
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 25 October 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Exercise sheet 5 HS 21

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 1 November 2021, hand in your solution to your TA before the exercise class
starts. Exercises that are marked by ⇤ are challenge exercises.�ey do not count towards bonus points.

Exercise 5.1 Heapsort (1 point).

Given the array [3, 6, 5, 1, 2, 4, 8, 7], we want to sort it in ascending order using Heapsort.

a) Draw the tree interpretation of the array as a heap, before any call of RestoreHeapCondition.

Solution:

3

6

1

7

2

5

4 8

b) In the lecture you have learned a method to construct a heap from an unsorted array (see also pages
35–36 in the script). Draw the resulting max heap if this method is applied to the above array.

Solution:

We start from the heap drawn above.�e root of the heap is at level 0. Heapifying the subtree with
root at level 2 yields:

3

6

7

1

2

5

4 8

�en, heapifying the subtrees with roots at level 1 yields:

3

7

6

1

2

8

4 5

Finally, heapifying the subtree at the root node yields

8

7

6

1

2

5

4 3

which corresponds to the array [8, 7, 5, 6, 2, 4, 3, 1].

c) Sort the above array in ascending order with heapsort, beginning with the heap that you obtained
in (b). Draw the array a�er each intermediate step in which a key is moved to its �nal position.

Solution:We begin with the max heap [8, 7, 5, 6, 2, 4, 3, 1]. We extract the root 8 and put it into the
last position in the array, i.e., we swap 8 with the last element 1, removing 8 from the heap, which
yields

2

1

7

6 2

5

4 3

We then si� 1 downwards until the heap condition is restored:

7

6

1 2

5

4 3

Now, the array is [7, 6, 5, 1, 2, 4, 3, 8] and contains the one-smaller heap in the front and the sorted
entries in the end.

�e array a�er the subsequent steps are as follows. Blue le�ers are at their �nal positions.

1) Swap 7 and 3: [3, 6, 5, 1, 2, 4, 7, 8]
Si� 3 down: [6, 3, 5, 1, 2, 4, 7, 8]

2) Swap 6 and 4: [4, 3, 5, 1, 2, 6, 7, 8]
Si� 4 down: [5, 3, 4, 1, 2, 6, 7, 8]

3) Swap 5 and 2: [2, 3, 4, 1, 5, 6, 7, 8]
Si� 2 down: [4, 3, 2, 1, 5, 6, 7, 8]

4) Swap 4 and 1: [1, 3, 2, 4, 5, 6, 7, 8]
Si� 1 down: [3, 1, 2, 4, 5, 6, 7, 8]

5) Swap 3 and 2: [2, 1, 3, 4, 5, 6, 7, 8]
Si� 2 down: [2, 1, 3, 4, 5, 6, 7, 8]

6) Swap 2 and 1: [1, 2, 3, 4, 5, 6, 7, 8]
done: [1, 2, 3, 4, 5, 6, 7, 8].

We are done.

Exercise 5.2 Sorting algorithms (1 point).

Below you see four sequences of snapshots, each obtained during the execution of one of the following
algorithms: InsertionSort, SelectionSort, QuickSort, MergeSort, and BubbleSort.
For each sequence, write down the corresponding algorithm.

3

3 6 5 1 2 4 8 7

3 6 5 1 2 4 8 7

3 5 6 1 2 4 8 7

InsertionSort

3 6 5 1 2 4 8 7

3 5 1 2 4 6 7 8

3 1 2 4 5 6 7 8

BubbleSort

3 6 5 1 2 4 8 7

3 6 1 5 2 4 7 8

1 3 5 6 2 4 7 8

MergeSort

3 6 5 1 2 4 8 7

1 6 5 3 2 4 8 7

1 2 5 3 6 4 8 7

SelectionSort

Exercise 5.3 Counting Operations in Loops II.

For the following code fragments count how many times the function f is called. Report the number
of calls as nested sum, and then simplify your expression in ⇥-notation and prove your result.

Hint: Note that in order to justify your⇥-notation you are required to show two parts: an upper bound on
your nested sum as well as a lower bound.

a) Consider the snippet:

Algorithm 1
for j = 1, . . . , n do

k 1
while k  j do

m 1
whilem  j do

f()
m 2 ·m

k 2 · k

Solution: f is called

nX

j=1

blog2 jcX

l=0

blog2 jcX

i=0

1 =
nX

j=1

(blog2 jc+ 1)2 
nX

j=1

(blog2 nc+ 1)2  O(n log2 n)

times. Notice that, when n � 4, then log2(n/2) = log2 n� 1 � (log2 n)/2.�erefore, for all n � 4
we have

nX

j=1

blog2 jcX

l=0

blog2 jcX

i=0

1 =
nX

j=1

(blog2 jc+ 1)2 �
nX

j=dn/2e

(blog2(n/2)c+ 1)2

�
nX

j=dn/2e

log2(n/2)
2 � n/2 · ((log2 n)/2)2 � ⌦(n log2 n),

4

so actually we have
nX

j=1

blog2 jcX

l=0

blog2 jcX

i=0

1 = ⇥(n log2 n).

b) Consider the snippet:

Algorithm 2
for j = 1, . . . , n do

for l = 1, . . . , 100 do
k 1
while k2  j do

f()
f()
k k + 1

Solution: f is called

nX

j=1

100X

l=1

b
p
jcX

k=1

2 =
nX

j=1

100 · b
p
jc · 2  200

nX

j=1

p
n = 200n3/2  O(n3/2)

times. Notice that, when n � 24, then b
p
n/2c �

p
n/4.�erefore, for all n � 24 we have

nX

j=1

100X

l=1

b
p
jcX

k=1

2 �
nX

j=dn/2e

b
p
jc �

nX

j=dn/2e

b
p
n/2c

�
nX

j=dn/2e

p
n/4 � n/2 ·

p
n/4 = n

3/2
/4 � ⌦(n3/2),

so actually we have
nX

j=1

100X

l=1

b
p
jcX

k=1

2 = ⇥(n3/2).

Exercise 5.4 Bubble sort invariant.

Consider the pseudocode of the bubble sort algorithm on an integer array A[1, . . . , n]:

Algorithm 3 B�����S���(A)

for 1  i  n do
for 1  j  n� i do

if A[j] > A[j + 1] then
t A[j]
A[j] A[j + 1]
A[j + 1] t

return A

a) Formulate an invariant INV(i) that holds at the end of the i-th iteration of the outer for-loop.

Solution: A�er i iterations of the outer for-loop, the subarrayA[n� i+1, . . . , n] is sorted and each
element from A[1, . . . , n� i] is not greater than each element from A[n� i+ 1, . . . , n].

5

b) Using the invariant from part (a), prove the correctness of the algorithm. Speci�cally, prove the
following three assertions:

(i) INV(1) holds.

(ii) If INV(i) holds, then INV(i+ 1) holds (for all 1  i < n).

(iii) INV(n) implies that B�����S���(A) correctly sorts the array A.

Solution:

(i) INV(1) means that a�er the �rst iteration of the outer for-loop, the largest element of A
is at position n. Suppose that this largest element was originally at position j for some
1  j  n. If j = n, the element will never be swapped by the �rst inner for-loop, and
hence is still at position n at the end, as desired. For j < n, this largest element will be
swapped to position j + 1 in the j-th iteration of the inner for-loop, and then swapped
to position j + 2 in the next iteration, and so on until it is swapped to position n. So in
both cases it is at position n at the end of the �rst for-loop.

(ii) Let 1  i < n. Assuming that INV(i) holds, we know that before the (i + 1)st iteration
of the outer for-loop, the i last entries of the array are the i largest entries of the input
array A sorted in ascending order. Using a similar reasoning as in (i), we see that during
the (i+1)st iteration, the largest element among the remaining part of the array (namely
A[1, . . . , n� i]) will be placed at the last position of this remaining part, so that now the
the i+1 last entries of the array are the i+1 largest entries of the input array in ascending
order.�erefore, INV(i+ 1) holds.

(iii) INV(n) means that the “subarray” A[1, . . . , n] is sorted. But this is actually the full ar-
ray (since A has length n) returned by B�����S���(A), which shows that the algorithm
correctly sorts the array A.

Exercise 5.5 Guessing the parity of a number (1 point).

Alice and Bob are playing a game where Alice chooses a secret integer x 2 {1, . . . , n} and Bob has to
guess the parity of x, i.e., Bob has to guess whether x is even or odd. Note that n is a �xed number that
Alice and Bob agree on before starting the game. Bob is allowed to ask Alice comparison questions of
the form

“Is x greater than y?”

for some y 2 {1, . . . , n}. Bob is not allowed to ask other forms of questions.

�e following is an example of how the game could start:

• Alice and Bob agree on n = 1000.

• Alice secretly chooses x = 541.

• Bob asks: “Is x greater than 50?”

– Alice answers “yes”.

• Bob asks: “Is x greater than 659?”

– Alice answers “no”.

We emphasize that Bob does not have to guess the exact value of x. He only needs to �nd the parity of
x, and he wishes to achieve this by asking as few questions as possible.

6

a) Assume that n = 3. Devise a strategy of questions for Bob and draw its decision tree

Solution:
Greater than 2?

Greater than 1? Odd

Odd Even

No Yes

No Yes

b) Now n is arbitrary. Bob has asked i comparison questions and Alice answered these questions.
Let Xi ✓ {1, . . . , n} be the collection of all numbers that are consistent with Alice’s answers1.
Show that Xi is a contiguous subset of {1, . . . , n}, i.e., there exist a, b 2 {1, . . . , n} such that

X =
n
y 2 {1, . . . , n} : a  y  b

o
.

Hint: You can prove this by induction on the number of questions i.

Solution: If Bob has not asked any question yet, then

X0 = {1, . . . , n} =
n
y 2 {1, . . . , n} : 1  y  n

o
.

Now let i � 0 and suppose that a�er asking i questions, the set Xi satis�es

Xi =
n
y 2 {1, . . . , n} : a  y  b

o
,

for some a, b 2 {1, . . . , n}. Now assume that the (i+ 1)th question of Bob was

“Is x greater than c?”

for some c 2 {1, . . . , n}. If the answer is yes, then

Xi+1 =
n
y 2 {1, . . . , n} : max{a, c+ 1}  y  b

o
.

If the answer is no, then

Xi+1 =
n
y 2 {1, . . . , n} : a  y  min{b, c}

o
.

�erefore, in all cases, Xi+1 remains a contiguous subset of {1, . . . , n}. It follows by induction
that for every i � 0, the set Xi is always contiguous.

c) Show that in any strategy of questions that Bob can follow, Bob cannot reliably guess the parity
of x without reliably guessing the number x itself.

Hint: Show that a�er i questions, Bob cannot reliably guess the parity of x unless Xi contains a
single number.

Solution: Bob cannot reliably guess the parity of x unless all the numbers in Xi have the same
parity.

1Consider the example above with x = 541. A�er Bob’s two questions, the set X2 contains x = 541 but also contains
numbers such as 51, 141, 513 and 659.

7

Suppose that Xi contains more than one element. Since Xi is always contiguous, then Xi must
contain at least two consecutive numbers. By noticing that consecutive numbers have di�erent
parities, we can see that Bob cannot reliably guess the parity of x unless Xi contains a single
number. In other words, Bob cannot reliably guess the parity of x unless Bob can reliably guess
the number x itself.

d) Show that in any strategy of questions that Bob can follow, the number of questions that are
required to reliably guess the parity of x is at least dlog2(n)e in the worst case.

Solution:We will follow an argument that is similar to the one we saw in class.

Imagine the decision tree of Bob’s strategy. From c) we know that when we reach a leave of the
tree, Bob must be able to determine the number x. �erefore, in any strategy, there is at least n
leaves in the decision tree.

Now since the decision tree is a binary tree, its height must be at least dlog2(n)e. �erefore, the
number of questions that are required to reliably guess the parity of x is at least dlog2(n)e in the
worst case.

Remark:�is exercise shows that guessing the parity of a number using only comparison oracles
is as hard as guessing the number itself. Note that if we had access to other oracles, we might be
able to guess the parity of x more e�ciently.

8

