Tipps zur Serie 3:
Antgabe 3.1: Sollte selbsterblärend sein:)
Antgabe 3.2: Nicht vegessen: Romposition differenzierbarer Funktionen
Den kritischen Punkt gesondert betrachten. Definition von totaler Differenzierbaheit repetieren, ihr habt 2 Möglichheiten, zeigt
entuedu $ \frac{\int (v_1, v_2) - \int (v_1, v_2)^{\frac{1}{2}}}{\int (v_1, v_2)^{\frac{1}{2}}} = 0 $ $ \frac{\int (v_1, v_2) - \int (v_2, v_2)^{\frac{1}{2}}}{\left\ \left(v_1, v_2 \right)^{\frac{1}{2}} \right\ } = 0 $
ode $ \frac{f(a+h)-f(a)-Df(a)h}{\lim_{h\to0} h } = 0 \text{Wobsei hier } a = [0,0]^{T} $ $ \frac{h-20}{h-20} \text{ h } \text{ h } \text{ h } \text{ h } $
vobei de este bleg vielleicht etwas intuitiver erscheint. Repetiert nochmals, wie ihr die Jacobi-Matrix D&(a) berechnen misst.
Antgabe 3.2: a) Benutzt g(e·t) = t g(e) und madut eine Fallunter- scheidung für \lambda & k.

6)
inberprift est elimal, ob die Funktion überhaupt
von der vorgegeberen Form ist, md bestimmt
das k. Über a) erhaltet ihr somit schnell die
allgemeine Richtmesableitung.
Da das totale Differential eine lineare
Approximation der Funktion an einem jeneiligen
Punkt ist, muss es linear in du Ableitungs-
richtung sein, i.e. Denter f(0) = Denf(0) + Derf(0),
iseprift das?
Antgabe 3.4;
Définition de Tangentialebere repetieren:

$Tf(x_{0},y_{0}) = f(x_{0},y_{0}) + Df(x_{0},y_{0})[x-x_{0},y-y_{0}]$
lineare Approximation, i.e. Ebere duch D
կ)
Einfach einsetzen læichnen.
Antgabe 3.5:
a)
Zeichnet zuerst die ganze Menge x²+y²<1 und
wendet dans die Einschränlungen an.

Findet zuerst den Bereich von y herans. Lest ans eurer Zeichnung, no x liegen muss. Es kan helfen die Bedingungen ans der Antgabe un zu formen. c) Analog zu 5).
ans ever teichning, no x lieger miss. Es lan helter die Bedingunger aus der Antgabe un zu tormen.
kan helfen die Bedrigungen ans der Antgabe um zu tornen.
um zn formen.
c
Analog zn b).