
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Department of Computer Science 22. November 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Exercise sheet 9 HS 21

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 29 November 2021, hand in your solution to your TA before the exercise
class starts. Exercises that are marked by ⇤ are challenge exercises. �ey do not count towards bonus
points.

Exercise 9.1 Search Trees (2 points).

a) Draw the resulting tree when the keys 2, 7, 8, 4, 5, 6, 3, 1 in this order are inserted into an initially
empty binary (natural) search tree.

Solution:

2

1 7

4

3 5

6

8

b) Delete key 1 in the above tree, and a�erwards delete key 7 in the resulting tree.

Solution: Key 1 is a leaf, so we can simply delete it without need for replacement:



2

7

4

3 5

6

8

Key 7 must either be replaced by its predecessor key, 6, or its successor key, 8. If key 7 is replaced
by its predecessor:

2

6

4

3 5

8

If key 7 is instead replaced by its successor:

2

8

4

3 5

6

c) Draw the resulting tree when the above keys are inserted into an initially empty AVL tree. Give also
the intermediate states before and a�er each rotation that is performed during the process.

Solution:

Insert 2 and then 7:

2



2

7

Insert 8:

2

7

8

7

2 8
Rotate le�.

Insert 4 and then 5:

7

2

4

5

8

7

4

2 5

8
Rotate le�.

Insert 6:

7

4

2 5

6

8

7

5

4

2

6

8

5

4

2

7

6 8

Rotate le�. Rotate right.

Insert 3:

3



5

4

2

3

7

6 8

5

4

3

2

7

6 8

5

3

2 4

7

6 8

Rotate le�. Rotate right.

Insert 1:

5

3

2

1

4

7

6 8

d) Consider the following AVL tree:

5

2

1 4

3

7

6 8

Delete key 1 in this tree, and a�erwards delete key 7 in the resulting tree. Give also the intermediate
states before and a�er each rotation is performed during the process.

Solution:

Delete 1:

4



5

2

4

3

7

6 8

5

2

3

4

7

6 8

5

3

2 4

7

6 8

Rotate right. Rotate le�.

Delete 7:

Key 7 can either be replaced by its predecessor key, 6, or its successor key, 8. If key 7 is replaced by
its predecessor:

5

3

2 4

6

8

If key 7 is instead replaced by its successor:

5

3

2 4

8

6

Exercise 9.2 Exponential bounds for a sequence de�ned inductively.

Consider the sequence (an)n2N de�ned by

a0 = 1,

a1 = 1,

a2 = 2,

ai = ai�1 + 2ai�2 + ai�3 8i � 3.

�e goal of this exercise is to �nd exponential lower and upper bounds for an.

a) Find a constant C > 1 such that an  O(Cn) and prove your statement.

Solution:

5



Intuitively, the sequence (an)n2N seems to be increasing. Assuming so, we would have

ai = ai�1 + 2ai�2 + ai�3  ai�1 + 2ai�1 + ai�1 = 4ai�1,

which yields

an  4an�1  . . .  4na0 = 4n.

�is only comes from an intuition, but it is a good way to guess what the upper bound could be.
Now let us actually prove (by induction) that an  4n for all n 2 N.

Induction Hypothesis. We assume that for k � 2 we have

ak  4k, ak�1  4k�1
, ak�2  4k�2

. (1)

Base case k = 2. Indeed we have a0 = 1  40, a1 = 1  41 and a2 = 2  42.

Inductive step (k ! k+1). Let k � 2 and assume that the induction hypothesis (1) holds. To show
that it also holds for k + 1, we need to check that ak+1  4k+1, ak  4k and ak�1  4k�1. �e
two last inequalities clearly hold since they are part of the induction hypothesis, so we only need to
check that ak+1  4k+1. Indeed,

ak+1 = ak + 2ak�1 + ak�2

(1)
 4k + 2 · 4k�1 + 4k�2

 4k + 2 · 4k + 4k = 4 · 4k = 4k+1
.

�us, an  4n for all n 2 N. In particular, we have shown that an  O(Cn) for C = 4 > 1.

b) Find a constant c > 1 such that an � ⌦(cn) and prove your statement.

Solution:

If we again assume that the sequence is increasing, we would get

ai = ai�1 + 2ai�2 + ai�3 � ai�3 + 2ai�3 + ai�3 = 4ai�3,

which yields

an � 4an�3 � . . . � 4bn/3ca0 = 4bn/3c.

So we will aim to prove a lower bound of the form an � " · 4n/3 for some constant " > 0. We see
that taking " := min{1, 4�1/3

, 2 · 4�2/3
} = 4�1/3 will make the inequality satis�ed for the base

case, so let’s prove by induction that an � 4�1/34n/3 for all n 2 N.

Induction Hypothesis.We assume that for k � 2 we have

ak � 4�1/34k/3, ak�1 � 4�1/34(k�1)/3
, ak�2 � 4�1/34(k�2)/3

. (2)

Base case k = 2. Indeed we have a0 = 1 � 4�1/3
· 40, a1 = 1 � 4�1/341/3 and a2 = 2 � 41/3 =

4�1/342/3.

Inductive step (k ! k + 1). Let k � 2 and assume that the induction hypothesis (2) holds. To
show that it also holds for k + 1, we need to check that ak+1 � 4�1/34(k+1)/3, ak � 4�1/34k/3 and
ak�1 � 4�1/34(k�1)/3. �e two last inequalities clearly hold since they are part of the induction
hypothesis, so we only need to check that ak+1 � 4�1/34(k+1)/3. Indeed,

ak+1 = ak + 2ak�1 + ak�2

(2)
� 4�1/3

⇣
4k/3 + 2 · 4(k�1)/3 + 4(k�2)/3

⌘

� 4�1/3
⇣
4(k�2)/3 + 2 · 4(k�2)/3 + 4(k�2)/3

⌘
= 4�1/3

· 4 · 4(k�2)/3 = 4�1/34(k+1)/3
.

�us, an � 4�1/34n/3 for all n 2 N. In particular, we have shown that an � ⌦(cn) for c = 41/3 > 1.

6



Remark. One can actually show that an = ⇥(�n), where � ⇡ 2.148 is the unique positive solution of
the equation x

3 = x
2 + 2x+ 1.

Exercise 9.3 Online supermarket.

Assume that you work in a large online supermarket that o�ers di�erent types of goods. At every
moment you have to know the number of goods of each type that the supermarket currently o�ers. Let
us denote the number of goods of type t by St. At any moment St can either be decreased (if someone
has bought some goods of type t) or increased (if some goods of type t have been delivered from the
manufacturer). Also your boss can ask you how many goods of type t does the supermarket currently
o�er. So you can receive three types of queries: to decrease St by 0 < x  St, to increase St by x > 0
or to return St.

Assume that at each moment number of di�erent types of goods that the supermarket o�ers at that
moment is bounded by n > 0, but the number of types of goods that the supermarket can potentially
o�er might be much larger than n. Consider the following example: n = 3, at 14:00 the supermarket
can o�er 5 balls, 1 doll and 4 phones and at 14:15 it can o�er 6 balls, 3 chairs and 12 pencils.

Provide an algorithm that can handle each query in timeO(log n). You may assume that initially all St

are zero.

Solution:

We store the goods in an AVL-tree.�at is, for good t we use t as the key that determines the position
in the AVL-tree, and we store the value St in the node of t. We only store a good t in the AVL-tree if
St > 0.

For all three types of queries, we �rst search the key t in the AVL-tree, which takes time O(log n). If
t does not exist in the tree, then we give out 0 if we are asked for the number of elements; we give an
error for a decrease query; and we insert the key t into the AVL-tree with value St := x if we get an
increase query. �e la�er operation takes time O(log n), the other two take constant time. However,
since we �rst need to search for the key, all queries need total time O(log n).

If the key t exists, we proceed similarly. Depending on the query, we return St, or in-/decrease St by
x. Moreover, if we decrease St to zero then we delete the key from the AVL-tree, which takes time
O(log n). Again, all queries take a total time of O(log n), as required.

Exercise 9.4 Augmented Binary Search Tree (1 point).

Consider a variation of a binary search tree, where each node has an additional member variable called
����. �e purpose of the variable ���� is to indicate the size of the subtree rooted at this node. An
example of an augmented binary search tree (with integer data) can be seen below (Fig. 1).

a) What is the relation between the size of a node and the sizes of its children?

Solution:

For every node in the tree, we have

����.���� = ����.����.����+ ����.�����.����+ 1.

Note that throughout the solution of this exercise, we adopt the convention that ����.���� = 0.

7



10
SIZE=7

7
SIZE=4

3
SIZE=1

8
SIZE=2

9
SIZE=1

12
SIZE=2

15
SIZE=1

Figure 1: Augmented binary search tree

b) Describe in pseudo-code an algorithm V�����S����(����) that returns ���� if all the sizes in the
tree are correct, and returns ����� otherwise. For example, it should return ���� given the tree
in Fig. 1, but ����� given the tree in Fig. 2.

What is the running time of your algorithm? Justify your answer.

10
SIZE=7

7
SIZE=4

3
SIZE=1

8
SIZE=2

9
SIZE=1

12
SIZE=5

15
SIZE=1

Figure 2: Augmented binary search tree with buggy size: incorrect size for node with data “12”

Solution:

8



Algorithm 1 Verifying the sizes of the tree
function V�����S����(����)

if ���� = ���� then
return ����

else if V�����S����(����.����) = ����� �� V�����S����(����.�����) = ����� then
return �����

else
C������S��� 1 + ����.����.����+ ����.�����.����
return C������S��� = ����.����

�e above recursive algorithm visits every node of the tree exactly once. Furthermore, it performs
a constant number of operations O(1) at each node. �erefore, the runtime is O(n), where n is
the number of nodes in the tree.

c) Suppose we have an augmented AVL tree (i.e., as above, each node has a ���� member variable).
Describe in pseudo-code an algorithm S�����(����, k) which, given an augmented AVL tree and
an integer k, returns the k-th smallest element in the tree in O(log n) time.

Example: Given the tree in Fig. 1, for k = 3, S����� returns 8; for k = 5, it returns 10; for k = 1,
it returns 3; etc.

Solution:

Algorithm 2 Selecting the k-th smallest element
function S�����(����, k)

������� ����.����.����+ 1
if k = ������� then

return ����.����
else if k < ������� then

return S�����(����.����, k)
else

return S�����(����.�����, k � �������)

�e above algorithm follows a downward path until it �nds the correct node. Furthermore, it
performs a constant number of operations O(1) at each visited node. �erefore, the runtime of
the algorithm is O(h), where h is the height of the tree. Now since the tree is an AVL tree, we
have h = O(log n). We conclude that the runtime of the above algorithm is O(log n).

d)* To maintain the correct sizes for each node, we have to modify the AVL tree operations, insert
and remove. For this problem, we will consider only the modi�cations to theAVL�������method
(i.e., you are not responsible for AVL�������). Recall that AVL������� �rst uses regular ������
for binary search trees, and then balances the tree if necessary via rotations.

• How should we update ������ to maintain correct sizes for nodes?

During the balancing phase, AVL������� performs rotations. Describe what updates need to be
made to the sizes of the nodes. (It is su�cient to describe the updates for le� rotations, as right
rotations can be treated analogously.)

Solution:

9



�e regular ������ function follows a downward path and then adds the new node as a leaf at the
correct place. We only need to increment the variable ���� by 1 at each visited node, and set the
variable ���� of the added leaf to 1.�e runtime of the modi�ed function remains O(h), where h
is the height of the tree. If the tree is an AVL tree, then the runtime is O(log n).

Regarding AVL�������, a�er modifying the regular ������ function as we explained, we need
to modify the rotation functions L����R����� and R�����R����� to maintain the correct ����
variables.

Suppose we are performing a right-rotation on the node y of the tree that is drawn on the le� (or
performing a le�-rotation on the node x of the tree that is drawn on the right):

y

x

↵ �

�

x

↵ y

� �

R������R����

R������L���

In the above diagrams,↵,� and � represent subtrees. As can be easily seen, only x.���� and y.����
need to be updated, and we can apply the relation in a) in the correct order:

• At the end of R������R����, we apply

y.���� y.����.����+ y.�����.����+ 1,

and then
x.���� x.����.����+ x.�����.����+ 1.

• At the end of R������L���, we apply

x.���� x.����.����+ x.�����.����+ 1,

and then
y.���� y.����.����+ y.�����.����+ 1.

As we can see, the runtime of the modi�ed R�����R����� (resp. L����R�����) function remains
O(1).�erefore, the runtime of AVL������� remains O(log n).

Remark: It is also possible to modifyAVL������� to maintain the correctness of the ���� variables
while keeping the O(log n) runtime.

Exercise 9.5⇤ Maximum Depth Di�erence of two Leaves.

Consider an AVL tree of height h. What is the maximum possible di�erence of the depths of two leaves?
Describe which structure such trees need to have, and draw examples of corresponding trees for every
h 2 {2, 3, 4}. Derive a recursive formula (depending on h), solve it and use induction to prove the
correctness of your solution. Provide a detailed explanation of your considerations.

Hint: For the proof the principle of complete induction can be used. LetA(n) be a statement for a number
n 2 N. If, for every n 2 N, the validity of all statements A(m) for m 2 {1, . . . , n � 1} implies the

10



validity of A(n), then A(n) is true for every n 2 N. �us, complete induction allows multiple base cases
and inductive hypotheses.

Solution:

For an AVL-tree T with a root node v and height h, we can distinguish the following 3 cases:

• Both sub-trees Tl(v) and Tr(v) have height h� 1

• Tl(v) has height h� 1 and Tr(v) has height h� 2, or

• Tl(v) has height h� 2 and Tr(v) has height h� 1

As we are interested in themaximum depth di�erence of two leaves, we can disregard the �rst case, and
focus on sub-trees that have heights that di�er by 1. Without loss of generality, we can take the second
case, assuming that the le� sub-tree will have height of h� 1, while the right sub-tree will have height
of h� 2. If the le� sub-tree is an AVL-tree of height h� 1, then the right tree must be an AVL-tree of
height h� 2.�is comes from the properties of an AVL tree, because if at any time they di�er by more
than one, rebalancing is done to restore this property. As a result of this, the entire tree T will have a
height of h and as such there will be a leaf on the le�-subtree with this depth.

�e �gure below illustrates the AVL trees of height h 2 {1, 2, 3}:

In general, we consider trees with the following structure:

�e le� subtree Tl(v) contains a leaf of depth h (while Tl(v) has height of h�1), the right subtree Tr(v)
contains a leaf of depth h� 1 (while Tr(v) has height h� 2). �e maximum possible di�erence of the
depths of two leaves in the tree (with height h) is therefore 1 greater than the maximum di�erence of
the depths of two leaves in the right subtree (with height h � 2). For h = 2 and h = 3, the maximum
depth di�erence is exactly 1.

As a result, we have the following recursive formula for the maximum di�erence of the depths of two
leaves in a tree of height h:

D(2) = 1, D(3) = 1, D(h) = 1 +D(h� 2) for all h � 4. (3)

From the above, we can assume thatD(h) = bh/2c. We prove this assumption using induction over h.

Base case I (h = 2): D(2) = 1 = b2/2c.

11



Base case II (h = 3): D(3) = 1 = b3/2c.

Induction hypothesis: Assume that the property holds for some h: D(h� 2) = b(h� 2)/2c.

Inductive step: ((h� 2)! h): From the recursive de�nition of D(h), we have:

D(h) = 1 +D(h� 2) = 1 + b(h� 2)/2c = 1 + bh/2� 1c = 1 + bh/2c � 1 = bh/2c. (4)

12


