) can
never be zero. Thus we obtain the following equation:

det(I + ρ(D − λ)−1zzT) = 0

Now we can leverage the fact that det(I + xy⊤) = 1 + x⊤y
with x = ρ(D − λ)−1z, y = z and obtain:

det(I + ρ(D − λ)−1zzT) =

= 1 + ρzT(D − λI)−1z =

= 1 + ρ
n

∑
i=1

ζ2
i

di − λ

Thus finally giving:

1 + ρ
n

∑
i=1

ζ2
i

di − λ
= 0 □
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3.3. Solving the eigenproblem for irreducible DPR1 matrices

Figure 3.1: Graphical representation of the secular function from Theorem 3.1.

As pointed out in [16], it is important to notice that the diagonal elements
of the matrix D are the poles of the secular function and that for ρ > 0, f is
strictly increasing. This in turns guarantees the strict interlacing property:

λ1 > d1 > λ2 > d2 > ... > λn > dn (3.4)

This property is also clearly visible from figure 3.1: the largest eigenvalue λ1
is the rightmost root of the function, while all other eigenvalues are bracketed
by the poles d1, d2, ..., dn.

The eigenvectors can then be computed efficiently as well.

Theorem 3.2 The normalized eigenvectors [ v1, v2, ..., vn ] of an irreducible DPR1
problem are given by the following formula:

vi =
(D − λi I)−1z

||(D − λi I)−1z|| ∀i s.t. : 1 ≤ i ≤ n (3.5)
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3.3. Solving the eigenproblem for irreducible DPR1 matrices

Proof The following proof was adapted from [11]. Consider the vector
(D − λI)−1z, then for a DPR1 matrix D + ρzz⊤ we have:(

D + ρzzT
) [

(D − λI)−1z
]
=

=
(

D − λI + λI + ρzzT
)
(D − λI)−1z =

= z + λ(D − λI)−1z + z
[
ρzT(D − λI)−1z

]
=

= z + λ(D − λI)−1z + z

−1 + 1 + ρzT(D − λI)−1z︸ ︷︷ ︸
=0 as λ satisfies 3.3

 =

= z + λ(D − λI)−1z − z

= λ[(D − λI)−1z]

Thus (D − λI)−1z is an eigenvector of D + ρzz⊤. Normalization finally yields:

vi =
(D − λi I)−1z

||(D − λi I)−1z|| □

In principle, it is possible to compute all eigenvalues directly from Eq. 3.3
however, in practice, computing the roots of the secular function directly
results in numerically unstable results: it is impossible to guarantee that
the eigenvalues are computed with high enough accuracy to ensure the
orthogonality of the eigenvectors computed with Theorem 3.2.

The cause for this is the ill conditioned nature of the secular function itself.
Figure 3.2 shows how even when the values of D, ρ and z are sufficiently
”nice”, the secular function can be ill-conditioned with exploding first deriva-
tive close to its interior roots.

3.3.1 Overview of the algorithm

This section details the algorithm proposed in [16]. The core idea is to apply
a shift and invert technique to the irreducible DPR1 matrix A from Eq. 3.2
in order to compute all eigenvalues as functions of the extremal eigenvalues
(either smallest or largest in absolute value) of the shifted inverted problem.
Mathematically, this is achieved with the following three step process for
each eigenpair:

1. The shifted matrix Ai = (A − di I) is computed. This matrix shares the
same eigenvectors as the original matrix A and its eigenvalues are tied
to those of A via the following relation µi = λi − di.

2. The inverse of the shifted matrix A−1
i is computed. The eigenvalues

νj, 1 ≤ j ≤ n of this matrix are the inverses of the eigenvalues of the

17



3.3. Solving the eigenproblem for irreducible DPR1 matrices

Figure 3.2: Graphical representation of the secular function generated by D =
[−3,−2,−1, 0, 1, 2, 3], z = [3, 3, 3, 3, 3, 3, 3], ρ = 1. The largest eigenvalue corresponds to
the right-most root, which is not visible. The left side of the function never converges to zero.

shifted matrix, i.e.: νj =
1
µj

∀j. Only one extremal νi is computed as it is
the only value that can be calculated in a numerically sound way.

3. Once νi is computed with sufficient accuracy, compute µi and the
corresponding eigenvector vi using Theorem 3.2, then compute the
eigenvalue λi = µi + di.

3.3.2 Numerical Implementation

Consider an irreducible DPR1 matrix A as described in 3.2 and let λ, v be an
eigenpair of A. Additionally, let di be the closest pole to λ, then by property
3.4 it is guaranteed that λ = λi or λ = λi+1.

We apply the three step process described in the previous section. The shifted
matrix Ai is given by:

Ai = A − di I =

 D1 0 0
0 0 0
0 0 D2

+ ρ

 z1
ζi
z2

 [ zT
1 ζi zT

2
]

(3.6)

with:
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3.3. Solving the eigenproblem for irreducible DPR1 matrices

D1 = diag (d1 − di, . . . , di−1 − di)

D2 = diag (di+1 − di, . . . , dn − di)

z1 =
[

ζ1 ζ2 · · · ζi−1
]T

z2 =
[

ζi+1 ζi+2 · · · ζn
]T

The inverse A−1
i is computed according to Theorem 3.3.

Theorem 3.3 The inverse of a shifted DPR1 matrix is a permuted arrowhead matrix
of the form:

A−1
i =

 D−1
1 w1 0

wT
1 b wT

2
0 w2 D−1

2

 (3.7)

with:

w1 = −D−1
1 z1

1
ζi

w2 = −D−1
2 z2

1
ζi

b =
1
ζ2

i

(
1
ρ
+ zT

1 D−1
1 z1 + zT

2 D−1
2 z2

)
.

Proof The proof can be carried out by multiplication. □

The eigenvalues of A are tied to those of Ai and A−1
i by the following

equation:

λi = µi + di =
1
νi

+ di (3.8)

A−1
i is a permuted arrowhead matrix with a very specific structure and

similarly to the DPR1 case, its eigenvalues can be computed as the zeros of a
secular function.

Theorem 3.4 Let M be an irreducible arrowhead matrix of the form

M =

[
D u
u⊤ α

]
where:
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3.3. Solving the eigenproblem for irreducible DPR1 matrices

D = diag(d1, d2, ..., dn)

u = [ υ1, υ2, ..., υn ]⊤

such that:

• υi ̸= 0 ∀i s.t.: 1 ≤ i ≤ n

• i ̸= j ⇒ di ̸= dj ∀i, j (the elements of D are unique)

• i < j ⇒ di > dj ∀i, j (D is sorted decreasingly)

then its eigenvalues are the roots of the secular function:

f (λ) := α − λ −
n

∑
i=1

υ2
i

di − λ
(3.9)

Proof The proof is similar to that of Theorem 3.1. The eigenvalues of M are
the roots of its characteristic polynomial:

det(M − λI) = det
([

D − λI u
u⊤ α − λ

])
= 0

Notice that D−λI is never singular; otherwise, there would be a zero element
in u, making the matrix M not irreducible.

Now, applying the Schur determinant formula, we rewrite:

det
([

D − λI u
u⊤ α − λ

])
= det(D − λI)det(α − λ − u⊤(D − λI)−1u)

Knowing that det(D − λI) is never zero as D − λI is never singular, we can
further simplify:

det(α − λ − u⊤(D − λI)−1u) = α − λ −
n

∑
i=1

υ2
i

di − λ

finally giving:

α − λ −
n

∑
i=1

υ2
i

di − λ
= 0 □
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3.3. Solving the eigenproblem for irreducible DPR1 matrices

Theorem 3.4 can be easily generalized to include permuted arrowhead matri-
ces such as those arising when A−1

i is computed (Theorem 3.3).

Consider a permuted arrowhead matrix M̂ of the form:

M̂ =

D1 u1 0
u⊤

1 α u⊤
2

0 u2 D2


M̂ can be recast to an irreducible arrowhead matrix via a similarity transform
with a permutation matrix P.

M = PM̂P⊤ =

D1 0 u1
0 D2 u2

u⊤
1 u⊤

2 α

 =

[
D u
u⊤ α

]

Given that P is an orthogonal matrix, M̂ will have the same eigenvalues as
M. By leveraging this fact alongside Theorem 3.4, we can conclude that the
eigenvalues of A−1

i from Theorem 3.3 are the zeros of the secular function:

g(ν) := b − ν − wT(∆ − νI)−1w (3.10)

where:

∆ =

[
D1

D2

]
, w =

[
w1
w2

]
Once the correct extremal eigenvalue νi is determined from g, its inverse µi =
1
νi

is computed. µi is then used to compute the corresponding eigenvector vi
using Theorem 3.2. Finally, λi = µi + di is calculated.

3.3.3 Ensuring numerical stability

When computing the eigendecomposition of DPR1 matrices, as described
in the previous section, particular care must be given to ensure numerical
stability during certain steps of the algorithm. This section briefly describes
which operations are problematic and what solutions can be implemented to
ensure correct numerical results.

Computing the matrix A−1
i

The evaluation of the b element of A−1
i from Theorem 3.3 requires special

considerations in order to ensure that the inverse is calculated in a numeri-
cally sound way. This in turn is critical for an accurate computation of λ. In
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3.3. Solving the eigenproblem for irreducible DPR1 matrices

certain cases it is necessary to evaluate b using quadruple working precision
datatypes such as, for example, GCC’s float128. This is considerably
slower than using standard floating point operations, however when con-
sidering sufficiently ”nice” inputs it is rarely if ever required. To determine
when quadruple precision arithmetic is needed, two conditioning values Kb
and Kz are introduced in [16] as follows:

Kb =
1 + ρzT

1 D−1
1 z1 − ρzT

2 D−1
2 z2∣∣∣1 + ρzT

1 D−1
1 z1 + ρzT

2 D−1
2 z2

∣∣∣
Kz =

1
|ζi|

n

∑
j=1, j ̸=i

∣∣ζ j
∣∣

Kb measures whether the element b is computed accurately enough, while Kz
measures whether the computation of b affects ∥A−1

i ∥2 and the final result.
Quadruple arithmetic precision is needed whenever Kb ≫ 1 and Kz ≫ O(N),
i.e. when b is not computed accurately enough and its value greatly affects
the result.

Ill-conditioned shift dk

For certain ill-conditioned inputs it is possible that a shift di is chosen that is
not the closest to the eigenvalue λ that is being computed. This results in ν
not being the absolute largest eigenvalue of A−1

i . The conditioning number
Kν, introduced in [16], is indicative of how far ν is from νmax:

Kν =
∥A−1

i ∥2

|ν| =
|νmax|
|ν| (3.11)

Given that the spectral norm ∥A−1
i ∥2 is not readily available, it is possible to

compute Kν using either the Frobenius norm or 1-norm. This will still yield
correct results as ∥A−1

i ∥2 ≤ ∥A−1
i ∥F and ∥A−1

i ∥2 ≤ ∥A−1
i ∥1 [18]. If Kν ≫ 1

there is no guarantee that the final result λ will be computed accurately
enough. The solution to this problem is to compute a non-standard shift
σ that is close to λ, yet different from the neighbouring poles. ν can then
be computed accurately as the largest eigenvalue of a shift-inverted DPR1
matrix A−1

σ . In this case, the inverse is another DPR1 matrix, which can be
computed efficiently via the Sherman-Morrison-Woodbury formula as:

A−1
σ = D−1

σ + γD−1
σ zzTD−1

σ , γ = − ρ

1 + ρzTD−1
σ z

(3.12)

Here it is possible that the computation of γ must be done using quadruple
precision. In this case the conditioning number Kρ is given as:
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3.4. Solving the eigenproblem for general DPR1 matrices

Kρ =
| 1

ρ + z⊤Dσz|
1
|ρ| + z⊤ abs(D−1

σ )z
(3.13)

where abs(D−1
σ ) is the coefficient-wise absolute value of D−1

σ .

Quasi-zero eigenvalue

In certain rare situations there is a possibility that, for an eigenvalue λ that is
much closer to 0 than to any pole di, Eq. 3.8 could involve large cancellation.
The solution is to recompute λ as the largest value of A−1 directly. This can
be achieved efficiently with a two-step procedure:

1. Compute A−1 using Eq. 3.12 with σ = 0.

2. Recompute λi using inverse iteration: given that the eigenvector vi has
already been calculated accurately, it is possible to use it as the initial
guess of inverse iteration in order to compute λi accurately in very few
iterations.

3.4 Solving the eigenproblem for general DPR1 matrices

This section addresses the eigenproblem for general DPR1 matrices. The
conditions for diagonalising an irreducible DPR1 matrix (Eq. 3.4) as previ-
ously described are rarely met in real-world problems derived from physical
systems. Therefore, finding a numerically stable and efficient method to
transform general DPR1 matrices into irreducible ones is crucial. This process
is called “deflation.”

3.4.1 Overview

The goal of deflation is to ensure that two conditions are met: first, that
each element of D is unique and second, that no zero element appears in the
vector z. These two conditions are enforced in separate steps, known as type
1 deflation and type 2 deflation. The ordering condition set on D is achieved
by a preliminary permutation step. The following subsections describe the
deflation process in detail.

3.4.2 Type 1 deflation

Type 1 deflation aims to ensure that all elements in the D matrix of a DPR1
problem are unique. Without loss of generality, we assume that the elements
in D are sorted decreasingly. Suppose that D = diag(d1, d2, ..., dn) with
di = dj for some i and j such that i < j. Given that D is ordered, it can only
be the case that di = dk ∀k ∈ {i, i + 1, ..., j}. Let di = δ, then the matrix D is:
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3.4. Solving the eigenproblem for general DPR1 matrices

D =



d1
. . .

di−1
δ

. . .
δ

dj+1
. . .

dn


=

D1
δI

D2

 (3.14)

It is possible to find a Householder reflection that annihilates all but one
elements of z that correspond to elements δ of the matrix D.

Theorem 3.5 For a DPR1 matrix D + zz⊤ with D as described in Eq. 3.14, there
exists a Householder matrix H such that

H(D + zz⊤)H = HDH + Hzz⊤H = D + z̃z̃⊤ (3.15)

where

z̃ =



z1
...

zi−1

−
√

∑
j
p=i z2

p

0
...
0

zj+1
...

zn



=

 z1:i−1
−∥zδ∥e0

zj+1:n

 (3.16)

Proof Let zδ be the part of the z vector that corresponds to the δ elements in
D. We first construct a “local” Householder matrix that annihilates all but
the first element of zδ. Householder reflection matrices are of the form:

H̃ = I − 2
uu⊤

∥u∥2 (3.17)

Let:

u = zδ + ∥zδ∥e0 (3.18)
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where e0 = [1, 0, 0, ..., 0]⊤. We now have a Householder matrix H̃ that satisfies
the following property:

H̃zδ = (I − 2
uu⊤

∥u∥2 )zδ =

= zδ − 2
(zδ + ∥zδ∥e0)(zδ + ∥zδ∥e0)⊤

∥zδ + ∥zδ∥e0∥2 zδ

Notice that the denominator ∥zδ + ∥zδ∥e0∥2 can be further simplified to

∥zδ + ∥zδ∥e0∥2 = (zδ + ∥zδ∥e0)
⊤(zδ + ∥zδ∥e0) =

= z⊤δ zδ + 2∥zδ∥zδ,0 + ∥zδ∥2 =

= 2(∥zδ∥2 + ∥zδ∥zδ,0)

Where zδ,0 is the first element of zδ. We plug this result back into the previous
expression and continue simplifying:

zδ − 2
(zδ + ∥zδ∥e0)(zδ + ∥zδ∥e0)⊤

∥zδ + ∥zδ∥e0∥2 zδ =

= zδ − 2
(zδ + ∥zδ∥e0)

2(∥zδ∥2 + ∥zδ∥zδ,0)
(∥zδ∥2 + ∥zδ∥zδ,0) =

= zδ − (zδ + ∥zδ∥e0) = −∥zδ∥e0

Hence we are able to construct a Householder reflection that annihilates all
but the first element of zδ by setting u from Eq. 3.18 in Eq. 3.17.

Now we construct a global Householder matrix H that is able to deflate the
problem. Let:

H =

I
H̃

I

 (3.19)

Clearly H is still a reflection matrix as it satisfies:

HH =

I
H̃

I

I
H̃

I

 =

I
H̃H̃

I

 =

I
I

I
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Yet it also holds that:

HDH =

I
H̃

I

D1
δI

D2

I
H̃

I

 =

=

D1
δH̃H̃

D2

 =

D1
δI

D2

 = D

and that:

Hz =

I
H̃

I

z1:i−1
zδ

zj+1:n

 =

z1:i−1
H̃zδ

zj+1:n

 =

 z1:i−1
−∥zδ∥e0

zj+1:n

 (3.20)

Which in turn guarantee that H satisfies the property:

H(D + zz⊤)H = HDH + Hzz⊤H = D + z̃z̃⊤ □

In practice, most of the mathematical operations shown for type 1 deflation
are done implicitly to save the cost of computation. Snippet 2 shows the
pseudocode for a possible implementation, yet further considerations are
required to fully guarantee numerical stability of this process.

3.4.3 Type 2 deflation

Type 2 deflation ensures that no zero elements appear in z. This is done by
partitioning the z vector in zero and non-zero elements, and reordering D
accordingly. Consider the DPR1 problem:

D + zz⊤ =

[
D̃

D̂

]
+

[
z̃
0

] [
z̃
0

]⊤
=

[
D̃ + z̃z̃⊤

D̂

]
(3.21)

Clearly some of the eigenvalues can be read directly, as the matrix is diagonal
in D̂. Thus it is sufficient to compute the diagonalisation D̃ + z̃z̃⊤ = Q̃Λ̃Q̃⊤

and the full solution will be given by:

D + zz⊤ = QΛQ⊤ =

[
Q̃

I

] [
Λ̃

D̂

] [
Q̃⊤

I

]
(3.22)

By leveraging these observations, it is possible to implement an efficient pro-
cess that allows for reduction and diagonalisation of general DPR1 matrices:

26



3.4. Solving the eigenproblem for general DPR1 matrices

Algorithm 2: Type 1 deflation algorithm
Initialize :multiplicity := []
Initialize : H := I
// D is assumed ordered decreasingly
i := 0
while i < N do

j := i + 1
δ := D(i)
while j ≤ N and δ = D(j) do

j := j + 1
end
if j − i > 1 then

multiplicity.append(pair(i, j − i))
end
i := j

end
foreach pair (i, m) in multiplicity do

u := zi:i+m
u(0) := u(0) + ∥zi:i+m∥
Hi:i+m,i:i+m := I − 2 uu⊤

∥u∥2

z(i) := −∥zi:i+m∥
zi+1:i+m := 0

end

1. If needed, compute a permutation P that sorts the matrix D in decreas-
ing order. Apply P to D and to z.

2. Compute type 1 deflation as previously described. This introduces new
zero entries in z, while leaving D unchanged.

3. Compute type 2 deflation. This partitions the zero and non-zero ele-
ments of z and reorders D as described in Eq. 3.21.

4. The irreducible solution is computed as described in section 3.3.

5. The deflated solution is computed by setting λi = di and vi = ei for all
i where zi = 0 as described in Eq. 3.22.

6. The final solution is computed by applying the deflation Householder
matrix to the eigenvectors and permuting both eigenvalues and eigen-
vectors back to their original positions.
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Chapter 4

Eigendecomposition of broad
arrowhead matrices

4.1 Introduction

This chapter discusses the efficient eigendecomposition of broad arrowhead
matrices and its contents are adapted and simplified from a forthcoming
paper submitted for publication [19]. Arrowhead matrices are frequently
encountered in many scientific and engineering problems [20]. While an
efficient eigendecomposition algorithm, which will be discussed in the next
chapter, for such matrices is already exists [20], many physical systems
must be described by matrices that are generalizations of simple arrowhead
matrices. This is the case for numerical simulations implementing instanton
theory. Specifically, simulations based on Golden-rule instanton theory,
as described in [21] and [22], involve an iterative optimization process that
requires repeated diagonalisation of a banded arrowhead Hessian matrix with
arrowhead-width 1. These matrices can easily become very large, making
the eigendecomposition process expensive, and it is essential to develop and
implement optimized algorithms which can enable the simulation of new
larger physical systems.

4.2 Problem description

Consider an n × n broad arrowhead matrix of the following form:

M =

[
M̃l×l Wl×g
W⊤

g×l Rg×g

]
(4.1)

where M̃l×l is either banded or block-tridiagonal, Wl×g is a tall and thin
matrix and Rg×g is a small dense square matrix. Additionally, it holds that
l + g = n, where g is known as the “width” of the arrowhead of the matrix.
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4.3. Overview of the algorithm

The goal is to compute the eigendecomposition of M efficiently by exploiting
the structure of the matrix. Figure 4.1 displays a more intuitive visualisation
of the broad arrowhead matrix of Eq. 4.1.

M̃ W

W> R

0

0

Figure 4.1: Structure of a banded broad arrowhead matrix as described in Eq. 4.1.

4.3 Overview of the algorithm

The eigendecomposition strategy for broad arrowhead matrices relies on a
two-step process:

1. An intermediate factorization of the matrix M, known as Arrowhead
Factorization (AF), is computed by diagonalising the M̃ matrix with
an optimized eigensolver that can exploit its structure, such as for
example the LAPACK banded eigensolver routine DSBEVD or the
BD&C algorithm discussed in chapter 2.

2. Once the arrowhead factorization is known, it is possible to reformulate
the problem as a series of g simple arrowhead matrices, which can
be diagonalised efficiently in O(n2) using the method described in
[20]. The full solution is then reconstructed by backtransforming the
eigenvectors of the simple arrowhead matrices.

4.4 Numerical implementation

The previous section introduced the eigendecomposition strategy as a two-
phase process. This section will delve into the essential details necessary for
implementing both steps of this method.
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4.4. Numerical implementation

4.4.1 Arrowhead factorization

The first step of the process involves computing an intermediate factorization
known as arrowhead factorization (AF). Theorem 4.1 gives a definition and a
proof of existence, both taken from the work proposed in [19], of arrowhead
factorization for any real symmetric matrix.

Theorem 4.1 (Existence of arrowhead factorization) Given any square sym-
metric real matrix M ∈ Rn×n, there exists a pair of matrices A ∈ Rn×n and
Q ∈ Rn×n such that:

M = QAQ⊤ (4.2)

Where Q is an orthogonal matrix and A is a symmetric arrowhead matrix of the
form:

A =

[
D u
u⊤ α

]
D = diag(d1, d2, ..., dn−1)

u ∈ Rn−1, α ∈ R

Proof We give proof of AF by construction. Consider the following represen-
tation of the matrix M:

M =

[
M̃ z
z⊤ ρ

]
=

[
M̃

0

]
+

[
0 z

z⊤ ρ

]
(4.3)

Here M̃ ∈ Rn−1×n−1 is the top-left n − 1 × n − 1 block of M, z ∈ Rn−1 is a
vector containing first n − 1 entries of the last column of M and ρ ∈ R is the
scalar value found in the bottom right corner of M. Notice that the second
term of the sum is an arrowhead matrix with zero shaft. We proceed by
computing the eigensystem of the symmetric real matrix M̃ = Q̃D̃Q̃⊤ and
defining the augmented solution:

Q =

[
Q̃

1

]
, D =

[
D̃

0

]
, (4.4)

Using Q and D from Eq. 4.4, it is possible to reconstruct the first term of the
right-hand side of Eq. 4.3:

QDQ⊤ =

[
Q̃

1

] [
D̃

0

] [
Q̃⊤

1

]
=

[
M̃

0

]
(4.5)
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Substituting the results of Eq. 4.4 in Eq. 4.3 yields the following:

M =

[
Q̃

1

] [
D̃

0

] [
Q̃⊤

1

]
+

[
0 z

z⊤ ρ

]
=

=

[
Q̃

1

] ([
D̃

0

]
+

[
0 Q̃⊤z

z⊤Q̃ ρ

]) [
Q̃⊤

1

]
=

=

[
Q̃

1

] ([
D̃

0

]
+

[
0 w

w⊤ ρ

]) [
Q̃⊤

1

]
=

=

[
Q̃

1

]
︸ ︷︷ ︸

Q

[
D̃ w

w⊤ ρ

]
︸ ︷︷ ︸

A

[
Q̃⊤

1

]
︸ ︷︷ ︸

Q⊤

(4.6)
□

The proof of Theorem 4.1 showcases how to construct the arrowhead factor-
ization of M by diagonalising the M̃ matrix. Since M̃ has a special structure,
this can be done very efficiently as the only additional operation required is
a single matrix-vector product to construct the head of the arrowhead matrix.

4.4.2 Reconstructing the full solution

Once the arrowhead factorization M = Q0AQ⊤
0 is known, it is possible

to retrieve the full eigendecomposition by diagonalising A = Q1DQ⊤
1 and

backtransforming its eigenvectors:

M = Q0AQ⊤
0 = Q0Q1DQ⊤

1 Q⊤
0 = QDQ⊤ (4.7)

Notice that if M̃ does not offer an exploitable structure right away, it is
possible to apply arrowhead factorization recursively to diagonalise M̃ as
well. Alternatively, this can also be seen as a direct application of Theorem
4.1 to the top-left l + 1 × l + 1 corner block of M (where l + g = n):

M =

[
M̃l×l

0g×g

]
+

[
0l×l Wl×g

W⊤
g×l Rg×g

]
(4.8)

In practice it is convenient to store the full arrowhead implicitly in a matrix
S ∈ Rn×g constructed by taking the last g columns of M:

S = M[:,−g :]1 =

[
W
R

]
(4.9)

1We use Numpy style indexing. See https://numpy.org/doc/stable/user/basics.

indexing.html.
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4.4. Numerical implementation

Algorithm 3 showcases the pseudocode for full diagonalisation based on
arrowhead factorization using this representation of the S matrix.

Algorithm 3: AF Eigensolver

Input: Matrix M̃, Matrix S
g := S.cols(), l := M̃.cols()
n := l + g
D := Zero Vector(n)
Q := Identity Matrix(n)

// diagonalise M̃ using optimized solver

OptimizedEigenSolver solver(M̃)
D[: l] := solver.eigenvalues()
Q[: l, : l] := solver.eigenvectors()

// Arrowhead factorization to eigendecomposition

for k = 0 to g − 1 do
w := Q[: (l + k), : (l + k)]⊤ ∗ S[: (l + k), k]
ρ := S[(l + k), k]
ArrowheadEigenSolver solver(D[: (l + k)], w, ρ)
D[: (l + k + 1)] := solver.eigenvalues()
Q[: (l + k + 1), : (l + k + 1)]∗ = solver.eigenvectors()

end
return D, Q

The final missing link in algorithm 3 is implementing an efficient eigensolver
for simple arrowhead matrices, which will be discussed in the upcoming
chapter.
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Chapter 5

Eigendecomposition of arrowhead
matrices

5.1 Introduction

Arrowhead matrices frequently emerge when describing physical systems
in different scientific and engineering domains. Their specific structure
can be exploited in order to compute eigenvalues and eigenvectors much
more efficiently. In this chapter we give a brief description of a recently
proposed algorithm for the solution of the eigenproblem for arrowhead
matrices. This method is of dual significance: not only does it address
the direct challenges posed by arrowhead matrices, but more importantly
it also enables the generalized arrowhead factorization based eigensolver
described in the previous chapter. This strategy was proposed, again, by
Jakovčević Stor, Slapničar and Barlow in [20] and is strictly tied to the DPR1
eigenproblem. Again, the focus is set on the equations required for an
efficient implementation as a more in-depth discussion is available in the
original publication. For the sake of brevity and conciseness and given the
many similarities of this chapter with chapter 3, only the key differences will
be highlighted.

5.2 Problem description

The eigenproblem for arrowhead matrices consists of computing the eigende-
composition of an n × n symmetric real matrix of the form:

A =

[
D u
u⊤ α

]
(5.1)

where D is a diagonal matrix, α is a scalar and u is a vector.
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5.3 Solving the eigenproblem for irreducible arrowhead
matrices

Similarly to chapter 3, we first discuss the solution of the eigenproblem for
irreducible arrowhead matrices and subsequently we generalize the deflation
process to the arrowhead case.

Without loss of generality consider the eigenproblem generated by an ir-
reducible (in the sense of Theorem 3.4) arrowhead matrix A as defined in
equation 5.1. As we have proven in chapter 3, it is possible to exploit the
special structure of A to compute its eigenvalues. According to Theorem 3.4,
the eigenvalues of A are the roots of the secular function:

f (λ) := α − λ −
n

∑
i=1

υ2
i

di − λ
(5.2)

Notice that once again, the following interlacing property is satisfied:

λ1 > d1 > λ2 > d2 > · · · > dn−2 > λn−1 > dn−1 > λn (5.3)

However, issues related to numerical instability still make it impractical to
compute all eigenvalues directly from Eq. 5.2.

The eigenvectors can be computed efficiently as well.

Theorem 5.1 The normalized eigenvectors [ v1, v2, ..., vn ] of an irreducible ar-
rowhead matrix are given by the following formula:

vi =
xi

∥xi∥2
, xi =

[
(D − λi I)

−1 u
−1

]
, i = 1, . . . , n (5.4)

Proof Consider the vector xi as defined in Eq. 5.4, then, for an arrowhead
matrix A as defined in Eq. 5.1, given an eigenvalue λi of A, we have:

Axi =

[
D u
u⊤ α

] [
(D − λi I)

−1 u
−1

]
=

[
D(D − λi)

−1u − u
u⊤(D − λi)

−1u − α

]
Notice that (D − λi I) is invertible as λi can never be an eigenvalue of D.
Otherwise there would be some element of u that is zero, making A not
irreducible as defined in Theorem 3.4.

We first prove that D(D − λi I)−1u − u = λi(D − λi I)−1u:
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5.3. Solving the eigenproblem for irreducible arrowhead matrices

D(D − λi I)−1u − u =

= D(D − λi I)−1u − (D − λi I)(D − λi I)−1u =

= (D − (D − λi I))(D − λi I)−1u =

= λi(D − λi I)−1u

Next we show that u⊤(D − λi I)−1u − α = λi(−1)

u⊤(D − λi I)−1u − α =

= (−1)(α − u⊤(D − λi I)−1u) =

= (−1)(α − λi + λi − u⊤(D − λi I)−1u) =

= (−1)(α − λi −
n

∑
i=1

υ2
i

di − λi︸ ︷︷ ︸
=0 by Th. 3.4

+λi)

= λi(−1)

Hence we have verified that Axi = λixi and as such that xi is an eigenvector
of A. Normalization finally gives:

vi =
xi

∥xi∥2
□

5.3.1 Overview of the algorithm

The algorithm follows the same shift and invert strategy described in chapter
3. The eigenvalues are calculated from the extremal roots of the secular
equation generated by the shifted inverted problem. This is again achieved
with a three step procedure:

1. The shifted matrix Ai = (A − di I) is computed. Its eigenvalues are tied
to those of A via the following relation µi = λi − di.

2. The inverse of the shifted matrix A−1
i is computed. The eigenvalues

νj, 1 ≤ j ≤ n of this matrix are the inverses of the eigenvalues of the
shifted matrix.

3. Once νi is computed with sufficient accuracy, compute µi and the
corresponding eigenvector vi using Theorem 5.1, then compute the
eigenvalue λi = µi + di.
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5.3. Solving the eigenproblem for irreducible arrowhead matrices

5.3.2 Numerical implementation

Consider an irreducible arrowhead matrix A as described in 5.1 and let λ, v
be an eigenpair of A. Additionally, let di be the closest pole to λ, then by
property 5.3 it is guaranteed that λ = λi or λ = λi+1. We apply the three
step process described in the previous section.

The shifted matrix Ai is given by:

Ai = A − di I =


D1 0 0 z1
0 0 0 ζi
0 0 D2 z2

z⊤1 ζi z⊤2 a

 (5.5)

with:

D1 = diag (d1 − di, . . . , di−1 − di) ,
D2 = diag (di+1 − di, . . . , dn−1 − di) ,

z1 =
[

ζ1 ζ2 · · · ζi−1
]⊤ ,

z2 =
[

ζi+1 ζi+2 · · · ζn−1
]⊤ ,

a = α − di.

The inverse A−1
i is computed according to Theorem 5.2.

Theorem 5.2 The inverse of a shifted arrowhead matrix is a permuted arrowhead
matrix of the form:

A−1
i =


D−1

1 w1 0 0
w⊤

1 b w⊤
2 1/ζi

0 w2 D−1
2 0

0 1/ζi 0 0

 (5.6)

with:

w1 = −D−1
1 z1

1
ζi

w2 = −D−1
2 z2

1
ζi

b =
1
ζ2

i

(
−a + z⊤1 D−1

1 z1 + z⊤2 D−1
2 z2

)
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5.3. Solving the eigenproblem for irreducible arrowhead matrices

Proof The proof is carried out by multiplication. □

The eigenvalues of A are tied to those of Ai and A−1
i by the following

equation:

λi = µi + di =
1
νi

+ di (5.7)

By Theorem 3.4, the eigenvalues of A−1
i are the zeros of the secular function:

g(ν) := b − ν − w⊤(∆ − νI)−1w (5.8)

where:

∆ =

D1
0

D2

 , w =

w1
1
ξi

w2


Once the correct extremal eigenvalue νi is determined from g, its inverse µi =
1
νi

is computed. µi is then used to compute the corresponding eigenvector vi
using Theorem 5.1. Finally, λi = µi + di is calculated.

5.3.3 Ensuring numerical stability

Similarly to the DPR1 case, when computing the eigendecomposition of
arrowhead matrices, as described in the previous section, particular care
must be given to ensure numerical stability during certain steps of the
algorithm. This section briefly describes which operations are problematic
and what solutions can be implemented to ensure correct numerical results.

Computing the matrix A−1
i

The evaluation of the b element of A−1
i from Theorem 5.2 requires special

considerations: in certain cases it is necessary to evaluate b using quadruple
working precision datatypes. To determine when quadruple precision arith-
metic is needed, two conditioning values Kb and Kz are introduced in [20] as
follows:

Kb =
|a|+

∣∣∣z⊤1 D−1
1 z1

∣∣∣+ ∣∣∣z⊤2 D−1
2 z2

∣∣∣∣∣∣−a + z⊤1 D−1
1 z1 + z⊤2 D−1

2 z2

∣∣∣
Kz =

1
|ζi|

n

∑
j=1, j ̸=i

∣∣ζ j
∣∣
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5.4. Solving the eigenproblem for general arrowhead matrices

Kb measures whether the element b is computed accurately enough, while Kz
measures whether the computation of b affects ∥A−1

i ∥2 and the final result.
Quadruple arithmetic precision is needed whenever Kb ≫ 1 and Kz ≫ O(N).

Ill-conditioned shift dk

For certain ill-conditioned inputs it is possible that a shift di is chosen that is
not the closest to the eigenvalue λ that is being computed. This results in ν
not being the absolute largest eigenvalue of A−1

i . The conditioning number
Kν is indicative of how far ν is from the real νmax:

Kν =
∥A−1

i ∥2

|ν| =
|νmax|
|ν| (5.9)

Given that the spectral norm ∥A−1
i ∥2 is not readily available, it is possible to

compute Kν using either the Frobenius norm or 1-norm. This will still yield
correct results as ∥A−1

i ∥2 ≤ ∥A−1
i ∥F and ∥A−1

i ∥2 ≤ ∥A−1
i ∥1 [18]. If Kν ≫ 1

there is no guarantee that the final result λ will be computed accurately
enough. The solution to this problem is to compute a non-standard shift σ
that is close to λ, yet different from the neighbouring poles. ν can then be
computed accurately as the largest eigenvalue of a shift-inverted arrowhead
matrix A−1

σ . In this case, the inverse is a DPR1 matrix of the form:

A−1
σ = (A − σI)−1 =

[
(D − σI)−1

0

]
+ ρuu⊤ (5.10)

with:

u =
[

z⊤(D − σI)−1 −1
]⊤ , ρ =

1
a − z⊤(D − σI)−1z

The proof of this statement can again be carried out by multiplication. The
largest eigenvalue of A−1

σ can then be computed with Eq. 3.3 from chapter 3.

5.4 Solving the eigenproblem for general arrowhead
matrices

This section addresses the eigenproblem for general arrowhead matrices. This
process is a direct generalization to the DPR1 deflation process described in
chapter 3.
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5.4. Solving the eigenproblem for general arrowhead matrices

5.4.1 Overview

The deflation process for arrowhead matrices is very similar to that for
DPR1 matrices. The dual goal of deflation remains the same: first, ensuring
uniqueness of the elements in D and second, ensuring that no zero element
appears in the vector z. Again, two types of deflation are distinguished. The
following subsections describe the process in detail.

5.4.2 Type 1 deflation

Type 1 deflation aims to ensure that all elements in the D matrix of an
arrowhead problem are unique. Without loss of generality, we assume that the
elements in D are ordered decreasingly. Suppose that D = diag(d1, d2, ..., dn)
with di = dj for some i and j such that i < j. Given that D is ordered, it can
only be the case that di = dk ∀k ∈ {i, i + 1, ..., j}. Let di = δ, then the matrix
D is

D =



d1
. . .

di−1
δ

. . .
δ

dj+1
. . .

dn


=

D1
δI

D2

 (5.11)

in chapter 3 (Theorem 3.5) we have proven, that it is possible to find a House-
holder reflection that annihilates all but one elements of z corresponding
to elements δ of the matrix D. This can be achieved by constructing the
householder matrix H as follows:

u = zδ + ∥zδ∥ e0

H̃ = I − 2
uu⊤

∥u∥2

H =

 I
H̃

I


It remains to prove that applying H to the arrowhead matrix does not destroy
its structure.
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5.4. Solving the eigenproblem for general arrowhead matrices

Theorem 5.3 For an arrowhead matrix A with D as described in Eq. 5.11, there
exists a Householder matrix Ĥ such that

ĤAĤ = Ĥ
[

D z
z⊤ α

]
Ĥ =

[
D z̃
z̃⊤ α

]
(5.12)

where

z̃ =



z1
...

zi−1

−
√

∑
j
p=i z2

p

0
...
0

zj+1
...

zn



=

 z1:i−1
−∥zδ∥e0

zj+1:n

 (5.13)

Proof Let Ĥ =

[
H 0
0 1

]
The proof is very similar to that for the DPR1 case:

ĤAĤ =

[
H 0
0 1

] [
D z
z⊤ α

] [
H 0
0 1

]
=

[
HDH Hz
z⊤H 1α

]
=

[
D z̃
z̃⊤ α

]
□

5.4.3 Type 2 deflation

Type 2 deflation ensures that no zero elements appear in z. Consider the
eigenproblem of the arrowhead matrix:

A =

D̂ 0 0
0 D̃ z̃
0 z̃⊤ α

 (5.14)

Clearly some of the eigenvalues can be read directly, as the matrix is diagonal
in D̂. Hence, it is sufficient to compute the diagonalisation

[
D̃ z̃
z̃⊤ α

]
= Q̃Λ̃Q̃⊤

and then the full solution will be given by:
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5.4. Solving the eigenproblem for general arrowhead matrices

A = QΛQ⊤ =

[
I

Q̃

] [
D̂

Λ̃

] [
I

Q̃⊤

]
Therefore, it is possible to implement the same efficient process, that allows
for reduction and diagonalisation of general DPR1 matrices, for arrowhead
matrices.
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Chapter 6

Numerical experiments and
benchmarks

This chapter presents a comparative performance analysis of the eigensolver
algorithms discussed in this work. The BD&C algorithm is compare against
Intel oneAPI MKL’s dense eigensolver (DSYEVR) and banded eigensolver
(DSBEVD) using a mix of synthetic and real-world test cases. Addition-
ally, this chapter includes a brief comparison between the broad arrowhead
eigensolver and the DSYEVR routine, using two synthetic benchmarks for
assessment.

6.1 Experimental setup

The benchmarks were conducted on compute nodes equipped with dual
64-core AMD EPYC 7742 CPUs (total of 128 cores) and 512 GB DDR4 memory.
The runtime baseline for the performance evaluation was set by the best
performing routine, either DSYEVR or DSBEVD, offered by the Intel oneAPI
MKL 2022.2.0 library [5]. Our eigensolver implementations are built on top
of the Eigen 3.4.0 C++ library [23], backed by the Intel oneAPI MKL backend.
Multithreading was handled by the Intel oneAPI Threading Building Blocks
2021.7.0 library [24]. All the software used for these tests was compiled
via the Spack package manager [25] with the GCC 12.2.0 compiler. Each
benchmark presented in this chapter was evaluated with 5 runs and the
median performance results are reported.

6.2 BD&C algorithm

This section is dedicated to the benchmark set for the BD&C algorithm, which
specializes in diagonalising tri-block diagonal and banded matrices. The
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6.2. BD&C algorithm

algorithm is tested against both dense and banded eigensolver routines for a
comprehensive comparison. The benchmarks include:

1. A set of synthetic benchmarks consisting of block-tridiagonal matrices
with uniformly randomly generated values in the interval between -1
and 1. The test dimensions range from 1024 × 1024 to 16384 × 16384
and semi-bandwidth (b)/block size ( f ) varies taking values between 8,
16, 32, 64, and 128.

2. Two real-world examples derived from simulation data. These bench-
marks test the capabilities of the eigensolvers by diagonalising ring-
polymer action Hessian matrices for two distinct physical systems:
a Malondialdehyde molecule and a molecular system featuring an
interaction between an oxygen atom and a water molecule.

6.2.1 Synthetic benchmarks

0

325

650

975

1300

R
un

ti
m

e
(s

)

Bandwidth 8 (b = 4)

0

325

650

975

1300
Bandwidth 16 (b = 8)

51
20
×

51
20

61
44
×

61
44

71
68
×

71
68

81
92
×

81
92

92
16
×

92
16

10
24

0
×

10
24

0

11
26

4
×

11
26

4

12
28

8
×

12
28

8

13
31

2
×

13
31

2

14
33

6
×

14
33

6

15
36

0
×

15
36

0

16
38

4
×

16
38

4

Size

0

925

1850

2775

3700

R
un

ti
m

e
(s

)

Bandwidth 32 (b = 16)

51
20
×

51
20

61
44
×

61
44

71
68
×

71
68

81
92
×

81
92

92
16
×

92
16

10
24

0
×

10
24

0

11
26

4
×

11
26

4

12
28

8
×

12
28

8

13
31

2
×

13
31

2

14
33

6
×

14
33

6

15
36

0
×

15
36

0

16
38

4
×

16
38

4

Size

0

650

1300

1950

2600
Bandwidth 64 (b = 32)

BD&C DSYEVR DSBEVD

Figure 6.1: Graphs showcasing the runtime of the BD&C, the DSYEVR the DSBEVD eigensolvers
for synthetic input matrices. Only the results for matrices of size greater or equal to 5120× 5120 are
showcased in order highlight the asymptotic behaviour more clearly. A bandwidth of 64 represents
the threshold after which the BD&C algorithm underperforms compared to the traditional routines.

Figure 6.1 showcases the asymptotic runtime behaviour of the three eigen-
solver algorithms for randomly generated input matrices without employing
any eigenvalue spectrum approximation techniques. For matrices with very
thin bandwidths, the BD&C algorithm displays substantially lower runtimes
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compared to both DSYEVR and DSBEVD routines, especially with large
matrix sizes.
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Speedup of BD&C Algorithm Over Best Performing MKL Eigensolver

Figure 6.2: Heatmap showcasing the speedup of the BD&C algorithm compared to the best
performing routine offered by Intel oneAPI MKL. Each cell contains both the value of the speedup,
as well as the runtime in seconds of the BD&C eigensolver (on the left) and the reference baseline
set by MKL (on the right).
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As expected, increasing the bandwidth of the matrix has a drastic impact
on performance and for matrices with bandwidth 64, all three eigensolvers
exhibit very similar execution times. Interestingly, although DSBEVD has a
much lower theoretical complexity compared to DSYEVR, the results shows
that the banded eigensolver never outperforms the dense eigensolver for
small bandwidth values. Moreover, the runtime of the DSBEVD routine seems
to improve with increasing bandwidth: this is an unexpected result as the
number of operations required for tridiagonalisation increases with growing
bandwidth. It is difficult to pinpoint the exact reason for this abnormal
behaviour, however, the work proposed in [13] suggests that denormalized
floating point arithmetic could be the cause of the performance degradation.

Figure 6.2 displays a speedup heatmap of the BD&C algorithm compared
to the best performing solver implemented in Intel oneAPI MKL. Each cell
contains the speedup value, as well as the runtime in seconds of the two
routines (BD&C on the left and Intel MKL on the right). Again, we observe
that the BD&C algorithm outperforms Intel oneAPI MKL when handling
matrices with extremely narrow bandwidths, particularly in larger test cases,
while it faces challenges as the bandwidth increases. We also observe a
performance degradation for small matrix sizes. This is likely caused by
optimization factors not directly linked with the complexity of the algorithm,
such as memory management inefficiencies or overheads in the initial setup
of the computational environment.

6.2.2 Real-world benchmarks

Two examples derived from real world simulation data are presented in order
to prove the robustness and efficacy of the methods discussed in this work.
These example matrices are derived from numerical simulations of instanton
theory, as described in [6], where they are repeatedly diagonalised as part of
an iterative optimization procedure.

Scientific background

The test data was derived from two distinct physical systems, each comprising
a set of connected beads arranged to form a chain, known as a ring-polymer,
within a specific potential energy landscape. These ring-polymers represent a
discrete model of the most probable path taken by particles when tunneling
through the potential energy surface, also known as an instanton trajectory
[26]. Figure 6.3 showcases an example of a ring-polymer, depicted as a set
of interconnected blue beads, as well as the underlying two-dimensional po-
tential energy surface. Mathematically, each bead is modelled as a harmonic
oscillator linked to its immediate neighbours via a set of harmonic springs.
The optimization process aims to relax the ring-polymer by minimizing the
discretised action in order to calculate the best possible approximation of
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the instanton trajectory. Additionally, other properties of interest can be
computed, such as transition rates of electrons through the potential energy
wall and solutions to tunneling splitting problems, offering insights into the
frequency and conditions under which quantum tunneling occurs [6].

Figure 6.3: Diagram proposed in [26] describing the instanton trajectory (inst.), the minimum-
energy path (MEP) and the large-curvature tunneling approximation (LCT). The blue circles
represent the beads of the ring-polymer and the black contour lines showcase the potential energy
surface.

The Hessian matrix of the discretized ring-polymer action is a tri-block
diagonal matrix with full rank off-diagonal blocks. The size f of the diagonal
and off-diagonal blocks is determined by the number of degrees of freedom
of the system [6]. Moreover, the off-diagonal blocks consist of purely diagonal
matrices. Figure 6.4 showcases the structure of the first 5 diagonal blocks of
the Hessian matrix for the Malondialdehyde molecule ring-polymer discussed
as first real-world test-case. Given that the ring-polymer is modelled as a
chain of oscillators linked by harmonic springs, the structure of the Hessian
matrix holds specific information about the system. Namely, the diagonal
blocks contain the information regarding the resonance frequencies and
vibrational modes of the beads, while the off-diagonal blocks encode the
information about the coupling between beads, defining how energy and
motion are transferred across the chain.

Malondialdehyde Hessian matrix

The first real-world test case is a Hessian matrix derived from the discretized
action of a Malondialdehyde molecule ring-polymer. The matrix describes
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Figure 6.4: Structure of the first 5 diagonal blocks of the Hessian matrix of the discretized
Malondialdehyde ring-polymer action. There are 512 diagonal blocks and each block has a size of
27 × 27. The total matrix size is 13824 × 13824

a system of 512 beads and as such consists of 512 diagonal blocks of size
27 × 27, for a total matrix size of 13824 × 13824. The matrix was diagonalised
using both the BD&C algorithm as well as the dense (DSYEVR) and banded
(DSBEVD) eigensolver routines offered by Intel oneAPI MKL in order to
obtain a performance and accuracy comparison. Different approximated
solutions, as described in section 2.7, were also computed and the resulting
spectrums were analyzed. Moreover, we define the following modified
determinant operator to serve as an aggregate comparison metric for the
different approximations:

det′(H) =
N

∑
i=2

log(|λi|) (6.1)

That is, det′(H) is the product of the natural logarithm of the magnitude of
all eigenvalues of H, except the first. This is necessary for two reasons:

1. The first eigenvalue of the Hessian matrix is know to be exactly zero
as it accounts for time translation in the tunneling process, and it is
always neglected when computing electron transition rates.
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Figure 6.5: Eigenvalue spectrum diagrams of the Malondialdehyde ring-polymer Hessian Matrix.
The first four plots showcase approximate solutions computed with rank 1, 5, 10 and 20
approximations of the off-diagonal blocks. The approximation threshold τ was set to 500. The
last two plots showcase exact solutions. The values for det′(H) as well as the deviation from the
reference solution set by DSYEVR are shown.

2. Given the large problem size, computing the determinant of the Hessian
matrix by multiplying the eigenvalues directly would result in a number
that is too large to fit in standard double precision datatypes. Instead
we opt to compute the sum of the natural logarithms of the eigenvalues
which is equivalent to the natural logarithm of the determinant.

Figure 6.5 displays the eigenvalue spectrums obtained from diagonalising
the Hessian matrix using different levels of approximation, as well as the
full-accuracy solutions computed by the BD&C algorithm and the DSYEVR
dense solver routine. These spectrums appear remarkably similar and overall
seem to share the same common structure. The values of the modified
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determinant are also similar, showing a maximum deviation of less than 10%.
The similarity in the results demonstrates that the approximation strategy
employed by the BD&C algorithm yields competitive results in terms of
accuracy. Even with very aggressive approximation settings, the BD&C
algorithm manages to closely match the results calculated by the DSYEVR
routine.
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Figure 6.6: Runtime of the BD&C algorithm for the Malondialdehyde ring-polymer Hessian
matrix for varying levels of approximation. The values for the full-rank computation as well as
the runtime of the DSYEVR routine are marked by horizontal lines. The runtime of the DSBEVD
routine is reported as an annotation.

Figure 6.6 displays the the runtime of the BD&C algorithm for different
degrees of approximation and includes reference values for the DSYEVR
and DSBEVD routines. The BD&C algorithm performed very well in this
benchmark, particularly given the large size and the thin bandwidth of the
test matrix. The runtime of the full accuracy computation is already 40%
lower than the DSYEVR routine, yet approximation can lower it by over an
order of magnitude.

Figure 6.7 presents the speedup of the BD&C algorithm over the DSYEVR
eigensolver with various approximation levels. The performance demon-
strated is quite impressive, with the speedup peaking at nearly 30 times faster
than DSYEVR. Not surprisingly, increasing the solver’s accuracy decreases
its performance. Despite this, as previously discussed, even the most aggres-
sive approximation settings yielded solutions that closely approximated the
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Figure 6.7: Speedup of the BD&C algorithm over DSYEVR for the Malondialdehyde ring-polymer
Hessian matrix for different approximation ranks. The DSYEVR routine was chosen as the baseline
as it is much faster than the banded eigensolver DSBEVD for this test case.

reference. This balance between speed and accuracy highlights the efficiency
of the BD&C algorithm, demonstrating that the algorithm can deliver results
with considerable performance, offering a practical solution in scenarios
where time efficiency is as crucial as precision.

Oxygen and Water ring-polymer Hessian matrix

The second real-world benchmark is a Hessian matrix derived from the
discretized action of a ring-polymer describing the interaction between an
oxygen atom with a water molecule. The system comprises 764 beads, but
the number of diagonal blocks contained in the Hessian can be halved by
exploiting symmetric properties of the ring-polymer. As such, the matrix
contains 382 blocks, each of size 27× 27, for a total size of 5745× 5745. Again,
the matrix was diagonalised using both the BD&C algorithm as well as the
dense (DSYEVR) and banded (DSBEVD) eigensolver routines offered by Intel
oneAPI MKL in order to obtain a performance and accuracy comparison.

50



6.2. BD&C algorithm

−300000

−200000

−100000

0

100000

200000

300000

E
ig

en
va

lu
e

det’(H) = 5.313e+04
deviation = 8.8%

Rank r = 1 Approximation

det’(H) = 5.390e+04
deviation = 7.5%

Rank r = 2 Approximation

−300000

−200000

−100000

0

100000

200000

300000

E
ig

en
va

lu
e

det’(H) = 5.445e+04
deviation = 6.5%

Rank r = 3 Approximation

det’(H) = 5.483e+04
deviation = 5.9%

Rank r = 4 Approximation

−300000

−200000

−100000

0

100000

200000

300000

E
ig

en
va

lu
e

det’(H) = 5.504e+04
deviation = 5.5%

Rank r = 5 Approximation

det’(H) = 5.716e+04
deviation = 1.9%

Rank r = 10 Approximation

0 2000 4000 6000

Eigenvalue Index

−300000

−200000

−100000

0

100000

200000

300000

E
ig

en
va

lu
e

det’(H) = 5.825e+04
deviation = 0.0%

Full-rank BD&C

0 2000 4000 6000

Eigenvalue Index

det’(H) = 5.825e+04
deviation = 0.0%

Full-rank MKL

Approximations of the Eigenvalue Spectrum for 5745× 5745
Oxygen and Water Ring-polymer Hessian Matrix

Figure 6.8: Eigenvalue spectrum diagrams of the Oxygen and Water ring-polymer Hessian
Matrix. The first six plots showcase approximate solutions, while the last two plots showcase
exact solutions. The approximation threshold τ was set to 500. Values for det′(H) as well as the
deviation from the reference solution set by DSYEVR are shown.
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Different approximated solutions, as described in section 2.7, were also
computed and the resulting spectrums were analyzed. The same modi-
fied determinant operator described in the previous section is used as an
aggregate value for comparison.

Figure 6.8 displays the eigenvalue spectrums calculated by diagonalising
the Hessian matrix using different levels of approximation, as well as the
full-accuracy solutions computed by the BD&C algorithm and the DSYEVR
dense solver routine. Once again, the spectrums appear remarkably similar
and overall seem to share the same common structure. The values of det’(H)
are also similar, showing again a maximum deviation of less than 10%. These
results further confirm that the approximation strategy employed by the
BD&C algorithm yields competitive results in terms of accuracy, even with
very aggressive approximation settings.
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Figure 6.9: Runtime of the BD&C algorithm for the Oxygen and Water ring-polymer Hessian
matrix for varying levels of approximation. The values for the full-rank computation as well as
the runtime of the DSYEVR routine are marked by horizontal lines. The runtime of the DSBEVD
routine is reported as an annotation.

Figure 6.9 shows the runtime of the BD&C algorithm for different levels of
approximation and includes comparison data for the DSYEVR and DSBEVD
routines. In this test, the BD&C algorithm’s performance was decent, but
not as impressive as in the previous real-world example. This difference can
be attributed to the smaller size of the test matrix. When running at full
accuracy, the BD&C algorithm took significantly longer than the DSYEVR
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routine. However, in this case as well, approximation significantly lowered
the runtime. This suggests that while the BD&C algorithm might be slower
for full accuracy diagonalisation of smaller matrices, its capability to speed
up calculations through approximation is still an important asset.
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Figure 6.10: Speedup of the BD&C algorithm over DSYEVR for the Oxygen and Water ring-
polymer Hessian matrix for different approximation ranks. The DSYEVR routine was chosen as
the baseline as it is much faster than the banded eigensolver DSBEVD for this test case.

Figure 6.10 displays the speedup of the BD&C algorithm over the DSYEVR
eigensolver with various degrees of approximation. Despite the exact compu-
tation being 2× slower, the performance demonstrated for the approximated
solutions is still quite impressive, with the speedup peaking at nearly 7 times
faster than DSYEVR. Once again, increasing the solver’s accuracy decreases
its performance, however, considering the reliable results obtained even with
aggressive approximations, the BD&C algorithm still proves very attractive
for applications where the exact solution is not strictly required.

6.3 Banded and block-tridiagonal broad arrowhead ma-
trices

This section is an adaptation of the benchmarks section proposed in [19],
and discusses the results of numerical experiments designed to evaluate the
broad arrowhead eigensolver detailed in chapter 4. The empirical data, as
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well as the figures, are directly borrowed from the paper. This was done
because the benchmarks were performed with the same codebase developed
in this work.

6.3.1 Synthetic benchmarks

Two synthetic benchmarks are presented for this algorithm using different
optimized methods for M̃. The first consists of a banded arrowhead matrix:
in this case M̃ was diagonalised using the DSBEVD LAPACK routine. The
second is a block-tridiagonal arrowhead matrix with rank-one off-diagonal
blocks: in this example M̃ was diagonalised using the BD&C algorithm. Both
benchmarks were executed using matrices with uniformly randomly gener-
ated values in the interval between -1 and 1 and with different arrowhead
widths g. A more detailed analysis of the performance of this method is
available in [19].

Banded Arrowhead Matrices

The first test case consists of a banded arrowhead matrix. Banded broad
arrowhead matrices are a direct generalization of arrowhead matrices where
both the shaft and the arrowhead are wider than a single element. Figure
6.11 showcases a diagram describing the structure of a banded arrowhead
matrix.

M̃ W

W> R

0

0

Figure 6.11: Structure of a banded broad arrowhead matrix as described in Eq. 4.1. The shaft
M̃ is a banded matrix.

In this case the matrix M̃ is banded and as such it is possible to reduce the
complexity of diagonalisation from O(n3) to O(n2b), where b is the semi-
bandwidth, by using the routine DSBEVD offered by Intel oneAPI MKL [13].
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From a theoretical standpoint, this should yield a considerable performance
improvement, especially for small values of b; however empirical measure-
ments proposed in [19] show that this is not always the case. Moreover, the
maximum speedup recorded for DSBEVD over DSYEVR was only of about
3.5× for a 10k×10k matrix. Given that AF-based eigendecomposition relies
on an optimized eigensolver for M̃, the bandwidth parameter was set to 600,
which was empirically determined to be the optimal bandwidth value in
terms of speedup.
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Figure 6.12: Wall-clock runtime of DSYEVR and DSBEVD based AF eigensolver for different
arrowhead widths g.

Figure 6.12 displays the runtime for both DSYEVR and DSBEVD based
AF. Little if any performance gain is observed for matrices of size up to
7k × 7k, however with growing matrix size we observe an improvement of
the performance of the AF-based method, which surpasses that of DSYEVR,
especially for small values of g.

Figure 6.13 presents a heatmap illustrating the performance of the DSBEVD
AF eigensolver in terms of speedup and slowdown compared to DSYEVR,
along with the median runtime and the 95% confidence intervals for the
median. Notably, the highest speedup recorded is about 2.5×, with matrix
sizes ranging from 8k × 8k to 12k × 12k showing particularly strong perfor-
mance. Nonetheless, the overall speedup is limited by the maximal speedup
achievable by DSBEVD relative to DSYEVR.
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6.3. Banded and block-tridiagonal broad arrowhead matrices

Block-tridiagonal arrowhead matrices

The second test case consists of a Block-tridiagonal Arrowhead matrix with
rank 1 off-diagonal blocks. Block-tridiagonal matrices are a special case
of banded arrowhead matrices where the sparsity of the shaft results in a
block-tridiagonal structure. In this case, however, the off-diagonal blocks
have the additional property of being of rank-1 (or low rank). Figure 6.14
displays an example of the structure of a block-tridiagonal arrowhead matrix.

M̃ W

W> R

0

0viv
>
i

viv
>
i

. . .

. . .

. . .

. . .

Figure 6.14: Structure diagram of a block-tridiagonal arrowhead matrix. The gray blocks
represent the rank 1 off-diagonal blocks. The components of the matrix are named according to
Eq. 4.8

Although the eigendecomposition of M̃ could be computed by treating it as a
generic banded matrix, the cost of diagonalisation can be greatly reduced by
exploiting the low rank structure of the off-diagonal blocks with the BD&C
algorithm. This test case is particularly interesting as it simulates the possible
performance gain achievable by using the approximation techniques of the
BD&C algorithm together with the AF eigensolver method. Similarly to the
previous benchmark, the size of the diagonal and off-diagonal blocks was set
to 200, which corresponds to a banded arrowhead matrix with a bandwidth
of 600.
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6.3. Banded and block-tridiagonal broad arrowhead matrices
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Figure 6.15: Wall-clock runtime of DSYEVR and BD&C based AF eigensolver for different
arrowhead widths g.

Figure 6.15 highlights the runtime of the BD&C based AF eigensolver. We
observe significant performance improvements across most scenarios, partic-
ularly when dealing with matrices of large size and small arrowhead widths.
Additionally, the heatmap in Figure 6.16 illustrates the comparative speedup
of the BD&C based AF eigendecomposition method against the DSYEVR
routine, revealing remarkable execution times that are up to 20× faster. This
data provides a clear demonstration of the significant performance gains
achievable with this method, underscoring its robustness and its potential to
significantly reduce computational times in practical applications, making it
a valuable tool for high-performance computing environments and numerical
simulations.
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6.3. Banded and block-tridiagonal broad arrowhead matrices
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Chapter 7

Conclusions

7.1 Conclusions

In this work, we explored different optimized eigendecomposition algo-
rithms, implementing efficient diagonalisation strategies for banded, block-
tridiagonal, DPR1, broad arrowhead and arrowhead matrices. We carried
out numerical experiments and benchmarks for the BD&C algorithm and
the arrowhead factorization method. The BD&C algorithm was tested using
synthetic inputs, in order to highlight its performance with different problem
sizes and bandwidths, and real-world examples, showcasing its capabilities
with practical simulation data. The results were very promising, particularly
for matrices with smaller bandwidths and larger sizes. Moreover, our experi-
ments with approximation techniques revealed that the BD&C algorithm can
achieve significantly shorter runtimes, showcasing speedups of up to 30x over
the best eigensolver offered by the Intel oneAPI MKL library, while keeping
the deviation from the exact solution under 10%. This result is significant
as it demonstrates the potential of this method for simulations where exact
results are not strictly necessary and runtimes are often very long. The
arrowhead factorization eigensolver was tested using two distinct synthetic
benchmarks, in order to showcase the performance when using the banded
eigensolver DSBEVD and the BD&C algorithm back-ends. In general, the
results showed that the algorithm was particularly fast with large matrices
and small arrowhead widths. Although the performance of AF with DS-
BEVD was satisfactory, the combination of AF with the BD&C algorithm was
much more impressive, demonstrating up to 20× faster runtimes compared
to DSYEVR. This work provides a strong argument for the robustness and
practicality of the discussed methods, demonstrating that they are a valuable
asset in complex numerical simulations. Our analysis and empirical results
show the potential of these algorithms to lower computational costs, enabling
the exploration of new larger systems. This work adds to the continuous
development of computational techniques for eigendecomposition, delivering
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7.2. Online Resources

both novel theoretical strategies, as well as strong practical results.

7.2 Online Resources

All experiments discussed in this work were conducted using the Freccia
eigensolver library, which offers optimized eigensolver algorithms for specific
matrix structures [27]. Freccia is built on top of the Eigen C++ library [23]
and can use both OpenBLAS [28] and Intel oneAPI MKL backends [5]. The
project is still in very early development, however it has already produced
very promising results.

7.3 Future work

Developing efficient, stable and robust numerical algorithms is an extremely
complex and time consuming task. Given the very promising results pro-
duced by this first implementation of the discussed methods, we are con-
vinced that the forthcoming iterations will showcase significant improve-
ments. We are working on making these algorithms publicly available by
actively developing the Freccia eigensolver library. We hope that in the fu-
ture, our work will be easily accessible to scientists and researches in various
fields. Lastly, we are also evaluating whether it is possible to modify some
of the techniques discussed in this work and apply them to general dense
symmetric real matrices. In principle, this can already be done both with
the BD&C algorithm and with the AF eigensolver, however, with the current
implementation of the code, this results in a complexity of O(n4). Thus, to
make these methods practically viable for the dense problem, the complexity
must be reduced to at least O(n3). This would be an interesting achievement
as it would introduce a new class of eigendecomposition algorithms for dense
matrices, which do not rely on reduction to tridiagonal form.
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Appendix A

Development of an MPI load balancing
scheduler

An additional unrelated task that was tackled during this project was the
design and implementation of an MPI load-balancing scheduler for the ring-
polymer instanton simulation code (Instopt) developed by the Theoretical
Molecular Quantum Dynamics Group at ETH Zurich. This appendix briefly
discusses the most important details of this task.

A.1 Current implementation and limitations of Instopt

The current implementation of the Instopt codebase is written in Python
and leverages the mpi4py library [29] to achieve MPI distributed memory
parallelism. However in practice, only a very small part of the code benefits
from the additional computational resources. Instopt relies on a set of
external software for electron calculations, such as GAMESS [30] and ORCA
[31]. These external packages are used for point-wise evaluation of energy
potentials and gradients, which is an extremely expensive process. To speed
up this process, the points are split over multiple MPI ranks, each of which
then invokes the required external routines. The rest of the code relies
on the NumPy library [32], which does not directly offer support for the
shared memory linear algebra routines implemented in ScaLAPACK [33]
and Intel oneAPI MKL [5], and as such can only run on a single process. The
problem is that, instead of using a single process, these computations are run
redundantly by all MPI ranks, significantly increasing the resource usage,
degrading performance and increasing power consumption. Given that these
simulations can run for days or even weeks, it is extremely important to
reduce resource consumption as much as possible by eliminating redundant
computations.

67



A.2. Design of an MPI load balancing scheduler

A.2 Design of an MPI load balancing scheduler

Currently, Instopt executes the same exact computations on all ranks, except
when evaluating potentials and gradients, where the points are split evenly
across all ranks. Not only is this inefficient due to the number redundant
calculations, but also because this approach is vulnerable to load balancing
issues. This is because splitting the inputs evenly across ranks does not
guarantee an even distribution of the workload. Figure A.1 illustrates how
distributing a work vector with a linear schedule can lead to imbalances
among ranks. In this example case, the work-depth becomes 11 units as
ranks 1 and 2 will have to idle and wait for rank 3, before continuing with
other computations.

Figure A.1: Linear schedule of tasks. Each cell represents an independent work unit that can be
scheduled to a rank.

The goal is thus to design and implement a scheduler object that can satisfy
a dual purpose: save resources by eliminating redundant computations and
improve load balancing by scheduling tasks in a more intelligent way. The
strategy employed to reach this goal is to designate a “master” rank that is
responsible for both running the single-process portions of the code, as well
as scheduling tasks to “worker” ranks. These worker processes are set to idle
until they receive useful work, minimizing the amount of computational re-
sources and power consumed. Listing A.1 shows the compute function called
by the master rank in order to wake up worker processes and distribute tasks.
Snippet A.2 shows the implementation for the loop function responsible for
the idle-work functionality of the worker ranks.
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1 def compute ( s e l f , t a s k s ) :
# P a r t i t i o n t a s k s

3 j o b s = s e l f . p a r t i t i o n ( t a s k s )

5 # Wake up workers
s e l f .comm. B a r r i e r ( )

7

# S c a t t e r j o b s
9 j o b s = s e l f .comm. s c a t t e r ( jobs , root= s e l f . root )

11 # Do work
rax = s e l f . work ( j o b s )

13

# C o l l e c t r e s u l t s from worker nodes
15 # rax i s a l i s t so t h i s reduct ion concatenates a l l r e s u l t s .

rax = s e l f .comm. reduce ( rax , root= s e l f . root , op=MPI .SUM)
17

re turn rax

Listing A.1: Internal compute function called by the master rank in order to wake up worker
processes and distribute tasks.

def loop ( s e l f ) :
2 # Work loop

while True :
4 # Wait f o r s i g n a l from master rank

s e l f .comm. B a r r i e r ( )
6

# Get t a s k s
8 t a s k s = s e l f .comm. s c a t t e r ( None , root= s e l f . root )

10 # Check f o r terminat ion s i g n a l
i f i s i n s t a n c e ( tasks , TerminateScheduler ) :

12 break

14 # Do work
# rax i s a l i s t of r e s u l t s computed by t h i s rank .

16 rax = s e l f . work ( t a s k s )

18 # Return r e s u l t s
s e l f .comm. reduce ( rax , root= s e l f . root , op=MPI .SUM)

Listing A.2: Internal loop function that implements idle-work functionality for worker-ranks.

A.2.1 Scheduling strategies

Three different scheduling strategies were implemented in order to improve
the load balancing capabilities of the scheduler.
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Linear schedule

The linear schedule that was already implemented in the code was ported to
the scheduler class as a extensively tested and trusted fail-safe option. As
previously discussed, this schedule is not the most efficient as it partitions
the tasks uniformly across ranks.

Random schedule

This strategy is similar to linear scheduling in the sense that each rank
receives the same number of tasks, however it attempts to minimize the
work-depth by randomizing the order in which the tasks are assigned to each
rank.

Figure A.2: Random schedule of tasks. Each cell represents an independent work unit that can
be scheduled to a rank.

Figure A.2 shows an example of how this strategy might schedule a work
vector. Despite each rank still receiving two tasks, the work-depth is re-
duced from 11 to 8 by rearranging the order in which they are assigned.
Although random scheduling does not offer any strict guarantees, it is a
simple heuristic that solves the problem of using a fixed schedule with very
little computational overhead.

A.2.2 Greedy schedule

The greedy schedule is fundamentally different from the other scheduling
strategies, as it does not divide the number of tasks evenly across ranks.
Instead, the master rank is sacrificed and assumes a purely coordinative
function by interactively scheduling work. Whenever a worker rank is done
with a task, it communicates the result to the master rank, which replies
with a new task as soon as there is useful work to do. Figure A.3 shows an
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illustration of this process. Even if rank 1 is not doing any useful work, the
work-depth is still much lower compared to the linear schedule and almost
identical to the random schedule.

Figure A.3: Greedy schedule of tasks. Each cell represents an independent work unit that can be
scheduled to a rank.

This scheduling strategy requires more complex logic in order to handle the
master-worker relationship between ranks. Snippet A.3 shows the implemen-
tation of the compute function called by the master rank, while listing A.4
displays the code for the loop function called by the worker processes.

A.3 Controlling the scheduler

Work is submitted to the scheduler via the MPIScheduler.submit method,
which accepts a function and optionally additional arguments to be passed
during evaluation. The returned value is an MPIFuture object, which wraps
the result that will be available later. Once the tasks have been submitted,
the MPIScheduler.compute method should be called in order to execute
the workload. Only after this, it is possible to retrieve the results from the
MPIFuture objects by calling the MPIFuture.results function.
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1 def compute ( s e l f , t a s k s ) :
rax = [ ]

3 ntasks = len ( t a s k s )

5 # S t a r t worker pool and schedule a t l e a s t one task per rank
f o r worker in range ( min ( len ( t a s k s ) , s e l f . s i z e ) ) :

7 i f worker != s e l f . root :
task = t a s k s . pop ( )

9 # No need to s t o r e request
s e l f .comm. isend ( task , dest=worker )

11

# Schedule a d d i t i o n a l work i f needed
13 while t a s k s :

# Receive r e s u l t from any rank
15 s t a t u s = MPI . S t a t u s ( )

r e s u l t = s e l f .comm. recv ( source=MPI .ANY SOURCE,
s t a t u s = s t a t u s )

17 rax . append ( r e s u l t )

19 # Schedule next task to the worker t h a t j u s t f i n i s h e d
task = t a s k s . pop ( )

21 # No need to s t o r e request
s e l f .comm. isend ( task , dest= s t a t u s . Get source ( ) )

23

# Receive the remaining r e s u l t s
25 reqs = [ ]

f o r in range ( len ( rax ) , ntasks ) :
27 reqs . append ( s e l f .comm. i r e c v ( source=MPI .ANY SOURCE) )

29 # Wait f o r a l l i r e c v s and append r e s u l t s to rax
r e s u l t s = MPI . Request . w a i t a l l ( reqs )

31 rax . extend ( r e s u l t s )

33 re turn rax

Listing A.3: Internal compute function called by the master rank in order to wake up worker
processes and distribute tasks.

1 def loop ( s e l f ) :
while True :

3 # Wait f o r task from master rank
task = s e l f .comm. recv ( source= s e l f . root )

5

# Check f o r terminat ion s i g n a l
7 i f i s i n s t a n c e ( task , TerminateScheduler ) :

break
9

# Do work
11 r e s u l t = s e l f . work ( task )

13 # Return r e s u l t to master worker
s e l f .comm. isend ( r e s u l t , dest= s e l f . root )

Listing A.4: Internal loop function that implements idle-work functionality for worker-ranks.
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A.4 Lazy evaluation

High level functions are often expressed as a series of calls to independent
lower level functions. In order to enable automatic and efficient schedul-
ing of multiple high level computations, a lazy evaluation strategy was
implemented. This was done by introducing the @lazy decorator, which
is used to wrap functions that can be both called lazily or not. For ex-
ample, the bead potentials method from listing A.5 can be called both
directly, in which case it should be evaluated immediately, or as part of
the bead potentials gradients and hessians method, in which case the
computation should be delayed until the callee function returns. Methods
decorated with @lazy inherit a new optional lazy argument, which controls
lazy evaluation. By default, the scheduler computes and unwraps the results
as soon as the called function returns.

@lazy
2 def b e a d p o t e n t i a l s ( s e l f , x ) :

re turn scheduler . submit mult iple ( s e l f . PES . p o t e n t i a l , x )
4

@lazy
6 def bead gradients ( s e l f , x ) :

re turn scheduler . submit mult iple ( s e l f . PES . gradient , x )
8

@lazy
10 def bead hess ians ( s e l f , x ) :

re turn scheduler . submit mult iple ( s e l f . PES . hessian , x )
12

@lazy
14 def bead gradients and hess ians ( s e l f , x ) :

re turn s e l f . bead gradients ( x , lazy=True ) ,
16 s e l f . bead hess ians ( x , lazy=True )

18 @lazy
def b e a d p o t e n t i a l s a n d g r a d i e n t s ( s e l f , x ) :

20 re turn s e l f . b e a d p o t e n t i a l s ( x , lazy=True ) ,
s e l f . bead gradients ( x , lazy=True )

22

@lazy
24 def b e a d p o t e n t i a l s g r a d i e n t s a n d h e s s i a n s ( s e l f , x ) :

re turn s e l f . b e a d p o t e n t i a l s ( x , lazy=True ) ,
26 s e l f . bead gradients ( x , lazy=True ) ,

s e l f . bead hess ians ( x , lazy=True )

Listing A.5: Examples of lazy methods implemented in the Instopt code.

Lazy methods should always and only be called with lazy=True from within
other lazy methods, otherwise they will return MPIFuture objects that wrap
the results.
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