
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 08. November 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Exercise sheet 7 HS 21

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 15 November 2021, hand in your solution to your TA before the exercise
class starts. Exercises that are marked by ⇤ are challenge exercises. �ey do not count towards bonus
points.

Exercise 7.1 Subset sum for general integers (1 point).

Let a1, . . . , an, t be n+1 integers inZ. We would like to check whether there is a subset I ✓ {1, . . . , n}

such that
X

i2I
ai = t. Here, we adopt the convention that if I is empty, then

X

i2I
ai = 0.

We have seen in class that if a1, . . . , an, t are positive, then we can solve this problem in O(nt) time
using dynamic programming. In this exercise, we would like to handle the case where some of the
integers a1, . . . , an, t could be negative or zero.

Provide a dynamic programming algorithm that solves the subset sum problem for general integers.�e

algorithm should have O

n ·

nX

i=1

|ai|

!
runtime.

Hint:�eDP table is two-dimensional, and its size is (n+1)⇥ (1 +
Pn

i=1 |ai|). Furthermore, for i > 0,
the entry DP [i][j] can be computed from DP [i� 1][j] and DP [i� 1][j � ai].

Address the following aspects in your solution:

1. De�nition of the DP table: What is the meaning of each entry?

2. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

3. Calculation order: In which order can entries be computed so that values needed for each entry have
been determined in previous steps?

4. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

5. Running time: What is the running time of your solution?

Solution: Let N :=
X

ai<0

|ai| and P :=
X

ai>0

ai. We can compute N and P in O(n) time. Note that

N + P =
nX

i=1

|ai|.

It is easy to see that for every I ✓ {1, . . . , n}, we have �N 
X

i2I
ai  P . �erefore, if t < �N or

t > P , we can immediately say that the answer is no. In order to handle the case �N  t  P , we
need dynamic programming.

De�nition of the DP table: For 0  i  n and 0  j  N + P , the entry DP [i][j] is a boolean
value indicating whether there is a subset I ✓ {1, . . . , i} such that

X

k2I
ak = j � N . Here, we adopt

the convention that for i = 0, we have {1, . . . , i} = ?.

Computation of an entry: Initialize

• DP [0][N] = ����. �is is because
X

k2?
ak = 0 = N �N .

• DP [0][j] = �����, for every j 6= N .

Now for i � 1 and 0  j  N + P , we can compute DP [i][j] using the formula

DP [i][j] = DP [i� 1][j] OR (j � ai AND DP [i� 1][j � ai]). (1)

�e proof of correctness of this formula is very similar to the one we saw in class for the subset sum
problem: We just need to examine the cases where the subset I ✓ {1, . . . , i} contains i or not.

Calculation order: We can calculate the entries of DP in order of increasing i. For �xed i, we can
compute the entries (DP [i][j])0jN+P in any order of j.

Extracting the solution: All we have to do is read the value at DP [n][t+N].

Running time: �e entry DP [i][j] can be computed in O(1) time.�erefore, the total runtime is

nX

i=0

N+PX

j=0

O(1) = O
�
(n+ 1) · (N + P + 1)

�
= O(n · (N + P)) = O

n ·

nX

i=1

|ai|

!
.

Exercise 7.2 Longest Snake.

You are given a game-board consisting of hexagonal �elds F1, . . . , Fn.�e �elds contain natural num-
bers v1, . . . , vn 2 N. Two �elds are neighbors if they share a border. We call a sequence of �elds
(Fi1 , . . . , Fik) a snake of length k if, for j 2 {1, . . . , k � 1}, Fij and Fij+1 are neighbors and their
values satisfy vij+1 = vij + 1. Figure 1 illustrates an example game board in which we highlighted the
longest snake.

For simplicity you can assume that Fi are represented by their indices. Also you may assume that you
know the neighbors of each �eld. �at is, to obtain the neighbors of a �eld Fi you may call N (Fi),
which will return the set of the neighbors of Fi. Each call of N takes unit time.

2

a) Provide a dynamic programming algorithm that, given a game-board F1, . . . , Fn, computes the
length of the longest snake.

1

2

3

3
4

5

6 7 8

1211
10

10 9

11 2

20

21

9

6

1312

1

5

Figure 1: Example of a longest snake.

Hint: Your algorithm should solve this problem usingO(n log n) time, where n is the number of hexa-
gonal �elds.

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Solution:

Dimensions of the DP table:�e DP table is linear, its size is n.

De�nition of the DP table: DP [i] is the length of the longest snake with head Fi (that is, the
length of the longest snake of the form (Fj1 , . . . , Fjm�1 , Fi)).

Computation of an entry:
DP [i] = 1 + max

Fj2N (Fi)
vj=vi�1

DP [j].

�at is, we look at those neighbors of Fi that have values vj smaller than vi exactly by 1, and choose
the maximal value in the DP table among them. If there are no such neighbors, we de�ne max in
this formula to be 0.

Calculation order: We �rst sort the hexagons by their values. �en we �ll the table in ascending
order, that is, i1, . . . , in such that vij  vij+1 for all j = 1, . . . n� 1.

3

Extracting the solution:�e output is max
1in

DP [i].

Running time: We compute the order in time O(n log n) by sorting v1, . . . , vn. �en each entry
can be computed in timeO(1) and �nally we compute the output in timeO(n). So the running time
of the algorithm is O(n log n).

b) Provide an algorithm that takes as input F1, . . . Fn and a DP table from part a) and outputs the
longest snake. If there are more than one longest snake, your algorithm can output any of them.
State the running time of your algorithm in ⇥-notation in terms of n.

Solution:At the beginningwe�nd a head of a snake that is someFj1 such thatDP [j1] = max
1in

DP [i].

If DP [j1] 6= 1, we look at its neigbours and �nd some Fj2 such that DP [j2] = DP [j1] � 1. If
DP [j2] 6= 1, then among neighbors of Fj2 we �nd some Fj3 such that DP [j3] = DP [j2] � 1 and
so on. We stop when DP [jm] = 1 (where m is exactly the length of the longest snake). �en we
output the snake (Fj1 , . . . , Fjm).

�e running time of this algorithm is ⇥(n), since we use ⇥(n) operations to �nd Fj1 and we need
⇥(1) time to �nd each Fjk for 1 < k  m  n and ⇥(m) time to output the snake.

Remark 1. An alternative solution would be to store the predecessor in a longest snake with head
Fi directly inDP [i] (in addition to the length of this longest snake), and store ; if the length of the
longest snake is just 1. �en, in order to recover a longest snake, we simply need to �nd a head of
a snake that has maximal length and then follow the sequence of predecessors until we reach an
entry DP [i] that has ; as predecessor.

c)⇤ Find a linear time algorithm that �nds the longest snake. �at is, provide an O(n) time algorithm
that, given a game-board F1, . . . , Fn, outputs the longest snake (if there are more than one longest
snake, your algorithm can output any of them).

Solution:Wecan use recursionwithmemorization. Similar to part a), wewill�ll an arrayS[1, . . . , n]
of lengths of longest snakes, that is, S[i] is the length of the longest snake with head Fi. Consider
the following pseudocode:

Algorithm 1 Fill-lengths(v1, . . . , vn)
S[1], . . . , S[n] 0, . . . , 0
for i = 1, . . . , n do

if S[i] = 0 then
Move-to-tails(i, S, v1, . . . , vn)

return S

where the procedure Move-to-tails(i, S, v1, . . . , vn) is:

Algorithm 2Move-to-tails(i, S, v1, . . . , vn)
for Fj 2 N (Fi) do

if vj = vi � 1 and S[j] = 0 then
Move-to-tails(j, S, v1, . . . , vn)

S[i] = 1 + max
Fj2N (Fi)
vj=vi�1

S[j]

4

As in part a), we assume thatmax over the empty set is 0. Let us showwhy this procedure is correct.
First, since the algorithmMove-to-tails is recursive, we have to check that it actually �nishes. Move-
to-tails(i, S, v1, . . . , vn) is calling Move-to-tails only for indices j with vj < vi, and therefore an
easy induction on vj shows that the algorithmwill always terminate. We now show the correctness
of Move-to-tails(i, S, v1, . . . , vn) by induction on vi.

Base case vi = 1: If vi = 1, then there is no j such that vj = vi � 1.�erefore, themax in Move-
to-tails(i, S, v1, . . . , vn) is empty, so S[i] is set to 1, which is indeed the length of a longest
snake with head Fi when vi = 1.

Induction hypothesis: A�er calling Move-to-tails(i, S, v1, . . . , vn)with vi = k, the value of S[i]
contains the length of the longest snake with head Fi.

Induction step k ! k + 1: Let i be an index with vi = k + 1. �en for any Fj 2 N (Fi) such
that vj = vi � 1, we have vj = k, so by the induction hypothesis a�er calling Move-to-
tails(j, S, v1, . . . , vn) the value of S[j] contains the length of the longest snake with head Fj .
�erefore, a�er se�ing

S[i] = 1 + max
Fj2N (Fi)
vj=vi�1

S[j],

the value of S[i] indeed contains the length of the longest snake with head Fi.

A�er we �ll S, we can use the same algorithm as in part b) to �nd a longest snake (we should
replace DP by S in the description of that algorithm).

For the runtime, wewill show that for each i 2 {1, . . . , n}we callMove-to-tails(i, S, v1, . . . , vn) ex-
actly once. Indeed, it is called onlywhenS[i] = 0, and a�er the�rst call ofMove-to-tails(i, S, v1, . . . , vn)
has terminated, we have S[i] > 0 by the invariant for the rest of the algorithm. So Move-to-
tails(i, S, v1, . . . , vn) will not be called a second time a�er the �rst call has terminated. While
the �rst call of Move-to-tails(i, S, v1, . . . , vn) is running, Move-to-tails is only called for indices
j with vj < vi, which follows from a very simple induction. So Move-to-tails(i, S, v1, . . . , vn) is
also not called a second time while the �rst call is still running. So we have shown that Move-
to-tails(i, S, v1, . . . , vn) is called exactly once for each i. �erefore, the running time is linear in
n.

�e technique that we used here is closely related to depth-�rst search and topological ordering of
a graph.�ese topics will be studied later in this course.

Exercise 7.3 Road trip (1 point).

You are planning a road trip for your summer holidays. You want to start from city C0, and follow
the only road that goes to city Cn from there. On this road from C0 to Cn, there are n � 1 other
cities C1, . . . , Cn�1 that you would be interested in visiting (all cities C1, . . . , Cn�1 are right on the
road from C0 to Cn). For each 0  i  n, the city Ci is at kilometer ki of the road for some given
0 = k0 < k1 < . . . < kn�1 < kn.

You want to decide in which cities amongC1, . . . , Cn�1 you will make an additional stop (you will stop
in C0 and Cn anyway). However, you do not want to drive more than d kilometers without making a
stop in some city, for some given value d > 0 (we assume that ki < ki�1 + d for all i 2 [n] so that
this is satis�able), and you also don’t want to travel backwards (so from some city Ci you can only go
forward to cities Cj with j > i).

5

a) Provide a dynamic programming algorithm that computes the number of possible routes from C0 to
Cn that satis�es these conditions, i.e., the number of allowed subsets of stop-cities. In order to get
full points, your algorithm should have O(n2) runtime.

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Solution:

Dimensions of the DP table:�e DP table is linear, and its size is n+ 1.

De�nition of the DP table: DP [i] is the number of possible routes from C0 to Ci (which stop at
Ci).

Computation of an entry: Initialize DP [0] = 1.

For every i > 0, we can compute DP [i] using the formula

DP [i] =
X

0j<i
kikj+d

DP [j]. (2)

We now show the correctness of this formula. For a given route from C0 to Ci, let j be the index of
the last city where you stop before Ci. Since you do not go backwards we have j < i, and since you
do not travel more than d kilometers between two stops we also have ki  kj +d.�e total number
of routes from C0 to Ci whose last stop (before Ci) is Cj is simply the number of routes from C0 to
Cj , which is DP [j].�erefore, to get the total number of routes from C0 to Ci we need to sum the
entries DP [j] over all indices j which are a possible last stop before Ci, which shows the formula
in Equation (2).

Calculation order:We can calculate the entries ofDP from the smallest index to the largest index.

Extracting the solution: All we have to do is read the value at DP [n].

Running time: For i = 0,DP [0] is computed inO(1) time. For i � 1, the entryDP [i] is computed
in O(i) time (as we potentially need to take the sum of i entries). �erefore, the total runtime is
O(1) +

Pn
i=1O(i) = O(n2).

b) If you know that ki > ki�1 + d/10 for every i 2 [n], how can you turn the above algorithm into a
linear time algorithm (i.e., an algorithm that has O(n) runtime) ?

Solution:

Assuming that ki > ki�1 + d/10 for all i, we know that ki > ki�10 + d, and hence ki > kj + d for
all j  i � 10. �erefore, the sum in formula (2) contains at most 10 terms DP [j] (and for each of
them we can check in constant time whether we should include it or not, i.e., whether ki  kj + d).

6

So in this case the computation of the entryDP [i] takes time O(1) for all 0  i  n, and hence the
total runtime is O(n).

Exercise 7.4 Animals in the zoo (1 point).

A number n of animal species have been recently discovered in Africa. �e zoo of Zürich is interested
in acquiring as many animals from the new species as possible before a special exhibition that is taking
place on December 1st, and you were put in charge of this task. Because of the time constraint, you can
only organize one shipping of animals.�e shipment can hold a maximum total weight ofW . Further-
more, due to logistical constraints, you cannot isolate the animals during the shipment.�erefore, you
cannot simultaneously bring two animals where one of them is a predator of the other.

Let A1, . . . , An be the n > 4 discovered species. You know that the species A1, A2 and A3 are not
predators, but for 4  i  n, the species Ai is a predator of only the species Ai�1, Ai�2 and Ai�3 (this
means that, for example, Ai it is not a predator of species Ai�4 or Ai+1).

For every 1  i  n, an animal from the species Ai has weight wi > 0, and provides a value vi > 0
to the zoo. You would like to �gure out the collection of animals that you can bring to the zoo, and
which provides the maximum total value to the zoo. We assume that (wi)1in andW are all positive
integers. If you bring one animal from a species, then bringing another animal from the same species
does not provide any additional value to the zoo. �erefore, there is no point in bringing two or more
animals from the same species.

Provide a dynamic programming algorithm that solves this problem. �e input to your algorithm are
the weights (wi)1in and values (vi)1in of the animal species, and the maximum total weight W
that is allowed in one shipping. In order to get full points, the runtime of your algorithm should be
O(nW).

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry have
been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Solution:

Dimensions of the DP table:�e DP table is two-dimensional, and its size is (n+ 1)⇥ (W + 1).

De�nition of the DP table: For 0  i  n and 0  j  W , the entry DP [i][j] represents the
maximum value of a collection of animals among {A1, . . . , Ai}, which has a total weight of at most j,
and which does not contain any two animals where one of them is a predator of the other. Here, we
adopt the convention that for i = 0, we have {A1, . . . , Ai} = ?.

Computation of an entry: Initialize DP [0][j] = 0 for every 0  j W .

7

For 1  i  3 and 0  j  W , we can compute DP [i][j] exactly like the knapsack problem using the
formula

DP [i][j] = max
n
DP [i� 1][j] , 1{j�wi} ·

�
vi +DP [i� 1][j � wi]

�o
. (3)

Now for 4  i  n and 0  j  W , we can compute DP [i][j] using a modi�ed formula that takes
into account the predator constraint:

DP [i][j] = max
n
DP [i� 1][j] , 1{j�wi} ·

�
vi +DP [i� 4][j � wi]

�o
. (4)

�e proof of correctness of this formula is very similar to the one we saw in class for the knapsack
problem:We just need to examine the cases where the collection of animals from {A1, . . . , Ai} contains
Ai or not.

Calculation order: We can calculate the entries of DP in order of increasing i. For �xed i, we can
compute the entries (DP [i][j])0jW in any order of j.

Extracting the solution: All we have to do is read the value at DP [n][W].

Running time: �e entry DP [i][j] can be computed in O(1) time.�erefore, the total runtime is

nX

i=1

WX

j=0

O(1) = O
�
(n+ 1) · (W + 1)

�
= O(nW).

Exercise 7.5 Partitioning integers in three equal parts (This exercise is from the January 2021
exam).

You are given an array of n natural numbers a1, . . . , an 2 N summing to A :=
Pn

i=1 ai, which is a
multiple of 3. You want to determine whether it is possible to partition {1, . . . , n} into three disjoint
subsets I, J,K such that the corresponding elements of the array yield the same sum, i.e.

X

i2I
ai =

X

j2J
aj =

X

k2K
ak =

A

3
.

Note that I, J,K form a partition of {1, . . . , n} if and only if I \ J = I \ K = J \ K = ; and
I [J [K = {1, . . . , n}.

For example, the answer for the input [2, 4, 8, 1, 4, 5, 3] is yes, because there is the partition {3, 4},
{2, 6}, {1, 5, 7} (corresponding to the subarrays [8, 1], [4, 5], [2, 4, 3], which are all summing to 9). On
the other hand, the answer for the input [3, 2, 5, 2] is no.

Provide a dynamic programming algorithm that determines whether such a partition exists. Your algo-
rithm should have anO(nA2) runtime to get full points. Address the following aspects in your solution:

1) De�nition of the DP table: What are the dimensions of the table DP [. . .] ? What is the meaning
of each entry?

2) Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

8

4) Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

5) Running time: What is the running time of your algorithm? Provide it in ⇥-notation in terms of
n and A, and justify your answer.

Size of the DP table / Number of entries: (n+ 1)⇥ (A+ 1)⇥ (A+ 1).

Meaning of a table entry: For 0  m  n and 0  B,C  A, the corresponding entry in the DP
table is de�ned as

DP [m,B,C] =

8
<

:
1

if there are two disjoint sets I, J ✓ {1, . . . ,m} such
that

P
i2I ai = B and

P
j2J aj = C ,

0 otherwise.

Computation of an entry (initialization and recursion):

We initialize the values form = 0 as

DP [0, B, C] =

(
1 if B = C = 0,
0 otherwise.

�e other entries are then computed as

DP [m+ 1, B, C] = max{DP [m,B,C], DP [m,B � am+1, C], DP [m,B,C � am+1]} .

In this formula we assume that if am+1 > B, then DP [m,B � am+1, C] = 0, and if am+1 > C , then
DP [m,B,C � am+1] = 0.

Indeed, it is possible to get two disjoint subsets of {a1, . . . , am+1} summing to B and C if and only if
there are two disjoint subsets of {a1, . . . , am} that are summing to either B and C (so we don’t need
to use am+1), B � am+1 and C (so we add am+1 to the �rst subset), or B and C � am+1 (so we add
am+1 to the second subset).

Order of computation:We can compute the valuesDP [m,B,C] by increasing order inm.�e order
for B and C doesn’t ma�er.

Extracting the result:�e answer to the problem is yes ifDP [n,A/3, A/3] = 1 and no ifDP [n,A/3, A/3] =
0.

Running time:We need to �ll (n+1)(A+1)2 entries, and each of them can be computed in constant
time ⇥(1).�erefore, the running time is ⇥(nA2).

9

