Embedded Systems

@

Characteristics:

Computation

ra===

Often reactive (execution occurs at a pace determined by environment)
Often must meet hard real-time constraints

Often specialised to application womn Sy
Must be efficient: m— g ! =
o Cost & weight efficient WORLD

o Energy, memory & runtime efficient (from a worst-case perspective)

physical/biological/social
processes

Storage

version od
E-m!»eouea' Systems - HS2022
J 30.04.23
Marvin Steinkellner
Decimal Hex Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 5 1000
9 9 1001
10 A 1010
11 B 1011
12 g 1100
13 D 1101
14 E 1110
15 F 1111
A A AKiB = 2" Bytes = 2" Biss
B) Q B) L Q 4Hif3=22°37£es =223 Bits

416/8 =23° E’ECS =232 Bits

Oxbecf =151+ #1916 44146 = 43879
= 0b40111110 1414

O rFk OO0

Q
1
0
0
1

= = O 0O |>
~ O O|
_ = O 0O |>
— O O |

SRAM:

DRAM:

Flash memory:

Very fast volatile memory for low volumes (e.g., registers or cache)
Read procedure:

Pre-charge all bit-lines to average voltage

Decode address (n + m bits)

Select row of cells using n single-bit word lines (WL)
Selected bit-cells drive all bit-lines BL (2™ pairs)

. Sense difference between bit-line pairs and read out u -
Write procedure:

o Select row and overwrite bit-lines using strong signals

bit-cell array
2" row x 2™-col

(n=m to minmize
overall latency)

m 2" diff pairs
\Sense amp and mu;
1

ns W

Word Line

bit-cell array

2 row x 2™-col

Higher density than SRAM but with slower access speed
Capacitors discharge so cells need to be refreshed periodically

(n=m to minmize

Bit Line
overall latency)

\sense amp and mu
1

T

— cas

ADRAM die comprises
of multiple such arrays

Non-volatile electrically programmable storage

The transistor has a floating gate which can trap electrons, modifying the threshold voltage
There are 2 common types:

o NAND: Small cells, high density and low power for mass storage

o NOR: Fast random access for code storage

Erasing Programming (=writing) Reading

to logical “1” to logical “0” drain-source resistance

ov “2v ™ ™
L L \ Y

T \ %
i L gate
GND
Open 12v ov +12v n Vi Vin voltage
erased Vi programmed

"Quantum tunneling
Drains charge from FG

‘Hot-electron injecton”

traps charge in FG. Detect |, to read 0 or 1

Memory map (MSP432):

The available address space is used to access memories, to address the peripheral units and to access
debug and trace information

The address space is partitioned into zones, each with a dedicated use

o e e g o o % g g 3 s ° £
3 S E 4 3 3B g i A

§ 38 38 38 38 ig 3§ 38 3
g 3% 1A% 3’38 3% A% 3" 38 3
8 A8 38 38 38 38 38 - o
Code SRAM iph Unused Unused Unused Unused ?:b‘.‘m"“
eripherals

Input, Output & Communication

UART protocol:

Serial communication protocol via a single signal LS & ‘L“b

Sender and receiver agree on a symbol rate (bitrate or baud rate)

Idle state is high

Structure of a packet:

| 1start bit | 6-9 data bits | 1 parity bit I 1-2 stop bits ‘
The receiver runs an internal clock whose frequency is an integer multiple of the chosen bitrate

The signal is always sampled midway through a bit (detection of start bit facilitates this synchronisation)

UART sender-receiver frequency mismatch: —D> €xé.cite 2 /

fsource

Required clock frequency f,.., = Baud rate - Ticks per bit = BN, ~

Division factor d = round (f—‘;“”")

req

Actual sender baud rate 1y = % e Actual receiver baud rate ;. = Sobiiiicaz
‘Ns "Ns
The k" symbol is transmitted during t € (kr_lrﬁ) and sampled by the receiverat t = k_ro's
s S r

If the receiver’s source clock is faster than the sender’s source clock, stop bit 1 must be sampled no
kg1—1 + 1 _ ka=05

rNs —

earlier than . The additive term accounts for signal stability requirements.

If the receiver’s source clock is slower than the sender’s source clock, stop bit 2 must be sampled no later

k 1 ks2—0.5 . . .
than =2 — o = Szr— The subtracted term accounts for signal stability requirements.
s TS r
NS(k52_0'5)+1 < fsource,r < NS(kSI_O's)_l
Nsksz - fsource,s - Ns(ksl_l)
SCLK SCLK
MosI Mos! SPI
SPl protocol: See qf e“A'x! HSR J;.I'Jt Lh Mso MSO siave
Full duplex 4 wire synchronised serial communication with 1 B
o . t—» SCLK
master and multiple slave devices H—»f Mosi sl
gso Slave

4 connections:
o SCLK: Master clock signal for synchronisation Lo scix

l——»{ MOSI SPI
o MOSI: Data out to slaves — I
o MISO: Data in from slaves

%
o SS/CS: Chip select o

Ideal for short distance communication from central Lc_s“‘"' Lc_:‘"' B
location - g o, - g O

Interrupts:

A hardware interrupt is an electronic alerting signal sent to the CPU from an internal or external

component. The nested vector interrupt controller (NVIC) handles the processing of interrupts.

The NVIC enables/disables interrupts, allows global masking of interrupts and registers ISRs. It can set

the priority of ISRs which is necessary if several interrupts occur or an ISR is interrupted by another one.

Processing of an interrupt:

1. Aninterruptis generated (e.g., by GPIO or timer) and the corresponding IFG register bit is set

2. CPU/NVIC saves the return address, masks interrupts globally, determines the interrupt source and
calls the corresponding ISR

3. The ISR saves the context of the system, runs its code, unmasks interrupts and finally restores the
context of the system

Polling vs interrupts:

@

c: Processing time of event e P:Polling period, P > ¢ . polling
u: Utilisation of CPU e T:Minimal time between events | | | |
h: Overhead handling interrupt e D:Deadline, DT Cos C—
Forinterruptsu; = (h+c¢)/Tandh+c<D<T interrupt

Forpollingu, =c/Pand2c <c+P<D<T

Cases:

1. If D < ¢ + min (¢, h), neither approach is feasible

2. If2c < D < h+ ¢, only polling is possible with u,,; = ¢/(D — c)
3. Ifh+c <D < 2c, only interrupt is possible with u,,, = (h +¢)/T
4. If ¢ + max(h, c) < D then both approaches are feasible

LIT1

B, < h, hs=h,+h,

events

Clocks and timers:

capture
MCUs are usually equipped with many clock sources

with different frequencies (for various time

granularities), energy consumption and stability

Watchdog timers are common as they reset the CPU

if they themselves are not reset at regular intervals.

This prevents the system from getting stuck in an

inactive state (e.g., due to deadlocks)

SysTick (MSP432) is a 24-bit decrementing counter

thatis part of the NVIC used for periodic interruptsor

measuring time 0 5 10 11 12 13 14 15 16

Measuring time differences, generating interrupts

based on counter values or periodic ones and PWM

are usually realised using capture and compare

registers:

o The capture register stores the current counter value when a capture event occurs

o The compare register can be set by the user. Whenever it equals the counter value, an action (e.g.,
interrupt) can be taken

For PWM, one compare register (value P — 1) is used to set the period and another (value H) is used to

0 10 1 12 13 14 15 16

set the duty cycle D = P—_(I;H—l). The output signal is set to high when H is reached and set to low when
P — 1isreached

Programming Paradigms

Classification:

e Time triggered:
o Approaches:

e Eventtriggered:
o Approaches:
= Non-preemptive
= Preemptive — Stack policy
= Generic scheduler = Preemptive — Cooperative scheduling
Properties: = Preemptive — Multitasking
= No interrupts except by timers o Properties:
= Deterministic schedule is computed offline = Dynamic and adaptive schedules
= No problems using shared resources = Guarantees can be given online or offline
= Interaction with environment via polling = Possible issues with shared resources

= Periodic
= Cyclic executive

General Scheduling Definitions

Aperiodic EDF Algorithm @

I'/] | Task set T; | Period of task ;
/] | Task D; | Relative deadline of task t;
T;; | j™ Instance of task 7; C; | WCET of task 7;
d;; | Deadline of task 7; ; ®; | Phase of task t;
T | Release time of task 7; ; L; | Lateness f; — d; (see below)
D; Response Time
.
Ji N .
4 r
ri S f; d; i Si a f
Simple Periodic Time-Triggered Scheduler
Method:
e Atimerinterrupts with period P ITI l T, . JT1 I T .]Tl] 3 l
e Alltasks have the same period 10) p g t
Properties: P

e Later tasks have erratic starting times, but inter-task communication is safe due to static ordering
. Zi Ci <P

Time-Triggered Cyclic-Executive Scheduling

Use case: This preemptive algorithm is used when arrival times are arbitrary, and tasks are independent.
Guarantees:
e Minimises the maximum lateness
e If EDF cannot schedule the task set, no other algorithm can
Method: At any given moment, execute the ready task that has the earliest absolute deadline.
Task acceptance test:
e Worst case finishing time of a task J; attime t: f; = t + Y, _; ¢;(t) (tasks are ordered by deadline)
o fi<d;Vie{],..,|]|} = Feasible
e Acceptance test algorithm (must be computed whenever a new task arrives):
def is_feasible_EDF(J, Jpew):
J'=J U {Jew} # Pending tasks ordered by deadline
t = current_time() # Arrival time of the new task
fo=t
for J; in J':
fi=fi-1+ci(t) # c;(t) is the remaining WCET of task J;
if f; > d;: return False
return True

EDD Algorithm

Assumption: Tasks are periodic with period T; and have a phase ®; € R. Therefore, release times and
deadlines can be expressed as
ri,}'= ¢l+(l_1)Tl di,j= ¢i+(i_1)Ti+Di=Ti,j+Di
e The period P of the system is divided into frames of length f f
e Scheduling is done offline (manually) I P
e Atime interrupts every frame to release the jobs for this frame
Conditions on P and f:
o VIuf <T; A task executes at most once within a frame
o f|P P is a multiple of f (usually lem{T;} is a good choice)
o Viiif =(; Tasks begin and end within a single frame
o Vri:2f —ged(T;, f) < D; The entire frame of execution is between 7; ; and d; ; for every task
Correctness of a given schedule:

L !
f T T

~
—

Letf;; € {1, a0 ;} denote the frame in which task 7; ; executes. The following conditions should be satisfied:

e Pisamultiple of f and a common multiple of all task periods T;

vke {1, ;#}

e Release times are respected or V7;: ®; = je(lr'r}}g/m{(ﬁj -1)f-(-DT}

e Frames are sufficiently long: Z{i=fu=k} C<f

e Deadlines are respected: ¥z;, Vj € {1, ...,7’%‘]: (IS IR REE D= fi

Event-Triggered Scheduling

Use case: This non-preemptive algorithm is used when arrival times are equal, and tasks are independent.
Guarantees: Minimises the maximum lateness.
Method: Execute the tasks in non-decreasing order of deadline.

LDF Algorithm

Use case: This non-preemptive algorithm is used when arrival times are equal, and tasks are dependent.
Guarantees: Minimises the maximum lateness.
Method:
e Build a stack by following these steps:

o Among all tasks with no successors or whose successors have been pushed to the stack, pick the one

with the latest deadline

o Push this task onto the stack and repeat until all tasks are on the stack

e Pop tasks from the stack and execute them
o LIFO Stack

EDF-Star Algorithm

Non-preemptive: Events have a corresponding task. They are inserted in a queue and picked for execution.

Stack: As above but with preemption upon insertion. Tasks are stacked in memory and completed LIFO.
Cooperative multitasking: Threads allow a context switch. The system chooses which thread runs next.
Preemptive multitasking: Threads have a state (run, ready & blocked). OS determines context switches.

Use case: This preemptive algorithm is used when arrival times are arbitrary, and tasks are dependent.
Guarantees: Minimises the maximum lateness.
Method:
e Modify the release times and deadlines by traversing the dependency graph twice:
o TaskJ; may not execute before 1; or before all its predecessors have finished. The new release time
is i = max{r;, max{r] + C; : J; = J;}}. This requires a forward traversal
o TaskJ; may not execute after d; or after any of its successors must have begun execution. The new
deadlineis dj = min{dj, min{d; — C;] —rji}}. This requires a backward traversal

e Use the normal EDF algorithm to produce the schedule

Deadline Monotonic Algorithm Polling Server @

Use case: This preemptive algorithm is used when priorities are static. Setting:
Method: Execute the ready task with the highest priority (i.e., lowest relative deadline). ¢ Anartificial periodic task 7, is dedicated to serving aperiodic tasks which runs only when aperiodic tasks
Sufficient schedulability test:) f' s oribi are pending at the time of its release
n 1 a,’ . . .
" Z L (2; B 1) = Schedulable using DM x P"O"l €s . Th.e task hasa perllc.)d T anfi a maX|.mun.1 com.putatlon budget of C
i=1Di Sufficient schedulability test in combination with RM:

e Failing the test does not mean the task set is not schedulable c noc R

5 4 sie U== Z -L < (n+ 1) (2n+1 — 1) = Schedulable using RM
Necessary and sufficient schedulability test: * Ts i i L (-) 4 using
e Thelongest response time of a job is the sum of its computation time and interference: R; = C; + I; e Failing the test does not mean the task set is not schedulable

Sufficient schedulability test for aperiodic requests:

e Atagiven time t, the worst-case interferenceis I; = Zj-;ﬂt/?}](.}
e Assumption: Aperiodic requests finish before new ones arrive

e The test computes the smallest R; that satisfies R; = C; + ﬁ;ll[Ri/Tj]C,- for all tasks

G
e Vie({l,..,IT[}:R; <D; & Schedulable using DM . (1 i [ﬁl) Ts < Dq = Request schedulable
e Taskindices i should be in decreasing order of priority (but iterations are in the opposite order) e Failing the test does not mean the request is not schedulable
e Failing the test does not mean the task set is not schedulable using other algorithms
def is_schedulable_DM(T): Total Bandwidth Server
for ;',-_ig reversed(l'): # Tasks with highest D; first Method:
do: e When the k" aperiodic request arrives, its deadline is computed as dj = max{ry, dy_,} + Z—'s‘ dy=0
R =C(C+1 and Uj is the server utilisation.
if R> lz,-: return False Necessary and sufficient schedulability test:
! i .
I = Z [R/Tj]Cj # Sum interference from higher priority tasks e Given a set of n periodic tasks with processor utilisation U, = Z}Ll% and a total bandwidth server with
ihile R~ ’z.'l_'_ I utilisation Uy, the following holds: Uy, + Us < 1 < Schedulable with EDF.
L
return True

Notes: Scheduling Algorithm Decision Tree

1
e lima, =limn (25 = 1) =1In2 = 0.69314718, a, is a monotonically decreasing sequence
n—oo n—oo

e Acritical instant of a task is the time at which the release of a job will produce the largest response time.

. PR ; Task Type?
This occurs when a job is released simultaneously with all higher priority jobs. If tasks are feasible at o »m
their critical instant, they are feasible at any other instant. It can be calculated as t,;;; =]cm{T,-:] < l} Apertodic Seliodic i
A 4 »
Rate Monotonic Algorithm Dependencies? Static Priority? Static Priority?
Use case: This preemptive algorithm is used when priorities are static and relative deadlines equal periods. : 4 4
Guarantees: No other static priority algorithm can schedule a task set that RM cannot. No Yes No Yes No Yes
Method: Execute the ready task with the highest priority (i.e., lowest period). 2 - K 2 £ A
= Total Bandwidth Pollin
Sufficient schedulability test: BOusIUEL) | St o EDF e P
n 1 : ; R
G 2 . ! |
o U= z 1"_: <n (2n - 1) = Schedulable using RM No: 7 v N Ves e vas
i=
e Failing the test does not mean the task set is not schedulable “ x X = x =
EDF EDD EDF* LDF DM RM

Necessary and sufficient schedulability test: Same as that of the DM algorithm

Periodic EDF Algorithm
Use case: This preemptive algorithm is used when priorities can be dynamic.
Guarantees: If EDF cannot schedule the task set, no other algorithm can.
Method: Execute the ready task with the earliest absolute deadline.
Necessary and sufficient schedulability test (for D; = T;):

n
. z %S 1 & Schedulable using EDF

i=1'1

Embedded Operating Systems

Power & Energy

G|

Unsuitability of desktop OS:
e Desktop kernels offer too many features that take up memory and computation time, are often not
modular, fault tolerant or configurable and cannot provide timing guarantees with absolute certainty

Embedded OS and RTOS:
e Thetiming behaviour on an RTOS is predictable and the OS manages scheduling
e Every task can perform an interrupt (which would be a source of unreliability on a standard OS)
e Protection mechanisms are rarely necessary as the device is built designed for a single purpose
e Task management —the main functionality of RTOS kernels:

o Execution of quasi-parallel tasks using threads (or processes)

o CPU scheduling (meeting deadlines, fair resource allocation and minimising waiting times)
o Inter-task communication via buffering
o Real time clocks
o Task synchronisation (critical sections, mutexes, semaphores etc.)
Task states: i 2 '

e Running: Executing on the CPU, only one task is

Running
ever in this state 4l :fmh Moadstate of .
e Ready: Ready to execute but waiting due to 4 Ready « | 53

another task which is already running Wait
Signal
\b Blocked ~

Interrupt/Syscall

e Blocked: A task enters this state when it must
wait for an event (e.g., a timer)

Save state of T,

Load state of T,
'

Shared Resources

Examples of shared resources: Data structures, variables, main memory, files, registers, 1/O units etc.
Methods to protect exclusive resources: Disabling interrupts & preemption or using semaphores & mutex.
Semaphores:
e Each resource must be protected by its own semaphore. A task must execute a wait primitive before
entering a critical section and execute a signal primitive upon completion
o All tasks blocked on the same resource are kept in a queue associated with the semaphore. When a
running task executes a wait on a locked semaphore, it enters a blocked state, until another task signals
to unlock the semaphore
e The mutex technique is a type of semaphore. Each resource has a “token” indicating its usage state
Priority inversion:
e Medium priority tasks can run if a lower priority one in a critical section blocks a higher priority one
e Solutions: Disabling preemption (downside: unrelated tasks get blocked) or PIP for static priorities
e PIP:], inherits the priority of J;gp, if it blocks J;4p, for the remainder of the critical section only
e PIP schedules are still prone to deadlocks
Timing anomalies: Faster/more CPUs, reduced dependencies or computation time # faster execution
Inter-task communication:
e Synchronous: 2 tasks wait on each other to exchange data (downside: estimating blocking time is hard)
e Asynchronous:
o Mailbox: Sender deposits messages into a FIFO queue (shared memory buffer) for receiver
(downside: overflow of buffer causes sender to be blocked)
o0 Cyclical asynchronous buffer: As above but older messages get overwritten. Blocking does not occur

Minimising power vs minimising energy:

e Minimising power is important for: e Minimising energy is important for:
o Power supply and voltage regulator design o Limited energy availability or battery capacity
o The dimensioning of interconnects o High cost of energy

o Cooling (costs money and space)

o Longer lifetime

Power consumption of CMOS technology:

Dynamic power: Capacitor transients and Voo
temporary shorts between supply rails during
switching. There are many ways to reduce this
power \-l = —l il
Static power: Gate-oxide, subthreshold and P wm\l -3 —
junction leakage. A common way to reduce
this is by cutting components off from the
power supply (power gating)

Delay, power and energy consumption (no leakage): Payg & @CVigaf, where a is the switching activity.

E= —“&Pa,,g s EN Implies that reducing V4 means reducing f by (about) the same factor

/i a=Ve)?
Lo ole/a7 (%4 —-
Volol

Reducing dynamic power:

Parallelism: Tasks are split between multiple processors running at a lower voltage (and frequency)
Pipelining: Tasks are split into sequential “chunks” and handled by a pipeline running at a lower voltage
(and frequency)

VLIW architectures: These offer a high degree of parallelism if combined with an appropriate parallel
instruction set and compiler which can parallelise the code written by the user

DVFS optimality rule: If Py, 4 is a convex function of voltage (or frequency), it is always worse to run at
V; for aT then at V; for (1 — a)T than to run at V,,, = aV; + (1 — @)V, for time T. This is the basis for
the YDS algorithm

Tasks & 44 Poy(Vad)
released
released periodically
periodically
periodically .
Viaa/2, finax/2
-] ' ((V.P):V = a¥, + (1 - @)V, P = aPayg(Vy) + (1 — a)Pony (V). a € [0,1])
e [- ool 0¥y 4 (1= P = PV 4 (1~)Py V), a € [0
4 4 4 4 &1k T s } /T, ’P
s2 Vaa\" f a)’ finax
Pmax ~ Vialmax mex By~) 2 i (r
na. dal, P z(> 2 P ~2 :)
2 Evnax Ep >
Emax ~ Via £y = hex £ = 2o 7

Dynamic power management:

DPM tries to assign optimal power saving states (e.g., run, sleep oridle) during program execution
Switching states usually incurs some overhead so the system must determine if it is worth switching
The breakeven time is defined as the minimum waiting time to compensate the cost of switching

Etransition—ttransitionPLPM Zt
transition

} (assuming transition energies and times are
Pupm—PLPM

tpreakeven = Max {2

the same both ways)
Breakeven —p exam Sfriuj 2020,2.2b)

YDS Optimal DVFS Offline Algorithm (0(|J|3))

Battery Operated Systems and Energy Harvesting (Z)

1. Determine the workload ¢(7) of each task independent of frequency (in CPU cycles)
2. Plot the arrival-deadline timeline cutting out assigned critical intervals (see note 1 and image below).
3. For each arrival-deadline interval [a, d] (of which there are at most |/|?), compute the intensity defined

as G(a,d) = ﬁ Zrev(ad)C(T) where V(a,d) is the set of tasks fully contained within [a, d]. Not

all |J|? intervals need to be considered. Skip an interval if any of the following apply:
e d<a
e V(a,d)isempty (i.e., there are no tasks fully contained within the interval)
e Shrinking [a, d] without changing V (a, d) is possible
4. Pick the interval [a, d.] with the highest intensity. This is the critical interval for this iteration. Assign
the tasks in V(a.,d.) in the order given by EDF to the critical interval. The CPU frequency is set
to G(a,,d.) for these tasks
5. Toomit occupied times, all arrivals and deadlines are updated as follows:
a, a<a, d,
Apew = ac, a€ [agd.]
a—(d.—ay), a>d;,
6. Repeat steps 2-5 until all tasks are assigned to a time interval
7. Assemble the overall schedule in decreasing order of intensity (i.e., the tasks in earlier iterations are
assembled first). If the current critical interval overlaps with a previously scheduled critical interval, split
the current one to fit around the other one bearing in mind the original arrival and deadline restrictions
Notes:
1. Tomake step 7 easier, use a secondary time axis in each timeline which translates the primary axis times
to “real” time
2. This algorithm guarantees finding the schedule with no deadline misses which uses the least energy

d <<a;
dnew = Qe d € [a.,d.]
d—(d.—az), d>d;

YDS Optimal DVFS Online Algorithm (r = 27)

Whenever a new task arrives or a pending critical interval ends (say at time t.,,+):

1. Determine the remaining workload c(7) of each pending task independent of frequency (in CPU cycles)
2. Plot the arrival-deadline timeline starting at t.,,-. Arrival times before t,,.- get clipped

3. Seesteps3and 4 of the offline version

A

6 O %

2 o] %

4 (o] X

3 o] %

2 (X

10 % Pt (ms)
0 1 2 3 4 5 6 7 8 9 10

Example of an arrival-deadline timeline

e Batteries are used if no continuous source of power is available or if the device is mobile/autonomous
e Energy harvesting can provide infinite lifetime if rechargeable batteries (or supercapacitors) are used
e Sources can have a variable output and nonlinear I-V-characteristics based on the environment, so the
ideal operating point is not trivial. Maximum power point tracking can be used in this case:
Returns the voltage setting V., for the next period
k>1 is the current time index
def simple_MPPT_iteration(V,, Vi_y, Py, Px_1, AV):
iR .
return V, + AV if V, >V,_; else V, —AV
else:
return V, — AV if V, > V,_, else V, +AV

Application control:
e Discrete time model of adaptive controller with the aim to never run out of energy:
o Harvested energy (prediction)in [t, t + 1): p(t), (B(t))
Used energy in [t, t + 1): u(t)
Battery model: b(t + 1) = min{B, b(t) + p(t) — u(t)}
Failure state: b(t) + p(t) —u(t) <0
Utility: U(ty, t,) = Z“SKCZ u(u(x)), where p is strictly concave (diminishing marginal utility)

Energy
Energy Source m(s (C)

b(t)

2
(1)
p("b| Controller |
>

O O O O

mP Energy flow

—= Information flow

v

| Energy Estimator

e The optimal control u*(t) for the time interval [t, t + 1) satisfies the following forall t € [0, T):
o Vtel[0,T): b*(t)+pt)—u*(t) =0 The system never enters the failure state

o VYu: min {u(t)} < min {u*(t)} The minimal use is maximal over all feasible u
tefo,T) te(o,T)

Vi : U0, T,y < U0, T,
b*(T) = b*(0)

The use function maximises the utility U(0, T)
The battery state has not degraded by the end

e Given a use function u*(t) that satisfies the first 2 conditions and maximises U(t, T) for all t € [0, T),
the following hold forall 7 € [0, T):
o u(@>u'(t—-1)=b'(t)=0andu*(r) <u*(r—1)=>b*(t) =B
o The contrapositives of these yield V7 € (s,t] : b*(r) € (0,B) @ VT € [s,t] : u' () =u*(r — 1)
o In plain English, if the battery is neither full nor empty, the optimal use function stays constant

e The problem of finding u*(t) can be solved by converting the conditions to a linear program. This can
also be done by hand if the predicted energy input is given and correct i.e., p(t) = p(t) forallt € [0,T):
1. Determine the highest constant use u*(t) = & which is still feasible
2. Identify time points where u*(t) can be increased without violating constraints
3. Repeat from step 1 but with the new time points only

e Predicting the future without error is impossible so finite horizon control becomes a more viable option:
1. Attimet, compute the optimal control for T € [¢t,t + T) with predictions $(t) and b(t + T) = b(t)
2. Use only the first value of the computed function
3. Repeat from step 1 for the next time step with new predictions and battery state

Architecture Synthesis — Setup

Architecture Synthesis — Algorithms & ILP

Architecture synthesis as an optimisation problem:

Synthesis means to determine the necessary hardware resources (allocation), schedules and relations
of individual operations to hardware (binding) via exact or heuristic methods for a given algorithm

This is a multi-objective optimisation problem with the goal to minimise the hardware cost, the
algorithm’s latency, power and energy consumptions

The notion of Pareto efficiency is vital for the comparison of solutions. A solution is Pareto dominated
if there exists another solution which is (strictly) better in every objective. A solution is Pareto efficient
if it is not Pareto dominated

Dependency graphs (DG) as a model for computation:

A DG is a DAG G = (V,A) where vertices V represent operations of the algorithm and arcs such as
(vi, vj) € Arepresent dependencies between operations (v; executes after v;)

The tail of an arc is called the direct predecessor of the head which is its direct successor. If a path exists
from v; to vj, then v; is a successor of v; and v; is a predecessor of v;

A variable can only be assigned once —introduce a new variable instead to remedy this

Marked graphs:

In this course marked graphs are simplified Petrinets G = (V, A, M) (without transitions) where vertices
and arcs retain their meanings from DGs and the function M: A = N represents the marking (number
of tokens) of an arc. The marking of the entire graph is often represented as a vector. Vertices are called
actors and can fire if activated (each incoming arc has at least 1 token) to produce 1 token on each
outgoing arc. Tokens are thought of as data and can have a value associated with them

Model for architecture synthesis:

A sequence graph Gg = (Vs, As) which is an extension of DGs with one start and end vertex (v, and v,)
with no incoming and outgoing arcs respectively

A resource graph G = (Vg, Ag) which is a bipartite graph with Vi = V5 U V where V; denotes the
resource types available. A weighted arc (vs, v;) € Ag denotes the availability of a resource type v, for
an operation v;. The weight w : Az = Ny is the execution time of the operation on the resource

A cost function c: V = Z which quantifies a certain quality of the chosen resource types

An allocation is a function @ : V = N which denotes the number of available instances of v, € V.

A binding is defined by the functions B: Vs = Vi and y: Vs = Ny. B(vg) = v, and y(vs) = k means the
operation v, will be executed on the k" instance of v,.

A schedule is a function 7: Vg = N that determines the starting times of operations. A schedule is
feasible if V(v;, v;) € As: T(v)) = 1(v;) + w(vy, f(v)). The latency L is defined as 7(v,) — 7(vo)

Extended sequence graphs:

For iterative algorithms, dependencies between

iterations are modeled using extended sequence r P
-2 -2

graphs Gs = (Vs, As, d). Each arc (v, vj) € Ag has W) N

bi-2 A,

Displacements
(tokens)
4

a weight d;; (displacement) which models the

i n o Vlk) = @il b0l fioalk = 82D
. . . . " - wiv, —
situation where variable v; in the k" iteration ©°f i y
depends on variable v; in the (k — d,-,-)”‘ iteration wa)
s s i . 3 s w(viy)
With such graphs, a pipelined implementation with ¢) fimn

iteration interval P and throughput i can be found

Scheduling without resource constraints:
Schedule 7 using ASAP
vwpp: v € Vs w/ planned predecessors
def ASAP_schedule(Gs, w):

&
Schedule 7 using ALAP

vwps: v €V; w/ planned successors
def ALAP_schedule(Gs, W, Ljgx):

T(Vo) =0 T(vn) = Lax
while not is_planned(v,): while not is_planned(v,):

v; = vwpp(Vs) v; = vwps(Vs)

() = max{r(v,-) +w(;) V(v;,v;) € AS} () = min{r(v,-) vV(v,v;) € AS} —w(v;)
return 7 return t

e Thelecture’s conventionistoset 7(vy) and t(v,) tot = 1and t = Ly, + 1 respectively

Scheduling with resource constraints:
e List scheduling heuristic:
Priorities P of operations are determined e.g. by length of the longest
path to the end node or according to the “mobility” of the task
def list_schedule(Ggs, Gz, a, B, P):
t=0
while not is_planned(v,):
for Vresource in Vr:
U = Set of executable operations with B(v;) = Viesource
T = Set of operations running on v,y ce
S = Subset of U with highest priorities and |SUT| < a(Vresource)
() =t for v; in S
t+=1
return 7

e Converting the problem to an integer linear program and solving this would yield an optimal solution.
The ILP formulation given a non-iterative algorithm and a binding is as follows:

Minimise 7(v,) — t(vo), subject to:

xip €{0,1} Vv; € V5, Vt:l; < t < h; ®Starting time indicator variables with ASAP & ALAP bounds

Zfizixi,c =1

Z?i,i tx;e = t(v;) Vv; € Vs ®Task starting times in terms of indicator variables

t(vj) =2 t(vy) + w(vi,B(vi)) V(v;, vj) € Ag ® Precedence constraints

min{w(vy)-1,t-1;}

2(,,(v‘.,vk)EAR,Zp,:max(o‘t_,li) Xie—p < a(vy) Vv € VT,W(\I()t € {0, ..., max{h;: v; € Vs}} ® Resource constraints
v - »

Vv; € Vs ®Each task has exactly one starting time

LA e

Cosee ar:reud.'x |

Indicator
variables
»

The "fishing net" method for condition 5
e Foran iterative algorithm, the following conditions change:

1. For ASAP & ALAP bounds, use arcs with d;; = 0 (i.e., ignore dependencies across iterations)
bot(v) 2 1(vy) + w(vi,ﬁ(vi)) —d;ijP V(v,v)) € Ag

in{w(v)-1t-1;}
5. E(i:(v,‘,vk)EAR)Z;‘:"‘:,xlzolt_hi) Z(p:l‘-st—p’+pPshi)xi,z-p’+pP <a(vy) Vv, €V,Vvte({0,..,P—1}

APfgnalix

Hu“:u‘olexers
Convert n= 2 m‘wl:s to 4 oul:fml:

caqeneral : 2 to-1 mux

% SL'Q)

needs © L 'coutrol lines' (So,
DZX 2‘-"

-to-1 mux
o4x 2'_to-1 mux

’2'1:0-'1 mux :24-1:0-4 mux:

h [
1 1

Sy —| multiplexer(1)

T
o

2
.4-&0-4 mux =2 "’éo"4 mux:
] 1 1 I; Iz Id IO

So multiplexer(1) multiplexer(1) ‘0
) T== | |_| | 50 I multiplexer @)
1

_I— multiplexer(1) o

T
o

3
e 8-to-1 mux =2 -£t0o-1 mux:

I: I 1 I, LLILI
L1111 L 111

] multiplexer(2)| [multiplexer(2) |

Sq x
Sz Imultiplexerm I

S

ok h lo
1

o Ll |
S, — multiplexer(3)
S, — I

o

A(k): Area of Zk-l:o-‘f mux

> Alk)= 3 A , le=1
2A('<-4)+A4

, else

Decoders)
converts k infwl:s o 2 out‘.mts
ot all times, e,xacl:ly one Ouk‘sué is L'SL

eneral: lc-to- 2 e bit olecooler
needs (25 k i olecoder ke even
> 2

-’%’ bit olec. £ ’52*—4 bit olec. Lk odld

> 2~ 2-inpul AND 36-595
LD aololition to the smaller olecoders

Anot if k=1
D(k) = {2 - D(%) + Aanp - 2F if Kk > 1and k is even
D551y + D(*5) + Aanp - 2 if k> 1 and k is odd
eA-to-2 decasler

Do o fewalg
0, = b decoder(1)_o1

¢2-to-4 decosler

I2C Protocoll

Vcce
Pull Up
Resistors

scL
: SDA
12C | | |
Master
Slave 1 Slave 2 Slave 3
7
| J|)| |

|||-<

. lnc.l-f -duf;lex (botl, dlirections but mot simultaneously)
.speeols A00kHz 400l Hz, AHHz STHHz
lo fixec ! Skanderd . ultra fast
hot always "'ﬂ”"‘e‘!
ack bit

address (7 or 10 bits) ack bit
| 1 I

16it
data payload

T T T '(S A
Haske sebs SOA 420 while SCLis still 1 8 bits
thew SscL ,,beaius " (clriven by Master)

i
start bit direction bit stop bit

olirection O =D write & master = slove
olivection 1 cdread & slove -> maste-

15t Acksnacic: sed by slave

2" Acke /nadC: sek by maste (Readl)
or slave (Write)

At the end of the transfer, the master transmits a stop bit:
= first, it sets SDA to 0
= thenitreleases SCL (i.e. it lets itgo to 1)
= finally, it releases SDA which also goesto 1

- except for stort, skop & restart : Eramsitions
of SDA heppen Jhile SCL=0O

o if we wont to send/receive >3 bits
we can just send amcther payloas after
the 24 Ack. sek by matter

slave slave

I decod: @
o ecoder(1) [E—CR
2 - 50 | decoder@) [_ 8‘
o — O [Oi
iD=
e3-to-2 decosler
Io olecoder(4) -D— O
I =D—O., -
I; : decoder2) - i = - odecoode(d
haa -

[start [adees| w] ack[data_u[ack]otata_LAcK] stop |

[start [adves| R | ack[datat] ack]dlata_L]Acic] stop |
t 7 T
slave waster mosler gob L., slave

oif you heed ko Wrile & Read to/from . 'afgngy = #bits ¢ incl. ove-heaot) naive. implementakion @

; after another ferk - f /%
£L(same S'QVC J"““’ rt to ‘. {L CLie € 400““”[4°ok“2,°'° * Simultaneously transmit and receive a byte on the SPI.
'“gt .J kY [T [* Polarity and phase are assumed to be both 0, i.e.:
you can use QCS&M ! e 4 P SPI PfOLOC°‘ % - input data is captured on rising edge of SCLK.
dd,e' * - output data is propagated on falling edge of SCLK.
i 0 g - * Returns the received byte.
2 8 5 _£3 3 W M Fm */
2 z g E Z = § 558 558 558 uint8_t SPI_transfer_byte(uint8_t byte_out)
5 . w E o 885 4q 835 q 5854 {
% o g S g g § £ 2 uint8_t byte_in = 0;
=0 0N SEsSZ5 : s = 9 uint8_t bit;
8_ S & c % (0] g u_g T] g 2
5 v o S w59 c>8u o ' S //0x80 == 0b1000_0000 and 0x80 >> 1 == 0b0100_000 etc.
- 5) SE2852%2¢ g | s [T for (bit = 0x80; bit != 0; bit = bit >> 1) {
S “ = R B L = 3 // Shift-out a bit to the MOSI line
< \ - B2 283395 2 write MOSI(byte_out & bit); //bitwise and
LSE£FELEa C
?al g S % E B g b = 3 ‘% // Delay for at least the peer's setup time
& s 2EL 288 s 2 ol I delay(SPI_SCLK_LOW_TIME);
I a T g&2t8 £y 4 -u" upléx
© c o< Qo8 c : ;
o s .= E o . // Pull the clock line high
-i\\g\ 2858508 g s ¢« 3+n wires ot Master ,n-= #slaves write_SCLK(1); ’
c 2 >25 <€ 2 ¢ (] .
= == = “— .
5 ;§‘ 3 EoE 5 S48 g HiSO (Haster -in, Slave out)= SDI (SPI Dota in) // Shift-in a bit from the MISO line
b SO © O L ® o 3 5 . // read_MISO returns 1 or @
Vi o E £ é g pe o v ﬁos.l- (ﬁaster_ou{:l S’av&-lh) = SDO (SPI Data O“‘) // --> a bit in byte_in gets set to 1 of MISO is 1
T3 % 25 w5 S if (read_MISO()) byte_in |= bit;
T 5EgZ2Esg 2 SCIK = SCLIK = CLIC= SPC = Clock
% 25 ® z3 R e // Delay for at least the peer's hold time
s © . > .
o = §E Bz 2 3 2 CSN = CS-= SS =SSN = CL'P Select (active lew) delay(SPI_SCLK_HIGH_TIME);
Sct-gwmz = b ;
s P Yo, 5T @ P . e } // Pull the clock line low
Q5 = > 0 c : .
S L T8oEay § . CPoL = Clock [Polarity 0,1 | writeScK(o);
C o L3 F 3 £ in:
- 2 O . return byte_in;
< Seofefug g » CPoL =0 =5 Clock icles at O y s
25 3 EE o § ;
& 3 5 £ .
X FEEEE g p CPOL =1 =D Clock iolles ot 1
= © o o
@ LE_oq3e 2 G
& 9 9 35 900 vy C
5 T ciseicl. g . CPHA = Clock PLase 6{0,43 .
< “ EoEEE25 2 = hi
=] o) . 1C
r £59s5=288% e CPHA cletermives quase ot Wi)
5P = 05 e o o0 £ 5
7 Cww 2%t 8 s E . . Hiso o‘;SSdlmle
‘—%3 ugﬁ%%g‘g‘% gg HOST is switched & 3 P
c 2 & s &86 v 7
~ 3 o £] ol 9 a
3 ‘!_'3 o~ 5838585 T e sck CPOL=0 ML
-gggggggg %g CPOL=1 "\ \ /. \wurwuy—
AOs ol S wcE o £ O
5 } SS —\ [~
{72}
=) [~
3 s &8
= < § Cycle # 1 Y2 345 e X7 ey
‘,_g% CPHA=0 MISO a1 Xz 3 a 56 78N
é ~s' --j MOSI ZX I Y2 Y3 YaysYe 7 8z
“
iz 8
(%]
= (.___ﬂ};_g 9 Cycle # YT X2 X3 aY5 6 7X8Y
2§23 CPHA=1 MISO oo = = a1 s 75 @
] ES (3 MOSI XX 23 a4 s e {7 X8z
0
3] Q
5 9 & : s
g % Mode CPOL CPHA) . ' ((fol,CPHA) we can olefine moole
o 0 0 0 3
= L) p - : Note that o master can for example
v Lronsmit in imade O audl receive in mode 1

2 1

o

as l°"‘3 as CROL is comstaut

ADC —Aualoj Lo DiJ; tal Conversion Resolution, Accurac:/ 14 S";ee_ol Vac =V“‘<I°’°‘f Y_;ﬁ

ol 0 Voac
= Resolution, R: _ SVes 2" bit wos Ves
Tipatanilos iSBSREEEE Output digital = The resolution SF.)eCIerS the width of the digital output word; L L v
signal connnn signal = 10,12, 16 Bit ADC ’Vi ¢ VoAc = Vx =lig Ves
1 o
uy(?) i ! Quantizing [0 D1 = The width of the word implies the smallest change to the analogue voltage d 1. .
o i OS [&) - oD that can be converted into a digital code; =D 3 B'* 18 4 ¢
i T 1 uy (r Encoding 1 o .
i] —o D‘J = The Least Significant Bit (LSB):
. 0 = 1 V. = V:-e/ .
i S/H circuit ! Lsg = o :
TR . = Accuracy: . o
2 steps = Degree of conformity of a digital code representing the analogue Viac v,
voltage. Ves 3
= Sampling and Holding (S/H) = Speed: -F [value is
. : " uwe
= Quantizing and Encoding (Q/E) = Maximum output data rate expressed in sample per second (sps) al va 33 %
0b100410 = 33,
1 0 0 1 1 0

Tew

Sam’;li_nj Theorem /| Nﬁui-‘i- Shaunon Theorem | SAR-ADC (Successive qﬁzroxima{:iov\) Voo pled =33V, =33 !ZF—: 0 MSB% — T

TS . sawrb‘ua Period v Counvertion Lime _cee Exercise X

Vx

Voac

'L‘ IS
conversion = m + Z-encode

— ! 4 !
’s 5 ZB @3 '{‘S ->- 28 Sometimes ”anle time"
-ror P&f P recohslruoﬁoh (ho aliasinJ) by R:'gr;isf:er where Tenco e = #bits (resolution)

CLKK. ADC

o N
&MGMLUZI ‘ en‘od' * Is built out of a comparator, a DAC and a shift register to store the conversion progress. R ” S
ondlom Jdtu

* Analog voltage Vi is successively approximated; conversion needs several comparisons.

‘Fullscalevoltage * SAR-ADC needs a very high clock frequency for fast conversions (oversampling) tham;c VoltaJe SCQ".D Witl\ﬂ‘ yDS
¢ 5N T = VFs
1 ’ l’ea""""'\‘)‘ Voac = < Ls exam autumn 2024 ,2.2b)
V. giﬁal‘ + Vi 2Vpae Task L. | I,]| I
Digital val cVx= ven: Riod(ms) |T. | o | T 3
20 intervalli low , Vi < Voac J Cyel (()3) "" ~z ,-3 onel P=3(F)
e T yeles (-10 c, | ¢, C3
> Va _54'2;513;; [vaeswt] 101 =Duwrite 4 or O_in the shift register if Vg wes ll-'a‘- fird o schedule (EDF) that minimises aversge power
Cﬁiﬁ e if Vyzhigh if Vetlow [\;'f Vx weos low T=lewm(T,T, T)
T : =V + Ves A I T T
Input - juepVis —— .next step: sel Voac, new = Vonc, olel 2 {.‘_ 7 (T8t Tl"-'c‘ +_’l_’ Z,
. o caleulale new V, ele. 2 3
Er— N ey B D Vonc,ened = E5 4 Vo5, VoS4 4 ‘;F_: where n=#bits f is juik fask enough Such Ehet e chlisobion is 4007
— 5 12BiADC e.XGV"‘P'e ”_P - ReSowcc counstraints
i ri Resolution N Y/ Vore = iven 2 aclders ondl 3 malkipliers
L4 6 am 1 V = Fs . vy Vo V3 Va Vs 3 .
110 ~ eqining: Vo = Vrs / @ ORNCO) Finel all inegualities fornu’.ﬁln resowe -
101 I c Vi 7 Upge =2 Vx-_-L;Jk - “ constraints Lhal cordain X023 for some i
(1)(1)(1) f / = MR =1 : / @ takes 4 time wmit, © tokes 2 gime umils
001 : j \/ + VFS Voro v ao’o(ers : .1'2,3 + 233 + va3 + 153 <@ " q”oano.‘.a adlditions ot £23
- F ey - ° VoAc = VDA, dld 7{* Vs /7 starking ol k=2 oat £22"
Vi ‘ : ‘ / ‘ - , , . 2 nonnoina @ at £
N.—ES > 1/8 1/4 1/2 3/4 1 Vi/Vis V, V. 3V Lo ulbipliers: § 716 a4 g ara + s S 3 a. e
2 Analog Taput ‘ = _F_s. +__F—s-_-_ T % ?Q 3+ 763 S o83t Pt e+ onata8a <3 9 JOnl t=4

2 P-3 :\w starteolat t=3 stacteol at t=4
R Vi< VDAC =¢>Vx='°w 0] Conet finished ak ¢4
=>Sset bit L @ 0 “ss — LsB ! because mult. takes 2 time uaits
Se J o ok

