Summer term 2020

Harmonic Analysis
Homework Sheet 4

Exercise 4.1

Show that the Hardy-Littlewood maximal operator M is never L*(R%)-bounded and that it
is local in the sense that if M f(zy) = 0 for some 2y € RY, then f = 0 a.e. (Hint: Consider
f € LL (R?) and average it over a fixed ball B,(|z| + R).)
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Exercise 4.2
Consider the uncentered Hardy-Littlewood maximal function of f,
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which is the supremum over all averages of | f| over all open balls B, (R) containing the point = €
R?. Show that M f < Mf < 2¢M f pointwise. (This tells us that M inherits all boundedness

properties of M and vice versa.)

Exercise 4.3
Establish Theorem 2.1 (the “analog” of the uniform boundedness principle) in the notes and
use it to prove Lebesgue’s differentiation theorem
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for a.e. € RY, whenever f € Li (R?).

fly)dy = f(x)

Exercise 4.4
Let ¢ > 0 and compute the d-dimensional Poisson kernel
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(with I'(z) = [, e *s* ! ds for Rez > 0) and the one-dimensional conjugate Poisson kernel
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(Hint: To compute the Poisson kernel, you may use (and prove) the identities
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