
 
  

CONTROL SYSTEMS 1 
Zusammenfassung 

Matthias Wieland; Mario Millhäusler 
wielandm@student.ethz.ch; milmario@student.ethz.ch 

Inhalt 
Diese Formelsammlung wurde für den Kurs Control Systems 1 im 3. Semester (HS 2016) erstellt. Die Theorie stammt von folgenden Quellen: 
- Vorlesungsfolien 2016 von Prof. E. Frazzoli 
- Vorlesungsfolien 2015 von Dr. G. Ochsner 
- Buch: Analysis and Synthesis of Single-Input Single-Output Control System, L. Guzzella 
 
Da die Theorie in der Reglungstechnik teilweise sehr komplex ist, haben wir in dieser Formelsammlung grossen Wert daraufgelegt, zu jedem Thema 
Beispiele (grau gefärbt) und Plots zur Veranschaulichung hinzuzufügen.  
 
Für die Vollständigkeit und Korrektheit können wir keine Garantie übernehmen. Falls ihr Fehler findet, bzw. falls es Unklarheiten gibt, könnt ihr uns ein 
Mail schreiben. 
 
 

 



Control Systems I Zusammenfassung Mario Millhäusler / Matthias Wieland 

0 
 

Control Systems I 
Inhalt 
General ................................................................................... 1 

Modeling ................................................................................ 1 

How to model .................................................................... 1 

Equilibrium ......................................................................... 2 

Normalization ........................................................................ 2 

Linearization ........................................................................... 2 

State-Space Description ......................................................... 3 

Coordinate Transformations .............................................. 3 

Test Signals............................................................................. 3 

First order systems ................................................................. 3 

Responses of first order systems ........................................... 3 

Stability .................................................................................. 5 

Time Domain ...................................................................... 5 

Lyapunov Stability .............................................................. 5 

Reachability ........................................................................ 6 

Controllability ..................................................................... 6 

Stabilizability ...................................................................... 6 

Observability ...................................................................... 6 

Detectability ....................................................................... 6 

State space decomposition ................................................ 6 

Frequency domain ............................................................. 7 

Minimal Realization ....................................................... 7 

BIBO-Stability ..................................................................... 7 

Comparison: BIBO / Lyapunov ........................................... 7 

Input/Output System Description .......................................... 7 

Domains.............................................................................. 8 

Laplace Transform (Frequency Domain) ................................ 9 

Initial and final value theorem ........................................... 9 

Analysis of linear Systems in the frequency domain .............. 9 

Poles ................................................................................... 9 

Zeros ................................................................................. 10 

Minimumphase zeros ................................................... 10 

Root Locus ........................................................................ 10 

Sketching Rules............................................................. 11 

Asymptotes .................................................................. 11 

BIBO Stability .................................................................... 11 

Frequency Responses ........................................................... 11 

Magnitude ........................................................................ 12 

Phase ................................................................................ 12 

dB-Scale ............................................................................ 12 

Bode-Diagram ................................................................... 12 

Bode’s Laǁ.................................................................... 13 

Asymptotic properties .................................................. 14 

Nyquist-Diagram ............................................................... 15 

Nyquist Criterion .................................................................. 16 

Nyquist condition on Bode plots ...................................... 16 

Robust closed-loop stability ............................................. 16 

Robustness ....................................................................... 17 

System identification ........................................................ 18 

Model uncertainty ........................................................ 18 

Specifications for Feedback Systems .................................... 19 

Steady-state error ............................................................. 20 

Time domain specifications .............................................. 21 

Frequency domain specifications ..................................... 22 

Loop shaping ......................................................................... 22 

Proportional control ......................................................... 22 

Dynamic control................................................................ 23 

Lead compensator ........................................................ 23 

Lag compensator .......................................................... 25 

Nonminimum phase /unstable systems ........................... 25 

Feedback Control Design ...................................................... 26 

PID Controller ................................................................... 26 

Ziegler Nichols .................................................................. 27 

Nuisances .............................................................................. 28 

Time Delay ........................................................................ 28 

Taylor series expansion ................................................ 28 

Padé Approximation ..................................................... 28 

Nonlinearities ................................................................... 29 

Jacobian Linearization .................................................. 29 

Anti-reset windup (ARW) .............................................. 29 

How to implement a compensator ................................... 29 

(In)Proper.......................................................................... 29 

Influence of PID Controller ................................................... 30 

Relevant standard elements Guzzella .................................. 31 

Appendix ............................................................................... 36 

Matlab .................................................................................. 37 

Index ..................................................................................... 38 

 
  



Control Systems I Zusammenfassung Mario Millhäusler / Matthias Wieland 

1 
 

General 
Relevant dynamics 

 
a) Fast/algebraic variables 
b) Relevant/dynamic variables 
c) Slow/static variables (can be approximated as 

constnt) 
Definitions 
Input- / Output-system 

 

ݕ = Σ ⋅  ݑ
ݑ =  ݐݑ݌݊݅
ݕ =  ݐݑ݌ݐݑ݋

Feed-forward 

 
Relies on e precise knowledge of the plant, and does not 
change its dynamics. 
Feedback 

 

ܥ =  ݎ݈݈݁݋ݎݐ݊݋ܿ
ܲ =  ݐ݈݊ܽ݌

Feedback control allows us to: 
• Stabilize an unstable System 
• Handle uncertainties in the System 
• Reject external disturbances 

But can also 
• Introduce instability, even in an otherwise stable system. 
• Feed sensor noise into the system. 

Serial interconnection 

 
Σ =  Σଶ ⋅ Σଵ 

 
Parallel interconnection 

 

Σ =  Σଵ + Σଶ 

 

Feedback interconnection 

 

Σ =
Σଵ

ͳ + ΣଶΣଵ
 

 
Standard Control System 

 
ݎ =  ݐݑ݌݊݅
݁ =  ݃݊ݑℎܿ݅݁ݓܾܽ/݊݋݅ݐܽ݅ݒ݁݀
ݑ =  ݁ݏݏ�ݎ݈݈݃݁ݐܵ
݀ =  ܾ݁ܿ݊ܽݎݑݐݏ݅݀
݊ =  ݁ݏ݅݋݊
݂ =  ℎ݃ݑ݋ݎℎݐ݂݀݁݁
ݕ =  ݁ݏݏ�ݎ݃ݏ݊ܽ݃ݏݑܣ / ݐݑ݌ݐݑ݋
ܥ =  ݎ݈ܴ݁݃݁/ݎ݈݈݁݋ݎݐ݊݋ܥ
ܲ =  ݁݇ܿ݁ݎݐܵ/ݐ݈݊ܽܲ
ݓ =  ݎℎ݈݂݁݁ݎ݁ݑ݁ݐܵ
 
Two degrees of freedom (feed-forward & feedback) allow better transient 
behavior for example good tracking of rapidly-changing reference inputs.  
 

Example 
Racecar:  

• ƌ = ǀeloĐitǇ tƌajeĐtoƌǇ ;iŶ geŶeƌal: ͞“ollǁeƌt͟Ϳ 
• u =pedal position ߙ 
• Ǉ = ǀeloĐitǇ ;iŶ geŶeƌal: ͞Gƌösse auf die ƌ geƌegelt 

werden soll  nur indirekt beinflussbar) 
• C = Driver 
• P = Car 

• x = ( ݕݐ݅ܿ݋݈݁ݒ
 (݁ܿݎ݋݂ ݃݊݅ݒ݅ݎ݀

 

Systemeigenschaften 
• Siso (Single input, single output) 

u,y are one-dimensional 
• Mimo (Multiple input, multiple output) 

u,y are not one-dimensional 
• Linear 

,ݔ ,ݕ  have maximum exponent 1 ݑ

Σሺߙ ⋅ ଵݑ + ߚ ⋅ ଶሻݑ = ߙ ⋅ Σሺݑଵሻ + ߚ ⋅ Σሺݑଶሻ 
• Not linear 

 … ,can be exponential/quadratic/tƌigoŶoŵetƌiĐ ݔ
• Static 

System has no memory, no derivatives (e.g. ݔሶ ). 
• Dynamic 

System has a memory, ݔሶ  exists. ݔሶ = ଵ
௠
⋅  ݑ

• Time-variant 
Parameter change over time. ݔሶ = ଵ

௠ሺ௧ሻ
⋅  ݑ

• Time-invariant 
Parameter are constant, independent of time t 

• Order/Dimension of a system 
Number of state variables in your system. This 
corresponds to the highest derivative of your ODE 
oƌ the Ŷuŵďeƌ of ODE’s. Because one equation of 
݊௧ℎ order can be rewritten as n equations of 1st 
order. 

• Causal 
An input-output system Σ is causal if, for any ݐ ∈
�,the output at time t depends only on the values 
of the input onሺ−∞,  .[ݐ

• Strictly causal 
An input-output system Σ is strictly causal if, for any 
ݐ ∈ �, the output at time t depends only on the 
values of the input on ሺ−∞,  .ሻݐ
 

Examples 
݀
ݐ݀ ݕ

ሺݐሻ = ��n(ݑሺݐሻ) 

→ Time-invariant, Dynamic, SISO, not linear 
Σሺݏሻ = ݁−௦் 

→ Time-invariant, Dynamic, SISO, linear 
ሻݐሺݕ = ሻݐଵሺݑݐʹ +  ሻݐଶሺݑ

→ Time-variant, Static, MIMO, linear 
 
Modeling 
We would like to find a model for our plant P, which tells us how the 
sǇsteŵ’s output ƌeaĐts to a ĐhaŶge iŶ the iŶput. This model is used to 
synthesize the controller C. The model of the plant is not a part of the final 
control system. 

How to model 

 ݓ
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1. Identify the system boundaries (Systemgrenzen). 
2. Identify the relevant reservoirs and the 

corresponding level variables. 
a. Simplify fast / algebraic variables. 
b. Identify relevant / dynamic variables. 
c. Make slow / static variables constant. 

3. Formulate the ODE (Ordinary Differential Equation) 
݀
ݐ݀
ሺݐ݊݁ݐ݊݋ܿ ݎ݅݋ݒݎ݁ݏ݁ݎሻ ݏݓ݋݈݂݊݅∑=   ݏݓ݋݈݂ݐݑ݋∑−

4. Formulate the algebraic relations for the flows between 
the reservoirs. 

5. Identify the system parameters using experiments. 
6. Validate the model with experiments other than those 

used for the identification. 
Equilibrium  

A system is in Equilibrium if 
݀
ݐ݀ ݖ

ሺݐሻ = ,ሻݐሺݖ)݂ (ሻݐሺݒ = ݂ሺݖ௘, ௘ሻݒ = Ͳ 

and 
ሻݐሺݓ = ,ሻݐሺݖ)݃ (ሻݐሺݒ = ݃ሺݖ௘, ௘ሻݒ =  ௘ݓ

While the pair ሺݖ௘,  .௘ሻ form an equilibrium of the systemݒ
Normalization 
The goal is to replace the physical variables ݖሺݐሻ,  ሻ andݐሺݒ
 ሻ in the formݐሺݓ

݀
ݐ݀ ݖ

ሺݐሻ = ,ሻݐሺݖ)݂  (ሻݐሺݒ
ሻݐሺݓ = ,ሻݐሺݖ)݃  (ሻݐሺݒ

by the normalized variables ݔሺݐሻ,  ሻ, which haveݐሺݕ ሻ andݐሺݑ
a magnitude of  ≈ ͳ. Each variable is normalized by a 
constant ݖ଴,  .଴ݓ ଴ andݒ

ሻݐ௜ሺݖ = ௜,଴ݖ ⋅  ሻݐ௜ሺݔ
ሻݐሺݒ = ଴ݒ ⋅  ሻݐሺݑ
ሻݐሺݓ = ଴ݓ ⋅  ሻݐሺݕ

so that 

ሻݐ௜ሺݔ =
ሻݐ௜ሺݖ
௜,଴ݖ

, ሻݐሺݑ =
ሻݐሺݒ
଴ݒ

, ሻݐሺݕ =
ሻݐሺݓ
଴ݓ

 

Whereby the normalization for ݖሺݐሻ can be compactly 
expressed in vector notation: 

ݖ = ଴ܶ ⋅ , ݔ ଴ܶ = ቌ
ଵ,଴ݖ Ͳ Ͳ
Ͳ ⋱ Ͳ
Ͳ Ͳ ௡,଴ݖ

ቍ , ௜,଴ݖ ∈ ℝ\{Ͳ}  

By inserting this, we get a new set of differential equations: 

݀
ݐ݀ ݔ

ሺݐሻ = ଴ܶ
−ଵ ⋅ ݂( ଴ܶ ⋅ ,ሻݐሺݔ ଴ݒ ⋅ (ሻݐሺݑ =: ଴݂(ݔሺݐሻ,  (ሻݐሺݑ

ሻݐሺݕ = ଴−ଵݓ ⋅ ݃( ଴ܶ ⋅ ,ሻݐሺݔ ଴ݒ ⋅ (ሻݐሺݑ =: ݃଴(ݔሺݐሻ,  (ሻݐሺݑ
݀
ݐ݀ ݔ

ሺݐሻ = ଴݂(ݔሺݐሻ, (ሻݐሺݑ

ሻݐሺݕ = ݃଴(ݔሺݐሻ, (ሻݐሺݑ
 

Linearization 
We start with de normalized Differential Equations from 
above: 

{
݀
ݐ݀ ݔ

ሺݐሻ = ଴݂(ݔሺݐሻ, (ሻݐሺݑ

ሻݐሺݕ = ݃଴(ݔሺݐሻ, (ሻݐሺݑ
 

We linearize the system around an equilibrium point ሺݔ௘,  ௘ሻݑ
which is either given or can be easily calculated. 
By neglecting the higher order terms, the linearized system is 
given by: 

{
݀
ݐ݀ ݔߜ

ሺݐሻ = ܣ ⋅ ሻݐሺݔߜ + ܾ ⋅ ሻݐሺݑߜ

ሻݐሺݕߜ = ܿ ⋅ ሻݐሺݔߜ + ݀ ⋅ ሻݐሺݑߜ
 

where 

ܣ =
߲ ଴݂

ݔ߲ |௫=௫೐,௨=௨೐
=

[
 
 
 
 
 
߲ ଴݂,ଵ

ଵݔ߲
|
௫=௫೐,௨=௨೐

ڮ
߲ ଴݂,ଵ

௡ݔ߲
|
௫=௫೐,௨=௨೐

ڭ ⋱ ڭ
߲ ଴݂,௡

ଵݔ߲
|
௫=௫೐,௨=௨೐

…
߲ ଴݂,௡

௡ݔ߲
|
௫=௫೐,௨=௨೐]

 
 
 
 
 

 

ܾ =
߲ ଴݂

ݑ߲ |௫=௫೐,௨=௨೐
=

[
 
 
 
 
 
߲ ଴݂,ଵ

ݑ߲ |௫=௫೐,௨=௨೐
ڭ

߲ ଴݂,௡

ݑ߲ |௫=௫೐,௨=௘ ]
 
 
 
 
 

 

ܿ =
߲݃଴
ݔ߲ |௫=௫೐,௨=௨೐

=  [
߲݃଴
ଵݔ߲

|
௫=௫೐,௨=௨೐

…
߲݃଴
௡ݔ߲

|
௫=௫೐,௨=௨೐

] 

݀ =  
߲݃଴
ݑ߲ |௫=௫బ,௨=௨బ

= [
߲݃଴
ݑ߲ |௫=௫బ,௨=௨బ

] 

Beispiel Modellieren 
We’ƌe lookiŶg at oŶe siŶgle ǁheel, ǁheƌe a “pƌiŶg aŶd a Daŵpeƌ aƌe 
acting. The forces are as follows: 

ሺ࢚ሻࢍ࢔࢏࢘࢖ࡿ� = −࢑ሺ࢞ሺ࢚ሻ − ,૙ሻ૜࢒ ࢑ > ૙ 

ሺ࢚ሻ࢘ࢋ࢖࢓ࢇ�� = ) ࢈−
ࢊ
࢚࢞ࢊ

ሺ࢚ሻ) , ࢈ > ૙ 

a) Determine the State-Space Description of the form 

ሶࢠ} ૚ = ሶࢠሻࢠ૚ሺࢌ ૛ = ሻࢠ૛ሺࢌ
 

For the vector ࢠሺ࢚ሻ = ࢀ[૛ࢠ ૚ࢠ] = [࢞ሺ࢚ሻ ሶ࢞ ሺ࢚ሻ]ࢀ 
b) Determine the Equilibrium ࢠ૙ = [૛,૙ࢠ ૚,૙ࢠ]

ࢀ
 of the wheel without 

disturbances. 
c) If the Equilibrium of the system is at ࢞ = ࢞૙, and the current 

velocity is | ሶ࢞ ሺ࢚ሻ| ൑  ૚, normalize the system for these points in theࢉ
normalized variables ࢗ૚ሺ࢚ሻ, ૙ࢗ ૛ሺ࢚ሻ, as well as the equilibriumࢗ =
[૛,૙ࢗ  ૚,૙ࢗ]

ࢀ
. 

d) Linearize the normalized system around the equilibrium ࢗ૙ and 
indicate the A Matrix of the Form ࢗࢾሶ = ࡭ ⋅  .ࢗࢾ

 
Solution 
With the linear momentum principle, it follows: 

࢓ ሷ࢞ = ࢍ− + ࡿ� + �� → ሷ࢞ = ࢍ− +
ࡿ� + ��
࢓  

{
ሶࢠ ૚ = ૛ࢠ

ሶࢠ ૛ = ࢍ− −
૚
࢓
ሺ࢑ሺࢠ૚ − ૙ሻ૜࢒ + ૛ሻࢠ࢈

 

Equilibrium 
ሶࢠ ૚,૙ = ሶࢠ ૛,૙ = ૙ 

૛,૙ࢠ = ૙ 

૚,૙ࢠ = √−
࢓ࢍ
࢑

૜ +  ૙࢒

Normalization 

{
૚ࢠ = ૚࢞૙ࢗ
૛ࢠ = ૚ࢉ૛ࢗ →  

{
 

ሶࢗ  ૚ =
ሶࢠ ૚
࢞૙

ሶࢗ ૛ =
ሶࢠ ૛
૚ࢉ

=  

{
 

 
૚ࢉ
࢞૙
૛ࢗ

૚
૚ࢉ
ቆ−ࢍ −

૚
࢓
ሺ࢑ሺࢗ૚࢞૙ − ૙ሻ૜࢒ + ሻቇ࢈૚ࢉ૛ࢗ

 

{
૚,૙ࢗ =

૚,૙ࢠ
࢞૙

= ૚

૛,૙ࢗ =
૛,૙ࢠ
૚ࢉ

= ૙
 

Linearization 

࡭ =
૙ࢌࣔ
ࣔ࢞ ࢋ࢛=࢛,ࢋ࢞=࢞|

=

(

 
૙

૚ࢉ
࢞૙

−
૜࢞૙࢑ሺ࢞૙ − ૙ሻ૛࢒

૚ࢉ࢓
−
࢈
(࢓
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State-Space Description 
From here on, the prefix ߜ is omitted and the State-Space 
Description of a System is defined as 

{
݀
ݐ݀ ݔ

ሺݐሻ = ܣ ⋅ ሻݐሺݔ + ܾ ⋅ ሻݐሺݑ

ሻݐሺݕ = ܿ ⋅ ሻݐሺݔ + ݀ ⋅ ሻݐሺݑ
 

where 

{
ܣ ∈ ℝ௡×௡
ܾ ∈ ℝ௡×ଵ
ܿ ∈ ℝଵ×௡
݀ ∈ ℝଵ×ଵ

→  "ݏ݁ܿ݅ݎݐܽܯ ܾ݊ܽ݅݋ܿܽܬ"

A:  How does the system affect itself? 
b:  How does the input affect the System? 
c: How does the system affect the output? 
d: How does the input affect the output? 

Coordinate Transformations 
A state-space description can be transformed into another 
coordinates frame: 

ݔ = ܶ ⋅ ,ݔ̃ ܶ ∈ ℝ௡×௡, d��ሺܶሻ ≠ Ͳ 

{
݀
ݐ݀ ݔ̃

ሺݐሻ = ܶ−ଵ ⋅ ܣ ⋅ ܶ ⋅ ሻݐሺݔ̃ + ܶ−ଵ ⋅ ܾ ⋅ ሻݐሺݑ

ሻݐሺݕ = ܿ ⋅ ܶ ⋅ ሻݐሺݔ̃ + ݀ ⋅ ሻݐሺݑ
 

While the columns of ܶ are the new unit vectors. 
Overview 

 

 

 

݀
ݐ݀ ݖ

ሺݐሻ = ,ሻݐሺݖ)݂  (ሻݐሺݒ
ሻݐሺݓ = ,ሻݐሺݖ)݃  (ሻݐሺݒ
݀
ݐ݀ ݔ

ሺݐሻ = ଴݂(ݔሺݐሻ, (ሻݐሺݑ

ሻݐሺݕ = ݃଴(ݔሺݐሻ, (ሻݐሺݑ
 

݀
ݐ݀ ݔ

ሺݐሻ = ܣ ⋅ ሻݐሺݔ + ܾ ⋅ ሻݐሺݑ

ሻݐሺݕ = ܿ ⋅ ሻݐሺݔ + ݀ ⋅ ሻݐሺݑ
 

 
 

Example State--Space  
Determine the State-space description of the following 
model: 

 
It can be seen directly: 

ܣ = (
ʹ Ͳ Ͳ
Ͳ −ͳ Ͳ
Ͳ −ͳ −Ͷ

) ;   ܾ = (
ʹ
ͳ
Ͳ
) 

ܿ = ሺͳ −ͳ Ͳሻ;   ݀ = ሺͲሻ 
 

Test Signals 
 

 

ሻݐሺߜ =  ݊݋݅ݐܿ݊ݑ݂ ݁ݏ݈ݑ݌݉݅
 

 

ℎሺݐሻ =  ݊݋݅ݐܿ݊ݑ݂ ݌݁ݐݏ

ℎሺݐሻ =  {Ͳ ; ݐ ݎ݋݂ < ;଴ݕ݇ ݐ ݎ݋݂ ൒ ݇
 

 

ሻݐሺ݌ =  ݊݋݅ݐܿ݊ݑ݂ ݌݉ܽݎ
ሻݐሺ݌ = ݐ ⋅ ℎሺݐሻ 

 

ܿሺݐሻ = ℎܽ݊݋݅ݐܿ݊ݑ݂ ܿ݅݊݋݉ݎ 
ܿሺݐሻ = c��ሺ߱ݐሻ ⋅ ℎሺݐሻ 

First order systems 
 

{
݀
ݐ݀ ݔ

ሺݐሻ =  −
ͳ
� ⋅ ݔ

ሺݐሻ +
݇
� ⋅ ݑ

ሺݐሻ

ሻݐሺݕ = ሻݐሺݔ
 

where 
� > Ͳ, ݐ݊ܽݐݏ݊݋ܿ ݁݉݅ݐ

݇ > Ͳ, ݃ܽ݅݊  

and  

Σሺݏሻ =
ܻሺݏሻ
ܷሺݏሻ =

݇
ͳ +  ݏ�

where 
 Σሺݏሻ =  ݊݋݅ݐܿ݊ݑ݂ ݎ݂݁ݏ݊ܽݎܶ
 ܻሺݏሻ =  ݁ݏ݊݋݌ݏܴ݁
 ܷሺݏሻ =  ݐݑ݌݊ܫ
 
Responses of first order systems 

ሻݐሺݔ = ݁஺௧ݔ଴ + ∫ ݁஺ሺ௧−�ሻ
௧

଴
ሺ�ሻݑܤ ∙ ݀� 

ሻݐሺݕ = ଴ݔ஺௧݁ܥ + ∫ܥ �ሺݐ − �ሻݑܤሺ�ሻ ∙ ݀� + ሻݐሺݑܦ
௧

଴
 

Where: 
• A,B,C,D are the matrices calculated in 

ǲLinearizationǳ 
Impulse response 

 

 
݇: ݃ܽ݅݊ [−] 
This leads to the response: 

ሻݐఋሺݕ = ݁−
௧
� ⋅ ଴ݔ) +

݇
�)  

Modeling 

Normalization 

Linearization 

݀
ݐ݀ ݔ

ሺݐሻ =  −
ͳ
� ⋅ ݔ

ሺݐሻ +
݇
� ⋅  ሻݐሺݑ

ሻݐሺݕ =  ሻݐሺݔ
where 

ሻݐሺݑ =  ሻݐሺߜ

� 

݇
�  
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Step response 

 
This leads to the response: 

ሻݐℎሺݕ = ݁−
௧
� ⋅ ଴ݔ + ∫ ݁ቀ

ఘ−௧
�  ቁ ⋅

݇
� ߩ݀ 

௧

଴
 

ሻݐℎሺݕ = ݁−
௧
� ⋅ ଴ݔ + ݇ ⋅ (ͳ − ݁−

௧
�)  

• Inclination (Steigung) in ݕሺͲሻ = ݇/�   
Ramp response 

 
• Periodic vibrations: Input and output have the same 

frequency 

 
This leads to the response: 

ሻݐ௣ሺݕ = −ܧ
௧
� ⋅ ௢ݔ + ݇ ⋅ ݐ) + (݁−

௧
� − ͳ) ⋅ �)  

Harmonic response 

 
 

 
 
This leads to the respose: 

ሻݐ௖ሺݕ = ݁−
௧
� ⋅ ଴ݔ + ሺc��ሺ߱ ⋅ ሻݐ + ߱ ⋅ � ⋅ ��nሺ߱ ⋅ ሻݐ − ݁−

௧
� ⋅

݇
ͳ + ߱ଶ ⋅ �ଶ  

ሻݐሺ∞ݕ = ݉ሺ߱ሻ ⋅ c��(߱ݐ + �ሺ߱ሻ) 

݉ሺ߱ሻ =
݇

√ͳ + ߱ଶ�ଶ
 

�ሺ߱ሻ = −a�c�anሺ߱�ሻ 
 

Example response 
Given is the following system 

 

 
Determine the parameters ܽ and ܾ. 

Solution 

We can write the system as follows: 
ሻݐଶሺݕ = ܽ ⋅ ሻݐଵሺݕ + ܾ ⋅  ሻݐሶଵሺݕ

And we can calculate / read in the diagram 
���
௧→∞

ሻݐଶሺݕ = ܽ ⋅ ሻݐଵሺݕ + ܾ ⋅ Ͳ 

ͷ = ܽ ⋅ ͳ → ܽ = ͷ 
���
௧→଴+

ሻݐଶሺݕ = ܽ ⋅ Ͳ + ܾ ⋅  ሻݐሶଵሺݕ

−ʹ = ܾ ⋅ ͳ → ܾ = −ʹ 
 
 
 
 
 
 
 

݀
ݐ݀ ݔ

ሺݐሻ =  −
ͳ
� ⋅ ݔ

ሺݐሻ +
݇
� ⋅  ሻݐሺݑ

ሻݐሺݕ =  ሻݐሺݔ
where 

ሻݐሺݑ =  ሻݐሺ݌

݀
ݐ݀ ݔ

ሺݐሻ =  −
ͳ
� ⋅ ݔ

ሺݐሻ +
݇
� ⋅  ሻݐሺݑ

ሻݐሺݕ =  ሻݐሺݔ
where 

ሻݐሺݑ = ܿሺݐሻ 

݀
ݐ݀ ݔ

ሺݐሻ =  −
ͳ
� ⋅ ݔ

ሺݐሻ +
݇
� ⋅  ሻݐሺݑ

ሻݐሺݕ =  ሻݐሺݔ
where 

ሻݐሺݑ = ℎሺݐሻ 
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Example step responses 
Question:  
Which transfer function leads to which step response? 

a) ܮ௔ሺݏሻ =
௦−ଵ
௦+ହ

 

b) ܮ௕ሺݏሻ = ௦+ଵ
௦−ହ

 

c) ܮ௖ሺݏሻ =
ହ

௦ሺ଴.଴ଵ௦+ଵሻ
 

d) ܮௗሺݏሻ = ହ
௦ሺ଴.଴ଵ௦+ଵሻ

∙ ݁−଴.ଶ௦ 

 
Solution 

Tf ܮ௔ሺݏሻ ܮ௕ሺݏሻ ܮ௖ሺݏሻ ܮௗሺݏሻ 
Step r. 3 2 4 1 

Explanation: 
• Differentiate between systems with (converge 

towards 1) and without Integrators 
• Calculate the closed loop transfer function for 

each system: ௔ܶ௕௖ௗሺݏሻ =
௅ೌ್೎೏ሺ௦ሻ
ଵ+௅ೌ್೎೏ሺ௦ሻ

 

• Check whether these T(s) have unstable Poles: 

௔ܶሺݏሻ has a stable Pole, ௕ܶሺݏሻ hasŶ’t  
• Check which system has a time delay 

 
 

Example Impulse response 
Question: 
Given the following plot of a 2nd order system. Find the 
transfer function Σሺݏሻ. 

 
Solution:  
Describe the plot with the following equation: 

ሻݐሺݔ =
ͳͲ
͵ ∙ ݁

−௧ ∙ ��n ሺ߱ݐሻ 

Find the Laplace transform: 

��nሺ߱ݐሻ =
߱

ଶݏ + ߱ଶ 

Recall s-shifting: 
ሻ݁௔௧ݐሺݔ = ܺሺݏ − ܽሻ 

This gives you the transfer function 
ͳͲ
͵ ݁

−௧ ��nሺ߱ݐሻ =
ͳͲ
͵ ∙

߱
ሺݏ + ͳሻଶ + ߱ଶ 

Insert ߱ = ଶగ

బ்
≈ ͵ ௥௔ௗ

௦
  

ܺሺݏሻ =
ͳͲ

ଶݏ + ݏʹ + ͳͲ 

Remark: This exercise is also solvable by pole-
reconstruction 

 
Stability  
We diffeƌeŶtiate ďetǁeeŶ Ϯ diffeƌeŶt ͞“taďilitǇ-CoŶĐepts͟: 

1. Time Domain / State Space Description (Lyapunov): 

a. ݔሺͲሻ ≠  Ͳ   ܽ݊݀   ݑሺݐሻ = Ͳ  
2. Frequency Domain / Input-Output Description 

(BIBO): 
a. ݔሺͲሻ =  Ͳ   ܽ݊݀   ݑሺݐሻ ≠ Ͳ 

Time Domain 
Lyapunov Stability 

The Lyapunov Stability analyzes the behavior of the state 
trajectory ࢞ሺ࢚ሻ around an equilibrium point ݔ௘ when ݑሺݐሻ =
Ͳ and ݔሺͲሻ ≠ Ͳ. 
We differ the Lyapunov stability in three categories: 

Lyapunov stable 
‖ሻݐሺݔ‖ ݂݅ < ∞ 
ݐ ∀ ∈ [Ͳ,∞] 

 ܽ݊݀ ܴ݁ሺߣ௜ሻ  ൑  Ͳ ∀݅ 
if only one ܴ݁ሺߣ௜ሻ = Ͳ, or A is 
diagoŶalizaďle it’s alǁaǇs staďle, 
otheƌǁise ǁe ĐaŶ’t tell  

Asymptotically stable 
 

݂݅ ���
௧→∞

‖ሻݐሺݔ‖ = Ͳ 
ܽ݊݀ ܴ݁ሺߣ௜ሻ  <  Ͳ ∀݅ 

  
Unstable 
 

݂݅ ���
௧→∞

‖ሻݐሺݔ‖ = ∞ 
→ ܴ݁ሺߣ௜ሻ >  Ͳ  ∀݅   

 
The Lyapunov stability can be detected by the following 
rules: 

Eigenvalues of the 
Linearized System 
Matrix A: 

Linearized System Nonlinear System 

௜ߣ = �௜ + ݆ ⋅ ߱௜   
All �௜ < Ͳ Asymptotically stable Asymptotically stable 
Any �௜ > Ͳ Unstable Unstable 
One single � = Ͳ and 
all other �௜ < Ͳ 

Stable No statement 
possible 

Two or more � = Ͳ 
and all other �௜ < Ͳ 

If A diagonalizable: 
stable 
 
Otherwise no 
statement possible 

No statement 
possible 

If all eigenvalues are real, there is no overshoot possible. 
• Due to possible Zero Pole Cancellation is the 

Lyapunov Stability ͞uŶsuitaďle͟ to analyze 
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frequency responses: The only thing it tells: If a 
frequency response diverges  it’s uŶstaďle 

Example 

A given System has the following eigenvalues: 
ଵ,ଶߣ = −ʹ ± ͵݅ 
ଷ,ସߣ = Ͳ 
ହߣ = −ͳͲ 
଺ߣ = −Ͳ.ͳ  
What can you say about the stability of the linearized and 
the nonlinear system? 

Solution 

The linearized system is Lyapunov stable 
No statement possible about the nonlinear system 
 

 

Reachability 
In finite time all points in ℝ௡ are 
reachable from x(0)=0 then 
system is completely controllable.  
 
 
 
 

Controllability 
If all points in ℝ௡ starting from 
ሺͲሻݔ =  ௘ can be forced in finiteݔ
time to 0, then the system is 
completely controllable.  

If zeros and poles can be cancelled 
out in the transfer function, the system is neither 
controllable nor observable. 

 

Reachability & Controllability 
For LTI (linear time invariant) systems, the reachable and the 
controllable subspace are identical. 

A system {A,b} is completely reachable/controllable iff 
ܴ௡ = {ܾ, ܣ ∙ ܾ, ଶܣ ∙ ܾ, ଷܣ ∙ ܾ, … , ௡−ଵܣ ∙ ܾ}  ∈ ℝ௡௫௡  has full 
Rank ݊, where ݊ is also the dimension of the ܣ Matrix 
Column vectors of ܴ௡ span the reachable subspace  rank 
of ܴ௡ indicates dimension of reachable subspace. 
 All Points in ℝ௡௫௡ can be visited using input u 

Stabilizability 
An (unstable) system is 
said to be potentially 
stabilizable if those state 
variables that are not 
controllable are 
asymptotically stable. To 
stabilize an unstable 
system the unstable but controllable state variables must be 
observable as well 

�௜ߣ]݇݊ܽݎ − [ܾ        ܣ = ௜ሻߣሺܴ݁ ݐ݅݉ ݅∀   ݊  ൒ Ͳ  
 

݇݊ܽݎ �௜ߣ] − ܿܣ ] = ௜ሻߣሺܴ݁ ݐ݅݉ ݅∀   ݊  ൒ Ͳ  
 
• No Pole/Zero cancellation with unstable Pole, otherwise 

not controllable 
Observability 

A system {A,c} is completely 
observable iff  

௡ܱ =  [

ሻݐሺݕ
ሻݐሶሺݕ
ڭ
ሺ௡ሻݕ

] =  [

ܿ
ܿ ∙ ܣ
ڭ

ܿ ∙  ௡−ଵܣ
] 

Has full rank or d�� ሺ ௡ܱሻ ≠ Ͳ 
Row vectors of ௡ܱ span the observable subspace  rank of 
௡ܱ indicates dimension of observable subspace 

 
If zeros and poles can be cancelled out in the transfer 
function, the system is neither controllable nor observable. 

Detectability 

A system is detectable iff all of its unobservable modes are 
asymptotically stable. 
An (unstable) system is stabilizable, if the system is 
potentially stabilizable and detectable. 
In general again, we need a coordinate transformation to 
find out which state carriable (or modes) are observable/ 
non-observable/ asymptotically stable/ etc. 

State space decomposition 
In general, the state space can be subdivided into four 
subspaces: 

1. ܴܱ:  ݈ܾ݁ܽݒݎ݁ݏܾ݋ & ݈ܾ݈݈݁ܽ݋ݎݐ݊݋ܿ

2. ܴܱ̅:  ݈ܾ݁ܽݒݎ݁ݏܾ݋ & ݈ܾ݈݈݁ܽ݋ݎݐ݊݋ܿ ݐ݋݊
3. ܴͲ̅:  ݈ܾ݁ܽݒݎ݁ݏܾ݋ ݐ݋݊ & ݈ܾ݈݈݁ܽ݋ݎݐ݊݋ܿ
4. ܴܱ̅̅ ̅̅ :  ݈ܾ݁ܽݒݎ݁ݏܾ݋ ݐ݋݊ & ݈ܾ݈݈݁ܽ݋ݎݐ݊݋ܿ ݐ݋݊

 
The rules to derive that structure are: 
• The input u may only act on the reachable subspaces 
• The output y may only be influenced by the observable 

subspaces 

 ݑ ݕ
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• The unreachable subspaces may not be influenced by a 
subspace that is influenced by the input u 

• The unobservable subspaces may not influence a  
• subspace that eventually influences y 
Frequency domain 
Minimal Realization 

Σሺݏሻ =
ܾሺݏሻ
ܽሺݏሻ =

ሺݏ − �ଵሻሺݏ − �ଶሻڮ
ሺݏ − ݏଵሻሺߨ − ڮଶሻߨ

 

Definition:  
1. ��n{ܴܽ݊݇ሺ ௡ܱሻ, {ሺܴ௡ሻݐܴ݇݊ܽ = ݊ , iff completely 

reachable and controllable 
2. No Zero/Pole cancellation (Remember: if no pole-

zero cancellations  the eigenvalues and the 
poles are the same) 

There are ∞ possible ways for the minimal realization (da die 
Matrizen nicht eindeutig der TF zugeordnet 
werden können) 
To get to the minimal realization state space description: 

1. Cancel out the non-reachable and non-controllable 
part of the matrices 

2. If unclear: 
a) Calculate transfer function. 

 Σሺݏሻ = ௒ሺ௦ሻ
௎ሺ௦ሻ

= ܿሺݏ� − ሻ−ଵܣ ⋅ ܾ + ݀ 

b) Pole-Zero cancellation 
c) Translate to state space description 

  
→ see also p.7: ͞I/O or State-Space, FD → State-Space, TD͟ 
 

Example minimal realization 
Determine the minimal realization of the following 
system: 

ܣ = (
−ʹ ͷ Ͳ
Ͳ −Ͷ Ͳ
͵ ʹ ͳ

) ;   ܾ = (
ͳ
Ͳ
ͳ
) 

ܿ = ሺͲ.ͷ Ͳ Ͳሻ;   ݀ = ሺͲሻ 

Solution 

If we draw the Signal-flow graph, we get the following: 
 

The output is only affected by ݔଵ, which itself is affected 
by ݔଵand ݔଶ, therefore, ݔଷis not observable. 
The input only affects ݔଵ and ݔଷ, therefore, ݔଶ is not 
controllable. 
For the minimal realization, we only want the variables, 
that are observable and controllable, therefore ݔଶand ݔଷ 
cut out and we get 

ܣ = −ʹ ; ܾ = ͳ; ܿ = Ͳ.ͷ; ݀ = Ͳ 
 

 
 

BIBO-Stability  
BIBO = Bounded Input Bounded Output 
A system is BIBO stable, iff all finite inputs |ݑሺݐሻ| <  ଵ resultܯ
in finite outputs |ݕሺݐሻ| <  ଶܯ
For linear systems, this property is satisfied when 

∫ |�ሺݐሻ|
∞

଴
∙ > ݐ݀ ∞ 

the integral must converge to 0  
the real part of all Poles ߨ௜  must be negative: ܴ݁ሺߨ௜ሻ < Ͳ  

Bibo-stable 

Not Bibo-stable 
 BIBO stable systems are not affected by Zero Pole 
Cancellations (unlike Lyapunov): Σሺݏሻ = ௦−ଵ

ሺ௦−ଵሻሺ௦+ଶሻ
= ଵ

௦+ଶ
 

Examples 

ܻሺݏሻ = (
ͳ
ݏ −

ͳ͵
ͻ ⋅

ͳ
ݏ + ͺ +

ͳ
ܷ(ଶݏ

ሺݏሻ 

Not BIBO-stable (two poles at 0) 
ሻݐሺݕ = ͵݁−�௧ ⋅ ;ሻݐሺݑ ,ߙ    ݐ > Ͳ 

BIBO-stable (ݑሺݐሻ = ݁ݐ݂݅݊݅ → ሻݐሺݕ =  (݁ݐ݂݅݊݅
ሻݐሺݕ = ሻݐሺݑ ⋅ c��ሺ߱ݐሻ 

BIBO-stable (ݑሺݐሻ = ݁ݐ݂݅݊݅ → ሻݐሺݕ =  (݁ݐ݂݅݊݅

ሻݐሺݕ =
ͳʹ
 ሻݐଶሺݑ

Not BIBO-stable (ݑሺݐሻ = Ͳ → ሻݐሺݕ = ∞) 
 

Comparison: BIBO / Lyapunov 
For a system in minimal realization (= completely 
controllable an observable) holds: 

• Lyapunov asymptotically stable   BIBO stable 
• Lyapunov stable                 Not BIBO stable 
• Lyapunov unstable                Not BIBO stable 

For a system in with uncontrollable or unobservable modes 
holds: 

• Lyapunov asymptotically stable  BIBO stable 
• Lyapunov stable              ? 
• Lyapunov unstable            ? 
• BIBO stable              ? 
• Not BIBO stable    Lyapunov stable or unstable 

Input/Output System Description 
The state-space description contains a lot of information 
about the internal behavior of a system. These informations 
are often not required, so we can use a simpler model 
description, the input/output-description: 
ሻݐሺ௡ሻሺݕ + ܽ௡−ଵ ⋅ ሻݐሺ௡−ଵሻሺݕ + +ڮ ܽଵ ⋅ ሻݐሺଵሻሺݕ + ܽ଴ ⋅ ሻݐሺݕ =

ܾ௠ ⋅ ሻݐሺ௠ሻሺݑ + +ڮ ܾଵ ⋅ ሻݐሺଵሻሺݑ + ܾ଴ ⋅ ሻݐሺݑ
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Where the initial conditions are chosen to be zero: 
ሺͲሻݕ = ሺଵሻሺͲሻݕ = ڮ = Ͳ 

• The order ݊ of the I/O-description corresponds to 
the number of observable and controllable state 
variables of the SP description 

• If ݉ = ݊, the system has a feedthrough ሺ݀ ≠ Ͳሻ. 
Domains 
 Time-Domain (TD) Frequency-Domain (FD) 
SP ݀

ݔ݀ ݔ
ሺݐሻ = ܣ ⋅ ሻݐሺݔ + ܾ ⋅  ሻݐሺݑ

ሻݐሺݕ = ܿ ⋅ ሻݐሺݔ + ݀ ⋅  ሻݐሺݑ
 

ܻሺݏሻ = ሺܿሺݏ� − ሻ−ଵܣ ⋅ ܾ + ݀ሻ ⋅ ܷሺݏሻ 

I/O ݕሺ௡ሻሺݐሻ + +ڮ ܽଵ ⋅ ሻݐሺଵሻሺݕ + ܽ଴ ⋅ ሻݐሺݕ =
ܾ௠ ⋅ ሻݐሺ௠ሻሺݑ +ڮ+ ଵܾ ⋅ ሻݐሺଵሻሺݑ + ܾ଴ ⋅ ሻݐሺݑ

 ܻሺݏሻ =
ܾ௠ݏ௠ + +ڮ ܾ଴

௡ݏ +ڮ+ ܽଵݏଵ + ܽ଴
ܷሺݏሻ 

 
Conversions 

 
State-Space, Time-Domain → State-Space, Freq.-Domain 

Σሺݏሻ =
ܻሺݏሻ
ܷሺݏሻ = ܿ

ሺݏ� − ሻ−ଵܣ ⋅ ܾ + ݀

= ܿ ⋅
݆ܽ݀ሺݏ� − ሻܣ
�ݏሺݐ݁݀ − ሻܣ ⋅ ܾ + ݀

 

In case {ܣ, ܾ, ܿ, ݀} are just scalar Numbers: Σሺݏሻ = ௖∙௕
௦−஺

+ ݀ 
Where 
Σሺݏሻ =  ݊݋݅ݐܿ݊ݑ݂ ݎ݂݁ݏ݊ܽݎܶ
ܷሺݏሻ =  ݐݑ݌݊݅ ݕܿ݊݁ݑݍ݁ݎ݂
ܻሺݏሻ =   ݁ݏ݊݋݌ݏ݁ݎ ݕܿ݊݁ݑݍ݁ݎ݂
And 
݆ܽ݀ ቀܽ ܾ

ܿ ݀ቁ = ቀ
݀ −ܾ
−ܿ ܽ ቁ 

݆ܽ݀ (
ܽ ܾ ܿ
݀ ݁ ݂
݃ ℎ ݅

) =

(

 
 
 
ݐ݁݀ ቀ݁ ݂

ℎ ݅ ቁ ݐ݁݀− (݀ ݂
݃ ݅ ) ݐ݁݀ (݀ ݁

݃ ℎ)

ݐ݁݀− ቀܾ ܿ
ℎ ݅ቁ ݐ݁݀ ቀ

ܽ ܿ
݃ ݅ቁ ݐ݁݀− (ܽ ܾ

݃ ℎ)

ݐ݁݀ (ܾ ܿ
݁ ݂) ݐ݁݀− ቀ

ܽ ܿ
݀ ݂ቁ ݐ݁݀ ቀܽ ܾ

݀ ݁ቁ )

 
 
 

ࢀ

 

Input/output or State-Space, FD → State-Space, TD 
With the given Frequency Domain in the form  

ܻሺݏሻ =
ܾ௠ݏ௠ +ڮ+ ܾ଴

௡ݏ + +ڮ ܽଵݏଵ + ܽ଴
ܷሺݏሻ 

We can calculate the State-Space Description as follows with 
the Controller Canonical Form: 
Fall ݉ < ݊ 

{
 
 

 
 
ܣ =

[
 
 
 
 
Ͳ ͳ Ͳ … Ͳ
Ͳ Ͳ ͳ Ͳ ڭ
ڭ   ⋱ Ͳ
Ͳ ڮ ڮ Ͳ ͳ
−ܽ଴ −ܽଵ ڮ ڮ −ܽ௡−ଵ]

 
 
 
 
   ܾ =

[
 
 
 
 
Ͳ
Ͳ
ڭ
ڭ
ͳ]
 
 
 
 

 ܿ = [ܾ଴ ڮ ܾ௠ Ͳ]   ݀ = [Ͳ]

 

 
 
Fall ݉ = ݊ 

{
 
 

 
 

ܣ =

[
 
 
 
 
Ͳ ͳ Ͳ ڮ Ͳ
Ͳ Ͳ ͳ Ͳ ڭ
ڭ   ⋱ Ͳ
Ͳ ڮ ڮ Ͳ ͳ
−ܽ଴ −ܽଵ ڮ ڮ −ܽ௡−ଵ]

 
 
 
 
   ܾ =

[
 
 
 
 
Ͳ
Ͳ
ڭ
ڭ
ͳ]
 
 
 
 

 ܿ = [ሺܾ଴ − ܾ௡ ⋅ ܽ଴ሻ ڮ ሺܾ௡−ଵ − ܾ௡ ⋅ ܽ௡−ଵሻ]   ݀ = [ܾ௡]

 

The calculated system is a minimal realization and can be 
written in one matrix: 

 
Example  

Transfer function: ݃ሺݏሻ = ଶ௦+ଷ
௦మ+௦+ଷ

 

௠௜௡ܣ =  [
Ͳ ͳ
−͵ −ͳ] ; ܾ௠௜௡ =  [

Ͳ
ͳ] ; ܿ௠௜௡ =  [͵ ʹ]; ݀ =  Ͳ 

A minimal realization of this system is: 
ሻݐሶሺݔ = ሻݐሺݔ௠௜௡ܣ + ܾ௠௜௡ݑሺݐሻ 

ሻݐሺݕ = ܿ௠௜௡ݔሺݐሻ 
 
 
 
 
 

Example Domains (FS 2008) 
From the plant ܲሺݏሻ we know all the Poles and Zeros: 

{
 
 

 
ଵߨ  = −

ͳ
ʹ

ଶ,ଷߨ = −ͳ ± ݅

�ଵ =
ͳ
ʹ

 

The static gain is given by 2. 
a) Determine the Transfer function ܲሺݏሻ. 
b) Determine the ODE of ܲሺݏሻ. 
c) Determine the state-space description of ܲሺݏሻ. 

Solution 
The Poles lead to the function ଵܲሺݏሻ 

ଵܲሺݏሻ =
݇

ቀݏ + ͳʹቁ ሺݏ + ͳ + ݅ሻሺݏ + ͳ − ݅ሻ
 

The zero leads to the function ଶܲሺݏሻ 

ଶܲሺݏሻ = ݏ) −
ͳ
ʹ) 

The solution is therefore given by 

ܲሺݏሻ = ଵܲሺݏሻ ଶܲሺݏሻ =
݇ ⋅ ቀݏ − ͳʹቁ

ቀݏ + ͳʹቁ ⋅ ሺݏ + ͳ + ݅ሻሺݏ + ͳ − ݅ሻ
 

ܲሺͲሻ = ʹ → ݇ = −Ͷ 

ܲሺݏሻ =
−Ͷݏ + ʹ

ሺݏଶ + ݏʹ + ʹሻ ቀݏ + ͳʹቁ
 

For the ODE, we expand 

ܲሺݏሻ =
−Ͷݏ + ʹ

ଷݏ + ͷʹ ݏ
ଶ + ݏ͵ + ͳ

=
ܾ௠ݏ௠ +ڮ+ ܾ଴

௡ݏ +ڮ+ ܽଵݏଵ + ܽ଴
 

The ODE is therefore given by 

ሻݐሺ′′′ݕ +
ͷ
ݕʹ

′′ሺݐሻ + ሻݐሺ′ݕ͵ + ሻݐሺݕ = −Ͷݑ′ሺݐሻ +  ሻݐሺݑʹ

The State-space description can be directly written as 

{
݀
ݔ݀ ݔ

ሺݐሻ = (
Ͳ ͳ Ͳ
Ͳ Ͳ ͳ
−ͳ −͵ −ʹ.ͷ

) ⋅ ሻݐሺݔ + (
Ͳ
Ͳ
ͳ
) ⋅ ሻݐሺݑ

ሻݐሺݕ = ሺʹ −Ͷ Ͳሻ ⋅ ሻݐሺݔ + ሺͲሻ ⋅ ሻݐሺݑ
 

 

  

TD, SP 
ℒ−ଵ ݊݋݅ݐܽ݉ݎ݋݂ݏ݊ܽݎݐ 

ℒ ݊݋݅ݐܽ݉ݎ݋݂ݏ݊ܽݎݐ 

ℒ−ଵ ݊݋݅ݐܽ݉ݎ݋݂ݏ݊ܽݎݐ 

ℒ ݊݋݅ݐܽ݉ݎ݋݂ݏ݊ܽݎݐ 

FD, SP 

O
bs

er
va

bi
lit

y 
Ca

no
ni

ca
l 

Co
nt

ro
lla

bi
lit

y 
Ca

no
ni

ca
l 

TD, I/O 

Co
nt

ro
lla

bi
lit

y 
Ca

no
ni

ca
l 

Cƌ
aŵ

eƌ
’s 

Ru
le

 
 

FD, I/O 

If necessary, fill up c with 0’s to ŵatĐh the diŵ. 



Control Systems I Zusammenfassung Mario Millhäusler / Matthias Wieland 

9 
 

Laplace Transform (Frequency Domain) 
In the time domain the output of a system is calculated by 
the convolution of the input signal with de response of the 
system. A concatenation (Verkettung) of systems is 
extremely difficult to analyze, so we convert it into the 
frequency domain by the Laplace transform. 

ℒ(ݔሺݐሻ) = ܺሺݏሻ =  ∫ ݁−௦௧ ⋅ ݐሻ݀ݐሺݔ
∞

଴
 

And the inverse Laplace transform 

ℒ−ଵ(ܺሺݏሻ) =
ͳ
݆ߨʹ ⋅ ∮ܺ

ሺݏሻ ⋅ ݁௦௧ ݀ݏ, ݐ ൒ Ͳ  

Properties 
• ℒሺ݂ߙሺݐሻ + (ሻݐሺ݃)ߚ = ߙ ⋅ ℒ(݂ሺݐሻ) + ߚ ⋅ ℒ(݃ሺݐሻ) = ߙ ⋅
ሻݏሺܨ + ߚ ⋅  ሻݏሺܩ

• ℒ(݁௔௧݂ሺݐሻ) = ݏሺܨ − ܽሻ 
T-shifting 

ℒ(ݑሺݐ − ܽሻ݂ሺݐ − ܽሻ) = ݁−௔௦ ℒ(݂ሺݐሻ) 
ݐሺݑ − ܽሻ݂ሺݐ − ܽሻ = ℒ−ଵ ቀ݁−௔௦ℒ(݂ሺݐሻ)ቁ 

S-shifting 
ℒ(݁௔௧݂ሺݐሻ)ሺݏሻ = ݏሺܨ − ܽሻ 

 s-shifting  corresponds to damping in that formulas 
Calculate ܨሺݏሻ, then replace ݏ with ሺݏ − ܽሻ. 

ℒ(݂ሺݐ − ܽሻ)ሺݏሻ = ݁−௔௦ ∙  ሻݏሺܨ
 s-shifting corresponds to a delay in that formula 
T- and S-shifting 

ℒ[݁௔ሺ௧−௕ሻ݂ሺݐ − ܾሻݑሺݐ − ܾሻ] = ݁−௕௦ܨሺݏ − ܽሻ 
Derivation t 

ℒ ቀ݂ሺ௡ሻሺݐሻቁ = (ሻݐሺ݂)௡ℒݏ ௡−ଵ−௝ݏ∑−
௡−ଵ

௝=଴

݂ሺ௝ሻሺͲሻ, ݊ ൒ ͳ 

For example: 
• ℒ(݂′ሺݐሻ) = ݏ ⋅ ℒ(݂ሺݐሻ) − ݂ሺͲሻ 
• ℒ(݂′′ሺݐሻ) = ଶݏ ⋅ ℒ(݂ሺݐሻ) − ݏ ⋅ ݂ሺͲሻ − ݂′ሺͲሻ 

Derivation s 

ℒ(ݐ ⋅ ݂ሺݐሻ) = −
݀
ݏ݀  ሻݏሺܨ

Integration t 

ℒ ቆ∫ ݂ሺݔሻ ݀ݔ
௧

଴
ቇ =

ͳ
ݏ ℒ(݂

ሺݐሻ), ݐ > Ͳ, ݏ > Ͳ 

Integration s 

ℒ ቆ
ͳ
ݐ ⋅ ݂

ሺݐሻቇ = ∫ �ሺ�ሻ݀ܨ
∞

௦
 

Convolution 

݂ሺݐሻ כ ݃ሺݐሻ =  ∫ ݂ሺ�ሻ ⋅ ݃ሺݐ − �ሻ ݀�
௧

଴
= ሻݏሺܨ ⋅  ሻݏሺܩ

ℒ(݂ሺݐሻ ⋅ ݃ሺݐሻ) = ሻݏሺܨ כ  ሻݏሺܩ
ℒ(݂ሺݐሻ כ ݃ሺݐሻ) = ሻݏሺܨ ⋅  ሻݏሺܩ

Similarity 

ℒ ቆ
ͳ
ܽ ⋅ ݂ (

ݐ
ܽ)ቇ = ݏሺܨ ⋅ ܽሻ 

Known Laplace Transforms 
࢞ሺ࢚ሻ �ሺ࢙ሻ 

:ࢋ࢙࢒࢛࢖࢓࢏  ሺ࢚ሻ ͳࢾ

:࢖ࢋ࢚࢙ ሺ࢚ሻ ͳࢎ
 ݏ

ሺ࢚ሻࢎ ⋅  ࢔࢚
݊!
 ௡+ଵݏ

ሺ࢚ሻࢎ ⋅  ࢚ࢇࢋ
ͳ

ݏ − ܽ 

ሺ࢚ሻࢎ ⋅ ࢔࢚ ⋅  ࢚⋅ࢇࢋ
݊!

ሺݏ − ܽሻ௡+ଵ 

ሺ࢚ሻࢎ ⋅ ሺ࣓ ܖܑ� ⋅ ࢚ሻ 
߱

ଶݏ + ߱ଶ 

ሺ࢚ሻࢎ ⋅ ሺ࣓�ܗ� ⋅ ࢚ሻ 
ݏ

ଶݏ + ߱ଶ 

ሺ࢚ሻࢎ ⋅ ሺ࣓ ܐܖܑ�
⋅ ࢚ሻ 

߱
ଶݏ − ߱ଶ 

ሺ࢚ሻࢎ
⋅ ሺ࣓ܐ�ܗ� ⋅ ࢚ሻ 

ݏ
ଶݏ − ߱ଶ 

࢑ ⋅ ࢛ሺ࢚ − ݇ ሻࢇ ⋅
݁−௔௦

ݏ , ܽ > Ͳ 

ሺ࢚ࢾ − ,ሻ ݁−௔௦ࢇ ܽ > Ͳ 
Initial and final value theorem 

Initial value theorem: 
���
௧→଴+

ሻݐሺݔ = ���
௦→∞

ݏ ⋅ ܺሺݏሻ  

Final value theorem: 
���
x→∞

ሻݐሺݔ = ���
௦→଴+

ݏ ⋅ ܺሺݏሻ  

These two theorems only hold, if ܺሺݏሻ is a stable function. 

Overview 

 
Analysis of linear Systems in the frequency domain 
Since the transfer function Σ is given by 

Σሺݏሻ =
ܾ௠ݏ௠ +ڮ+ ܾ଴

௡ݏ + +ڮ ܽଵݏଵ + ܽ଴
 

We can make several statements about the system: 
Poles 

The poles of the transfer function of a system define its 
impulse response in the time domain and thereby its 
dynamics. 

Σሺݏሻ =
�ሺݏሻ

ሺݏ − ଵሻ�భߨ ⋅ ሺݏ − ଶሻ�మߨ ⋅ … ⋅ ሺݏ − ௡ሻ�೙ߨ
   

where 
௜ߨ =  ݊݋݅ݐܿ݊ݑ݂ ݎ݂݁ݏ݊ܽݎݐ ℎ݁ݐ ݂݋ ݏ݈݁݋ܲ
�௜ =  ݈݁݋݌ ℎ݁ݐ ݂݋ ݎ݁݀ݎ݋
General rule: 

 



Control Systems I Zusammenfassung Mario Millhäusler / Matthias Wieland 

10 
 

Descr. Criteria Consequence  If near 0 
Pole 
stable 

ܴ݁ሺ݈ܲ݁݋ሻ
< Ͳ 

 

Slow 
increase 

Pole 
unstable 

ܴ݁ሺ݈ܲ݁݋ሻ
> Ͳ 

 

Slow 
diversion 

Pole 
complex 

ሻ݈݁݋ሺܲ݉ܫ
≠ Ͳ 

 

 

Pole big 
complex 

 |ሻ݈݁݋ሺܲ݉ܫ|
 ݎܾ݁݃݃݅

 

 

Zero 
minimal 
phase 

݋ݎܼ݁ < Ͳ 

 

Big 
overshoot 

Zero not 
minimal 
phase 

݋ݎܼ݁ > Ͳ 

 

Big 
undershoot 
 

 
Examples 

  

 

 

  

 
 

 
 

  
Zeros 

The zeros of the transfer function of a system define the 
dynamics yielding an output of zero 
• A zero close to a pole can reduce its influence or lead to 

over- or undershoot. 
• If a zero and a pole happen to be at the same place, 

they reduce themselves. 
• The closer to the origin, the more important is the 

influence of the zero. This influence manifests itself in 
an increasing overshoot of the step response. 

• A nonminimumphase zero (ܴ݁ሺ�ሻ > Ͳ) poses an 
important limitation on feedback control. 

• In contrast to system instability, nonminimumphase 
zeros can often be shifted by a different sensor 
configuration. 

Minimumphase zeros 
The following image shows the influence of a zero �௜  on a 
step response ℎሺݐሻ. 

 
This system is a nonminimumphase system for the zeros � =
{Ͳ.ͷ, ͳ} and is a minimumphase system for the zeros � =
{−Ͳ.Ͷ; −Ͳ.͹; −ͳ.ͷ;∞}. 

 

 
Root Locus 

Root locus analysis is a graphical method for examining how 
the roots change with variation of (mostly) the gain k. The 
question is: What happens to the System when the gain k 
goes to ∞ ?  
To describe the stability of the closed-loop system T(s), we 
draw the Root Locus of the open-loop system L(s). 
Analysis: 

• ܴ݁ሺ݈ܿݏ݈݁݋݌ ݌݋݋݈ ݀݁ݏ݋ሻ < Ͳ  stable 
• ܴ݁ሺ݈ܿݏ݈݁݋݌ ݌݋݋݈ ݀݁ݏ݋ሻ > Ͳ  unstable 
• ܴ݁ሺʹ ݁݀݁ݏ݋݈ܿ ݈ܽݑݍ ݈. ሻ ݏ݈݁݋݌ = Ͳ  unstable 
• ܴ݁ሺʹ ݀݅݀݁ݏ݋݈ܿ ݐܿ݅ݐݏ ݈. ሻݏ݈݁݋݌ = Ͳ  stable 

 
 

A System is a nonminimumphase system iff there 
exists at least one zero with a positive real part 
ܴ݁ሺ�ሻ > Ͳ. A ŶoŶŵiŶiŵuŵphase sǇsteŵ ͞lies͟. 
The response initially goes in the wrong direction 
(=Undershoot). 
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Sketching Rules 
1. Root loci start at poles  go to zeros 
2. There are ݊ lines (loci) where ݊ is the degree of 

Poles or Zeros (whichever is greater). 
3. As k increases from Ͳ to ∞, the roots move from the 

poles of ܩሺݏሻ to the zeros of ܩሺݏሻ. 
4. When roots are complex, they occur in conjugate 

pairs. 
5. At no time will the same root cross over its path. 
6. The portion (Anteil) of the real axis to the left of an 

odd number of open loop poles and zeros are part 
of the loci. →  Roots are always sketched from the 
right to the left.  

7. Lines leave and enter the real axis at 90°. 
8. If there are not enough poles or zeros to make a 

pair, then the extra lines go to / come from infinity. 
9. Lines go to infinity along asymptotes. 
10. If there are at least two lines to infinity, then the 

sum of all roots is constant. 
11. K going from 0 to −∞ can be drawn by reversing 

rule 5 and adding 180° to the asymptote angles. 
Asymptotes 

Contact point / Centroid of asymptotes 

ܵ௖௢௠ =
௢௟௘௦�ݔ∑ − ௓௘௥௢௦ݔ∑
ݏ݈݁݋ܲ# − ݏ݋ݎܼ݁#  

௜ݔ →  ݏ݅ݔܽ ݈ܴܽ݁ ℎ݁ݐ ݊݋ ݏ݁ݐܽ݊݅݀ݎ݋݋ܥ
Angle of asymptotes 

௡ߙ =
ʹ݊ + ͳ

ݏ݈݁݋ܲ# − ݏ݋ݎܼ݁# ⋅ ͳͺͲ°  

݊ = {Ͳ; ͳ; … ; ሺ#ܲݏ݈݁݋ − ݏ݋ݎܼ݁# − ͳሻ} 
Example 1 

ܲሺݏሻ =
ݏ + ͸

ሺݏ + Ͷሻሺݏ + ʹሻሺݏ + ͷሻሺݏ + ͹ሻ 

1. Draw all the Poles and Zeros 
2. Connect the Points from right to left 
3. In Point 1, two Poles are connected, which means 

that theǇ ͟collide͟ and leave the Real aǆis at 90°. 
4. “ince the Pole at Point 2 has no ͞partner͟ the line 

goes to infinity. 

5. ܵ௖௢௠ =
ሺ−ସ−ଶ−ହ−଻ሻ−ሺ−଺ሻ

ସ−ଵ
= −Ͷ  

଴ߙ  =
ଵ
ଷ
⋅ ͳͺͲ° = ͸Ͳ° 

ܽଵ =
͵
͵ ⋅ ͳͺͲ° = ͳͺͲ° 

ܽଶ =
ͷ
͵ ⋅ ͳͺͲ° = ͵ͲͲ° = −͸Ͳ° 

The root of the asymptotes is at the point .4 and 
then goes into three different directions (-60°, 
60°, 180°). 

 
 

Example 2 

ܲሺݏሻ =
ݏ + ͷ

ሺݏ − ͳሻሺݏ + ͵ሻ 

1. Draw all the Poles and Zeros 
2. Connect the points from right to left 
3. IŶ PoiŶt ϭ, tǁo Poles ͞Đollide͟ aŶd leaǀe the Real 

axis 90°. 
4. ܵ௖௢௠ =

ሺଵ−ଷሻ−ሺ−ହሻ
ଶ−ଵ

= ͵ 

଴ߙ =
ͳ
ͳ ⋅ ͳͺͲ° = ͳͺͲ° 

5. The one asymptote must go to infinity, and the 
other pole must be connected to the zero. As 
they cannot cross or touch each other, the two 
lines move in a circle as shown in the picture. 

 
 

 
 
 

Example 3 

ܲሺݏሻ =
ݏ + ͳ

ሺݏଶ + ݏ + ͳሻ ⋅  ݏ

 

ܲሺݏሻ =
ݏ + ͳ

ሺݏଶ + ݏ + Ͳ.ʹͻሻ ⋅  ݏ

 
These Plots are too complex to draw by hand. We see, 
with a small deviation of one pole, the entire plot 
changes. These plots should just be plotted in Matlab, as 
there are too many uncertainties to draw them by hand. 

 
BIBO Stability 

See BIBO-Stability on page 7. 
Frequency Responses 
If a asymptotically stable system has the input ݑሺݐሻ =
c�� ሺ߱ݐሻ, the output converges to a stationary solution: 

ሻݐሺ ∞ݕ =  |Σሺ݆߱ሻ| ∙ c�� ሺ߱ݐ + ∠Σሺ݆߱ሻሻ 
By substituting {ݏ → ݆߱ }, the homogenous part of the 
output will be eliminated and the particular (oscillating) part 
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remains. The same goes for unstable systems (where the 
homogenous part goes to infinity). 

Magnitude 
,ܣ ,ܤ ∋ ܥ ℂ 

ܣ| ∙
ܤ
|ܥ =  

|ܣ| ∙
|ܤ|
 |ܥ|

|
ሺܽ + ݆ܾሻ௫

ሺܿ + ݆݀ሻ௬| =
(√ܽଶ + ܾଶ)

௫

(√ܿଶ + ݀ଶ)
௬ 

|݁−௝�∙்| =  |c��ሺ߱ ∙ ܶሻ − ݆ ∙ ��n ሺ߱ ∙ ܶሻ| =  ͳ 

Phase 

∠ ܣ) ∙
ܤ
(ܥ = ܣ∠ + ܤ∠ −  ܥ∠

∠ቆ
ሺܽ + ݆ܾሻ௤

ሺܿ + ݆݀ሻ௞ቇ = ݍ ∙ ∠
ሺܽ + ݆ ∙ ܾሻ − ݇ ∙ ∠ሺܿ + ݆ ∙ ݀ሻ 

= ݍ ∙ a�c�an (
ܾ
ܽ) − a�c�an (

݀
ܿ) 

∠ሺܽ + ݆ ∙ ܾሻ =  

{
 
 

 
 a�c�an (

ܾ
ܽ)            , ܽ > Ͳ, ܾ ܾ݈ܾ݁݅݁݅݃

a�c�an (
ܾ
ܽ) + ,    ߨ ܽ < Ͳ, ܾ ൒ Ͳ          

a�c�an (
ܾ
ܽ) − ,    ߨ ܽ < Ͳ, ܾ < Ͳ          

 

� = 

{
 
 

 
 
ߨ
ʹ                          , ܽ > Ͳ, ܾ ܾ݈ܾ݁݅݁݅݃

−
ߨ
ʹ                      , ܽ = Ͳ, ܾ < Ͳ         

,   ݐ݉݉݅ݐݏܾ݁݊ݑ ܽ = Ͳ, ܾ = Ͳ        

 

{
a�c�anሺ∞ሻ =

ߨ
ʹ

a�c�anሺ−∞ሻ =  −
ߨ
ʹ

 

{
 
 

 
 a�c�anሺͳሻ =

ߨ
Ͷ

a�c�anሺ−ͳሻ =  −
ߨ
Ͷ

a�c�anሺͲሻ = Ͳ

 

∠ሺ݁−௝�∙்ሻ = ∠(c��ሺ߱ ∙ ܶሻ − ݆ ∙ ሺ߱݊݅ݏ ∙ ܶሻ) =  −߱ ∙ ܶ 

∠ሺܽ + ݆ܾሻ௖ = ܿ ∙ a�c�an (
ܾ
ܽ) 

���ሺ∠ሺܽ + ݆ ∙ ܾሻ௖ሻ = ܿ ∙ ��� ሺ∠ሺܽ + ݆ ∙ ܾሻሻ 
 

dB-Scale 

ௗ஻ݔ = ʹͲ ⋅ ���ଵ଴ሺݔሻ;              ݔ = ͳͲ
௫೏�
ଶ଴  

(
ͳ
ܺ)]ௗ஻

=  −ሺܺ|ௗ஻ሻ 

ሺܺ ∙ ܻሻ|ௗ஻ = ܺ|ௗ஻ + ܻ|ௗ஻ 
ͳ ݔ

ͳͲͲͲ 
ͳ
ͳͲͲ 

ͳ
ͳͲ 

ͳ
ʹ 

ͳ
√ʹ

 ͳ √ʹ ʹ ͳͲ ͳͲͲ 

≈ ௗ஻ −͸Ͳ −ͶͲ −ʹͲݔ −͸ ≈ −͵ 0 ≈ ͵ ≈ ͸ ʹͲ ͶͲ 

 
Bode-Diagram 

The frequency response can be displayed by two different 
diagrams. The first one is the Bode-Diagram with its two 
separate curves. 
 
Bode-Diagrams are frequency-explicit representations of the 
frequency response Σሺ݆߱ሻ that display the magnitude 
function ݉ሺ߱ሻ =  |Σሺ݆߱ሻ| and the phase function �ሺ߱ሻ =
∠Σሺ݆߱ሻ. 
 
Remark: very useful for control system design, however may 
be misleading in determining closed-loop stability (e.g., for 
open-loop unstable systems). 

General rules 

   

 

ͳ
ݏ + ߱௞

→ ݏሺ ݈ܾ݁ܽݐݏ − ߱௞ሻ 
 ݁ݏℎܽ݌݉ݑ݉݅݊݅݉ ݊݋݊

 

 
ͳ

ݏ − ߱௞
→  ݈ܾ݁ܽݐݏ݊ݑ

ሺݏ + ߱௞ሻ 
 ݁ݏℎܽ݌݉ݑ݉݅݊݅݉

• Time delay Phase change = −߱ ⋅ ܶ 
 Magnitude change = 0 
 
 
 
 
 
 
 
 

Bode-Diagram of a 1st order system 

Σሺݏሻ = ݇ ⋅ (
ͳ

� ⋅ ݏ + ͳ)  

where 
• Static gain = |ΣሺͲሻ| = ݇ 
• Cut-off frequency ߱଴ = |ͳ �⁄ | 
• Magnitude change = −ʹͲ݀ܤ ݀݁ܿ⁄  గ߱ ݐܽ 
• Phase change = −ͻͲ° ܽݐ ߱గ 

Remember: the static gain k from the transfer function does 
not have the unit dB. Therefore, the value from the bode 
plot must ďe ĐoŶǀeƌted fƌoŵ dB to ͞Ŷo uŶit͟. 

  
Phase 

Magnitude 
ܤ݀ 20- ݀݁ܿ⁄ ܤ݀ 20+  ݀݁ܿ⁄  

-90° 

+90° 
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Bode-Diagram of a 2nd order system 

Σሺݏሻ = ݇ ⋅
߱଴ଶ

ଶݏ + ଴߱ߜʹ ⋅ ݏ + ߱଴ଶ
 

ሻݐሺݕ • = ሺͳ − ݁−�௧ ∙ c��ሺ߱ݐሻሻ 
Where: � = ܴ݁ሺ−݈݁݋݌ሻ 

 
where 

• Static gain  |Σሺݏሻ| = ݇ 
• Cut-off frequency ߱଴ 
• Magnitude change = −ͶͲ ݀ܤ ݀݁ܿ⁄  ଴߱ ݐܽ 
• Phase change = −ͳͺͲ° ܽݐ ߱଴ 
• Peak frequency ߱௠௔௫  = ߱଴ ⋅ √ͳ − ʹ ⋅ ,ଶߜ ߜ <

ଵ
√ଶ

 

• Peak maximum = ଵ
ଶఋ√ଵ−ఋమ

 

• Phase margin � = ͹ͳ° − ͳͳ͹° ⋅ ߳̂  
For ߜ ا ͳ 

• Peak frequency ߱௠௔௫  ≈ ߱଴ 
• Peak maximum ≈ ଵ

ଶఋ
 

Other Rules (Time domain) 

߳̂ = ݁
−ቆ ఋగ
√ଵ−ఋమ

ቇ
, ߳̂ =  ݐ݋݋ℎݏݎ݁ݒ݋

9଴ݐ = ଴ܶሺͲ.ͳͶ + Ͳ.Ͷߜሻ 

9଴ݐ =
ߨʹ ⋅ ሺͲ.ͳͶ + Ͳ.Ͷߜሻ

߱଴
=
ͳ.͹
߱௖

 

ߜ = −
�nሺ߳̂ሻ

ଶߨ√ + �nଶሺ߳̂ሻ
 

଴ܶ =
ߨʹ
߱଴

 

Bode-Diagram of higher order systems 
Higher order systems can be decomposed into a series 
connection of low-order systems. Due to the logarithmic 
scale of the magnitude plot, the magnitude response of each 
subsystem can be added up to construct the magnitude 
response of the overall system: 
ʹͲ ⋅ ���ଵ଴ሺ|Σଵ ⋅ Σଶ|ሻ = ʹͲ ⋅ ���ଵ଴ሺ|Σଵ|ሻ + ʹͲ ⋅ ���ଵ଴ሺ|Σଶ|ሻ  

Similarly, the phase response of each subsystem can be 
added up: 

∠ሺΣଵ ⋅ Σଶሻ =  ∠ሺΣଵሻ + ∠ሺΣଶሻ  
Bode’s Law 
• In the Bode plot, the magnitude slope and the 

phase are not independent. 
• In particular, if the slope of the Bode magnitude is 

ߣ ⋅ ʹͲ ݀ܤ ݀݁ܿ⁄  over a range of more than ≈ ͳ 
decade, the phase in that range will be 
approximately ߣ ⋅ ͻͲ° 

Example 1 

ሻݏሺܩ =
ͳ
ʹ

ሺݏ + ʹሻሺݏ + ͳͲሻ
ሺݏଶ + ݏ + ͳሻሺݏ + ͷሻ 

1. Split it up in normal forms 

ሻݏሺܩ = ʹ ⋅ ቀ
ݏ
ʹ + ͳቁ ቀ

ݏ
ͳͲ + ͳቁ (

ͳ
ଶݏ + ݏ + ͳ)ቌ

ͳ
ݏ
ͷ + ͳ

ቍ 

2. Draw for every single one a bode-diagram 
a. ૛ ⋅ ቀ࢙

૛
+ ૚ቁ 

࢔࢏ࢇࢍ ࢉ࢏࢚ࢇ࢚࢙ = ૛ ≈ ૟࡮ࢊ 
࣓૙ = ૛࢘ࢊࢇ ࢙⁄   
.ࢍࢇ� ࢋࢍ࢔ࢇࢎࢉ = +૛૙࡮ࢊ ⁄ࢉࢋࢊ  
ࢋࢍ࢔ࢇࢎࢉ ࢋ࢙ࢇࢎ� =  +ૢ૙° 

b. ቀ ࢙
૚૙
+ ૚ቁ 

࢔࢏ࢇࢍ ࢉ࢏࢚ࢇ࢚࢙ = ૚ = ૙࡮ࢊ 
࣓૙ = ૚૙࢘ࢊࢇ ࢙⁄   
.ࢍࢇ� ࢋࢍ࢔ࢇࢎࢉ = +૛૙࡮ࢊ ⁄ࢉࢋࢊ  
ࢋࢍ࢔ࢇࢎࢉ ࢋ࢙ࢇࢎ� =  +ૢ૙° 

 

.ࢊ ቌ
૚

࢙
૞ + ૚

ቍ 

࢔࢏ࢇࢍ ࢉ࢏࢚ࢇ࢚࢙ = ૚ = ૙࡮ࢊ 
࣓૙ = ૞࢘ࢊࢇ ࢙⁄   
.ࢍࢇ� ࢋࢍ࢔ࢇࢎࢉ = −૛૙࡮ࢊ ⁄ࢉࢋࢊ  
ࢋࢍ࢔ࢇࢎࢉ ࢋ࢙ࢇࢎ� =  −ૢ૙° 

 
3. Add them together (Superposition) to create the 

final plot. 

 
 

 
 
 
 
 

.ࢉ (
૚

࢙૛ + ࢙ + ૚) 

࢔࢏ࢇࢍ ࢉ࢏࢚ࢇ࢚࢙ = ૚ = ૙࡮ࢊ 
࣓૙ = ૚࢘ࢊࢇ ࢙⁄   
.ࢍࢇ� ࢋࢍ࢔ࢇࢎࢉ = −૝૙࡮ࢊ ⁄ࢉࢋࢊ  
ࢋࢍ࢔ࢇࢎࢉ ࢋ࢙ࢇࢎ� =  −૚ૡ૙° 
 

ߜ = Ͳ.Ͳͷ 

ߜ = Ͳ.͹ 



Control Systems I Zusammenfassung Mario Millhäusler / Matthias Wieland 

14 
 

Example Bode Plot 

 
a) Identify the transfer function ܲሺݏሻ. 
b) To control this system, we take a PI-Controller of the form 

ሻݏሺܥ = ݇௣ (ͳ +
ͳ
௜ܶݏ
) =

݇௣ ௜ܶݏ + ݇௣
௜ܶݏ

;   ݇௣ = Ͷ, ௜ܶ = ͳ 

 Draw the Bode-plot for the controller ܥሺݏሻ. 
c) Draw the Bode-plot of the loop-gain ܮሺݏሻ = ܲሺݏሻ ⋅  ሻݏሺܥ
d) Determine (graphically) the phase margin � and the gain margin 

 .ߛ
 

Solution 

 
a) Low frequencies 

݁݌݋݈ݏ} = Ͳ ݀ܤ ݀݁ܿ⁄
݁ݏℎܽ݌ = Ͳ° } → ଵܲሺݏሻ = ݇  

Middle frequencies 
The system looks like a 2nd order System, so it has to be of the form 

ଶܲሺݏሻ =
߱଴ଶ

ଶݏ + ݏ଴߱ߜʹ + ߱଴
 

High frequencies 

As we can see, the slope of the 2nd order system (−ͶͲ݀ܤ ݀݁ܿ⁄ ) chance 
into −ʹͲ݀ܤ ݀݁ܿ⁄ , and the Phase changes in the positive direction. 

݁݌݋݈ݏ} =  +ʹͲ݀ܤ ݀݁ܿ⁄
݁ݏℎܽ݌ = +ͻͲ° } → ଷܲሺݏሻ =

ݏ + ߱௞
߱௞

 

Numbers: 
Low frequencies: the static gain ܲሺͲሻ = ݇ = ͸݀ܤ ≈ ʹ → ݇ = ʹ 
Middle frequencies: The overshoot is about 6dB, for small ߜ it follows: 

|Σሺ݆߱௠௔௫ሻ| = ͸݀ܤ ≈ ʹ ≈
ͳ
ߜʹ → ߜ =

ͳ
Ͷ 

߱௠௔௫ ≈ ߱଴ = ͹ ݀ܽݎ ⁄ݏ  
High frequencies: When we draw the two asymptotes (blue and green), 
we see that the are crossing at ߱௞ ≈ ͵Ͳ ݀ܽݎ ⁄ݏ . The blue asymptote is 

drawn from the point ሺ͹ ݀ܽݎ ⁄ݏ ; ͸݀ܤሻ k ha no influence on the single 2nd 
order System.  

The System is 

ܲሺݏሻ = ʹ ⋅
͹ଶ

ଶݏ + ʹ ⋅ ͳͶ ⋅ ͹ ⋅ ݏ + ͹
⋅
ݏ + ͵Ͳ
͵Ͳ =

Ͷͻ
ͳͷ

ݏ + ͵Ͳ

ଶݏ + ͹ʹ ݏ + Ͷͻ
 

b) Bode plot of the controller 

ሻݏሺܥ =
ͷݏ + Ͷ
ݏ = Ͷ ⋅

ͳ
ݏ ⋅
ͷ
Ͷ ݏ + ͳ
ͳ  

 
c) Bode plot of the loop gain 

For the Plot of ܮሺݏሻ = ሻݏሺܥ ⋅ ܲሺݏሻ we simple add up the two plots 
of ܥሺݏሻ and ܲሺݏሻ 

d) {� ≈ Ͷͷ°ߛ = ∞  

Asymptotic properties 

Σሺݏሻ =
ܾ௠ ∙ ௠ݏ + +ڮ ܾଵ ∙ ݏ + ܾ଴

௞ݏ ∙ ሺݏ௡−௞ + ܽ௡−ଵ−௞ כ ௡−ଵ−௞ݏ + +ڮ ܽଵ ∙ ݏ + ܽ଴ሻ
 

ܽ଴ ≠ Ͳ 
• Order of the system  =  ݊ 
• Relative degree ݎ =  ݊ −݉ 
• Type  = ݇ 

Type k 

Σሺݏሻ =
ܾ௠ ∙ ௠ݏ + +ڮ ܾଵ ∙ ݏ + ܾ଴

௞ݏ ∙ ሺݏ௡−௞ + ܽ௡−ଵ−௞ כ ௡−ଵ−௞ݏ + +ڮ ܽଵ ∙ ݏ + ܽ଴ሻ
 

ܽ଴ ≠ Ͳ 
 Wie viele Pole hat es im Ursprung ( #Integratoren) 
For frequencies ߱ → Ͳ, can determine type k 

• One only needs to analyze the influence of the static 
gain and the pole locations ͞to the verǇ left͟ 

Σሺ݆߱ሻ|�=଴ =
ܾ௢
ܽ଴
⋅ ���
�→଴

ͳ
ሺ݆߱ሻ௞ 

∠ΣሺͲሻ =

{
 

 −݇ ⋅ ͻͲ° ݊݃݅ݏ ݂݅ (
ܾ௢
ܽ଴
) > Ͳ

−ͳͺͲ° − ݇ ⋅ ͻͲ° ) ݊݃݅ݏ ݂݅
ܾ଴
ܽ଴
) < Ͳ

 

 
Example on the next page! 
 
 
 

 

≈ Ͷͷ° 
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Example Type k 

 
 
݇ = ʹ → ∠ΣሺͲሻ = −ͳͺͲ° 
݇ = Ͳ → ∠ΣሺͲሻ = Ͳ° 
݇ = ͳ → ∠ΣሺͲሻ = −ͻͲ° 
 
Relative degree r 

Σሺݏሻ =
ܾ௠ ∙ ௠ݏ + +ڮ ܾଵ ∙ ݏ + ܾ଴

௞ݏ ∙ ሺݏ௡−௞ + ܽ௡−ଵ−௞ כ ௡−ଵ−௞ݏ +ڮ+ ܽଵ ∙ ݏ + ܽ଴ሻ
 

ܽ଴ ≠ Ͳ 
For frequencies ߱ → ∞, one can determine the relative 
degree ݎ = ݊ − ݉ 

• One only needs to analyze the highest power Σሺݏሻ =
௕೘∙௦೘

௦೙
+ Ο 

• r is never negativ 
߲|Σሺ݆߱ሻ|ௗ஻
߲ ���ሺ߱ሻ = ݁݌݋݈ݏ = ݎ− ⋅ ʹͲ݀ܤ; ߱ ݎ݋݂    → ∞  

 
 
 
 
 
 
 
 
 

Example degree r 

 
ݎ = ͳ → ݁݌݋݈ݏ = −ʹͲ݀ܤ ݀݁ܿ⁄  
ݎ = ͳ → ݁݌݋݈ݏ =  −ʹͲ݀ܤ ݀݁ܿ⁄  
ݎ = ʹ → ݁݌݋݈ݏ = −ͶͲ݀ܤ ݀݁ܿ⁄  
ݎ = Ͳ → ݁݌݋݈ݏ = Ͳ݀ܤ ݀݁ܿ⁄  
 analyze the slope at high frequencies 
Noise n(t) 

Noise Ŷ;tͿ is aŶ eleĐtƌiĐal ͟ interference͟, ǁhiĐh Đauses a 
deviation of the measured y(t) from its actual value. 

 Noise is fast i.e. it is mainly present at higher 
frequencies. 

Good noise rejection: 
 |ܶሺ݆߱ሻ| = |௅ሺ௝�ሻ|

|ଵ+௅ሺ௝�ሻ|
 has to be small at high frequencies  

|ሺ݆߱ሻܮ| < ଵ
|�మሺ௝�ሻ|

 

The system is stable iff | ଶܹሺߨ+ሻ| < ͳ 
Disturbance d(t)  

Disturbances d(t) are external influences, which cause a 
deviation of the output y(t) from the reference signal r(t). 

 disturbances are slow i.e. they are present at lower 
frequencies 

Good disturbance rejection:  
|ܵሺ݆߱ሻ| = ଵ

|ଵ+௅ሺ௝�ሻ|
 has to be small at low frequencies  

|ሺ݆߱ሻܮ| > | ଵܹሺ݆߱ሻ| 
Crossover frequency ࣓ࢉ 

The crossover frequency ߱௖  is the frequency, at which L(s) 
crosses the 0 dB line 

|ሺ݆߱ሻܮ| = ͳ 
Bandwidth 

 The bandwidth of the closed-loop system is defined as the 
maximum frequency ߱ for which |ܶሺ݆߱ሻ| > ଵ

√ଶ
, i.e., the 

output can track the commands to within a factor of ≈ Ͳ.͹ 
 It determines the speed of the time-domain 

behavior 
 Is approximately equal to ߱௖  

Nyquist-Diagram 
In Nyquist diagrams, the curve Σሺ݆߱ሻ is plotted directly in 
the complex plane, where the real and imaginary parts of 
Σሺ݆߱ሻ = ሺ߱ሻݔ + ݆ ⋅  ሺ߱ሻ are used as coordinates of a curveݕ
in a plane. 
The frequency ߱ does not appear directly in thie 
representation, but only implicitly as the curve parameter in 
both ݔሺ߱ሻ and ݕሺ߱ሻ. 
The Nyquist-Diagrams are frequency-implicit 
representations. 
Nyquist diagram identification 

• Start: ���
�→଴+

 |ሺ݆߱ሻܮ|
• End: ���

�→±∞
 |ሺ݆߱ሻܮ|

• Eintrittswinkel in den Ursprung: ���
�→±∞

 (ሺ݆߱ሻܮ)∠
• Delay: ∠ܮሺ݆ ∙ ߱ܶሻ ~ ߱ܶ ሺ݈ܵܽݎ݅݌ሻ 

Symmetry: ݉ܫ(ܮሺ−݆߱ሻ) =   ሺ݆߱ሻሻܮሺ݉ܫ− 
Turn the Nyquist Diagram by �° in the negative direction 
means a time delay of ݁−�௦ 
Influences: 

• Integrator 
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Nyquist diagram of a 1st order system 

Σሺݏሻ =
݇

� ⋅ ݏ + ͳ 

 
Where 

• Static gain |ΣሺͲሻ| = ݇ 
• Cut-off frequency ݈ܾ݊݁݅ݏ݅ݒ ݐ݋ 
• Magnitude change ݈ܾ݊݁݅ݏ݅ݒ ݐ݋ 
• Phase change −ͻͲ° 

 
Nyquist diagram of a 2nd order system 

Σሺݏሻ = ݇ ⋅
߱଴ଶ

ଶݏ + ʹ ⋅ ߜ ⋅ ߱଴ ⋅ ݏ + ߱଴ଶ
 

 
Where 
• Static gain |ΣሺͲሻ| = ݇ 
• Cut-off frequency ݈ܾ݊݁݅ݏ݅ݒ ݐ݋ 
• Magnitude change ݈ܾ݊݁݅ݏ݅ݒ ݐ݋ 
• Phase change −ͳͺͲ° 
 
 
Nyquist Criterion  
The goal is to determine the stability of the closed-loop 
system by looking at the the open loop function ܮሺ݆߱ሻ. 
A closed loop system is asymptotically stable iff: 
Guzzella:  ݊௖ = ݊+ +

௡బ
ଶ

 
Frazzoli :  ܰ = ܼ − ܲ 
 
Legend : 
• ݊௖:  Number of mathematically positive encirclements 

 (counterclockwise) of the Point-1 of 
 ∞ ሺ݆߱ሻ with ߱ from−∞ toܮ 

• ݊+:  Number of Poles of ܮሺݏሻ with positive real part 
• ݊଴ : Number of Poles of ܮሺݏሻ  with real part zero 
• ܰ: encirclements of−ͳ clockwise 
• ܼ:  Number of zeros / Number of closed-loop poles 
• ܲ: Number of poles / Number of unstable open-loop  

 poles 

The Nyquist criterion also applies to systems with time-
delays! 
 
Transformation: 

ܰ =  −݊௖  
ܼ = Ͳ 
ܲ = ݊+ 

Example Nyquist criterion 
 
Is the closed-loop system asymptotically stable? 
ሻݏሺܮ = ܲሺݏሻ ⋅ ሻݏሺܥ

=
ͳͲͲ

ଶݏ + ͳʹݏ + ͳͲͲ ⋅ Ͳ.ͳ (
Ͳ.ͳݏ + ͳ
Ͳ.ͳݏ ) 

 

{
݊௖ =

ͳ
ʹ

݊+ = Ͳ
݊଴ = ͳ

} →
ͳ
ʹ = Ͳ +

ͳ
ʹ →  ݈ܾ݁ܽݐݏ ݕ݈݈ܽܿ݅ݐ݋ݐ݌݉ݕݏܣ

 
Nyquist condition on Bode plots 

Iff the open-loop is stable: 
• Whenever ∠(ܮሺ݆߱ሻ) = ͳͺͲל   |ܮሺ݆߱ሻ| < ͳ 
• The magnitude plot should be below the 0 dB line, 

when the phase plot crosses the −ͳͺͲל line. 
Robust closed-loop stability 

The uncertain closed-loop system is asymptotically stable 
if the nominal closed-loop system is asymptotically stable 
and the following inequality is satisfied:  

ሺ݆߱ሻܮ| ∙ ଶܹሺ݆߱ሻ| < |ͳ +  |ሺ݆߱ሻܮ

↔ |ܶሺ݆߱ሻ| < |
ͳ
ଶܹሺ݆߱ሻ

| 

ߜ = Ͳ.Ͳͷ 

ߜ = Ͳ.͹ 

2 1 2
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Robustness  

Crossover Frequency ࣓ࢉ: Is the Magnitude, where 
 .ሺ݆߱ሻcrosses the unit circleܮ
Phase margin �: Is the distance from the −ͳͺͲל where ܮሺݏሻ 
enters the unit circle in the Nyquist diagram (magnitude 1) 
(measured from L(s), not T(s), not S(s)) 

� = ߨ −  ሺ݆߱௖ሻܮ∠
Gain margin ࢽ: Inverse of the magnitude at −ͳͺͲל 
(measured from L(s), not T(s), not S(s)) 

ሺ݆߱ሻܮ∠ =  ߨ
(ఊ݆߱)݉ܫ = Ͳ 
ͳ
ߛ = |ܴ݁ሺ݆߱ఊሻ| 

Minimum return difference �࢔࢏࢓: Minimum distance from   
-1 

 If ܮሺ݆߱ሻ crosses the point -1 in the Nyquist diagram, 
it becomes unstable!! 

ߤ = |ͳ + ሺ݆߱ሻ|௠௜௡ܮ =
ͳ

|ܵሺ݆߱ሻ|௠௔௫
 

 
The units in the Bode Diagram are in dB; in the 
transfer function are no units  conversion! 

 
 

 

 

 

 

 

 

 

 

Example Robustness 

{
� = Ͷͷ°
ߛ  = ∞
௠௜௡ߤ ≈

ଵ
ଶ

 

 

Example Robustness 2 

  

�   

  ߛ

ͻ͸° 

−͸݀ܤ 

͸݀ܤ 
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{
 
 

 
 
� = ͻ͸°

ߛ =
ͳ

−͸dB =
ͳ
ͳ
ʹ
= ʹ

௠௜௡ߤ =
ͳ

�a�|ܵሺ݆߱ሻ| =
ͳ
͸݀ܤ =

ͳ
ʹ

 

 
Example Robustness 3 

Question 
Consider the following block diagram, where C(s)=1 and 
P(s) is depicted in the bode plot. 

a) Find the delay �?  
b) Assume � = Ͳ and ܥሺݏሻ = ݇௣, for which values of 

the gain ݇௣ is the system asymptotically stable? 

 

 
Solution: 
a) the magnitude curve is crossing the unity gain (0 dB) at 
approximately ߱� =  ͹

௥௔ௗ
௦

, where the phase is around 
ʹͷͲל. Thus, the phase margin 

ϕ = Ϯ5Ϭ◦ − ϭϴϬ◦ = ϳϬ◦ = ϭ.ϮϮ ƌad. The ŵaǆiŵuŵ ǀalue of 
delay τ for which the system remains asymptotically 
stable is calculated as 

�௠௔௫ =
�
߱�

=
ͳ.ʹʹ
͹ ≈ Ͳ.ͳ͹ݏ 

b) The phase curve crosses the phase  ͳͺͲל at two points: 
߱ఊଵ ≈ ͳ.ͻ

௥௔ௗ
௦

and߱ఊଶ ≈ ͳ͹
௥௔ௗ
௦

, where the corresponding 
magnitudes aƌe ϭϬ dB aŶd −ϭϬ dB. 
Therefore, a positive and a negative gain-margin is 
resulted: 

= −ߛ Ͳ − ͳͲ = −ͳͲ ݀ܤ = Ͳ.͵ʹ 
+ߛ = Ͳ − ሺ−ͳͲሻ = ͳͲ ݀ܤ = ͵.ͳ͸ 

 Ͳ.͵ʹ < ݇௣ < ͵.ͳ͸ 
 

System identification  
• Given →  Frequency Response of a System 
• Goal →  Find transfer function Σሺݏሻ 

Reconstruct the frequency response by iteratively adding 
standard transfer function blocks 
 
Works well if 

• System is of relatively low order 
• Separation of time constants is large enough 

Procedure: 
• Identify type and relative degree  
• Start with low frequencies and move to higher ones 
• Use series connections, this yields additions in the 

Bode diagram 
• First element has gain ݇ ≠ ͳ, all other elements 

have gain ݇ = ͳ ሺͲ ݀ܤሻ 
1. Measure data 
2. Identification and fitting of nominal model 
3. Fitting of uncertainty bound 

Model uncertainty 
• Problem : Working with uncertain models can lead 

to unsuccessful controller designs 
• Solution: Take model uncertainty into account 

 
True system: Σtሺ݆߱ሻ = ݉௧ ∙ ݁௝∙�೟  
Nominal system:  Σሺ݆߱ሻ = ݉ ∙ ݁௝∙� 
Condition:  

݉ ∙ ݁௝∙�೟ ∈ {݉ ∙ ݁௝∙� ∙ (ͳ + ∆ ∙ ଶܹሺ݆߱ሻ)} 

|
݉ ∙ ݁௝∙�೟

݉ ∙ ݁௝∙� − ͳ| ൑ |ܹ_ʹሺ݆߱ሻ| 

• Magnitude m 
• Phase � 

1. Measure data & 2. Identify and fit nominal model 
1. Perform measurements to identify the frequency 

response of the system under investigation: 
Measure the frequency response ܭ times at each 
frequency ߱௜, ሺ݅ = {ͳ, … ,  :ሻ{ܫ

݉௜,௞ ⋅ ݁௝⋅��,ೖ, ݇ = {ͳ, … ,  {ܭ
2. Identify and fit the nominal model Σሺݏሻ 

At each frequency ߱௜, average magnitude and phase 
over all ܭ measurement data points. Then apply 
system identification methods to identify a nominal 
transfer function. 
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3.  Fitting of uncertainty bound 
3. Fit the uncertainty bound ଶܹሺݏሻ. 

 
 

Example System identification 
Determine the Transfer function of the following System with time-delay 

 
This system is a simple 1st order system with the following parameters 

Σଵሺݏሻ = ݇ ⋅ ቀ
ଵ

�⋅௦+ଵ
ቁ ;  {

݇ = ͳʹ݀ܤ ≈ Ͷ
� = ଵ

�బ
= ଵ

଴.ଷ
Since the time delay only affects 

the Phase, we can see the influence of the time delay in the following 
plot 

 
At ߱ = ͸݀ܽݎ ⁄ݏ , we see that the difference of the Phase is about ͳ͵ͷ°, 
so the time-delay decreases the phase at this point.  

Phasechangeሺ݁−்௦ሻ = −߱ܶ →  ܶ = ଵଷହ°
−�

=
ቀ �
భ8బ°⋅ଵଷହ°ቁ

−଺௥௔ௗ ௦⁄
≈ Ͳ.Ͷ 

So, the system is given by 

Σሺݏሻ =
Ͷ

ݏ
Ͳ.͵ + ͳ

⋅ ݁−଴.ସ௦ 

Specifications for Feedback Systems 
Specifications on the closed-loop behavior are typically given 
using two main paradigms, plus one that can be seen both 
ways: 
• Steady-state error 
• Time-domain specifications 
• Frequency-domain specifications 
 

 
• Loop gain L(s): The loop gain is the open-loop transfer 

function from ݁ →  ݕ

ሻݏሺܮ ∶= ሻݏሺܥ ∙ ܲሺݏሻ =
ܶሺݏሻ
ܵሺݏሻ 

ሻݏሺܮ =
ܶሺݏሻ

ͳ − ܶሺݏሻ 

• Sensitivity S(s): The Sensitivity is the closed-loop transfer 
function from ݀ → .݌ݏ݁ݎሺ ݕ ݎ → ݁ሻ  

ݕ = ݀ + ܲሺݏሻܥሺݏሻ ∙ ݁ = ݀ + ܲሺݏሻܥሺݏሻሺ−ݕሻ =
݀

ͳ +  ሻݏሺܮ

ܵሺݏሻ =
ͳ

ͳ +  ሻݏሺܮ

• Complementary sensitivity T(s): The complementary 
sensitivity is the closed-loop transfer function from ݎ →  ݕ

ݕ = ܲሺݏሻ ∙ ݑ = ܲሺݏሻܥሺݏሻ ∙ ݁ = ܲሺݏሻܥሺݏሻሺݎ − ሻݕ

=
ݎ ∙ ሻݏሺܮ
ͳ +  ሻݏሺܮ

ܶሺݏሻ =
ሻݏሺܮ

ͳ +  ሻݏሺܮ

o Use T(s) to determine the closed loop stability (not 
L(s)) 

࢔ • → ࢟: 

ݕ = ܲሺݏሻܥሺݏሻሺ−݊ − ሻݕ = −
ሻݏሺܮ ∙ ݊
ͳ + ሻݏሺܮ = −ܶሺݏሻ 

General Properties: 
• For very large and very small L(s), the following 

approximations hold: 

|ሻݏሺܮ| ب ͳ → ܵሺݏሻ ≈
ͳ
ሻݏሺܮ  ܽ݊݀ ܶ

ሺݏሻ ≈ ͳ 

|ሻݏሺܮ| ا ͳ → ܶሺݏሻ ≈ ሻݏሻ ܽ݊݀ ܵሺݏሺܮ ≈ ͳ 
• ܶሺݏሻ + ܵሺݏሻ = ௅ሺ௦ሻ

ଵ+௅ሺ௦ሻ
+ ଵ
ଵ+௅ሺ௦ሻ

= ͳ 

Only one of them can be substantially smaller 
than 1!  

Graphical Interpretation: 
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Closed-loop dynamics: 

• The entire closed-loop dynamics can be compactly 
expressed by:  
ܻሺݏሻ = ܵሺݏሻ ⋅ ሻݏሺܦ) + ܲሺݏሻ ∙ ܹሺݏሻ)  + ܶሺݏሻ

∙ (ܴሺݏሻ − ܰሺݏሻ) 
• ܻሺݏሻ should follow ܴሺݏሻ as precise as possible 
 ሻ should be as little as possible ݏሻ & ܰሺݏሺܦ •

ܶሺݏሻ  =  Ͳ 
 

Example 
Calculate the transfer function of the noise ݊ሺݐሻ to ݑሺݐሻ as 
a function of ܥሺݏሻ and ܲሺݏሻ 
 

ܷሺݏሻ = ሻݏሺܧ ⋅  ሻݏሺܥ
= (−ܲሺݏሻܷሺݏሻ − ܰሺݏሻ) ⋅  ሻݏሺܥ

ܷሺݏሻ ⋅ (ͳ + ܲሺݏሻܥሺݏሻ) = −ܰሺݏሻܥሺݏሻ 

ܷሺݏሻ = −
ܰሺݏሻܥሺݏሻ

ͳ + ܲሺݏሻܥሺݏሻ 

The solution is 
ܷሺݏሻ
ܰሺݏሻ = −

ሻݏሺܥ
ͳ + ܲሺݏሻܥሺݏሻ 

 
Example 

Determine the function of the error ݁ሺݐሻ over time ݐ for 

the input ݎሺݐሻ = ℎሺݐሻ and ܮሺݏሻ = ଵ
௦
 

 

Solution 

We calculate 
ሻݏሺܧ = ܴሺݏሻ − ܻሺݏሻ = ܴሺݏሻ −  ሻݏሺܮሻݏሺܧ

ሻݏሺܧ ⋅ (ͳ + (ሻݏሺܮ = ܴሺݏሻ 

ሻݏሺܧ =
ܴሺݏሻ

ͳ + ሻݏሺܮ =
ͳ
ݏ

ͳ + ͳݏ
=

ͳ
ݏ + ͳ 

݁ሺݐሻ = ℒ−ଵ(ܧሺݏሻ) = ℎሺݐሻ ⋅ ݁−௧ 
 

Internal stability 
For internal stability, all nine transfer functions 

[
ܷሺݏሻ
ܻሺݏሻ
ሻݏሺܧ

] = [
ܵሺݏሻ −ܵሺݏሻ ⋅ ሻݏሺܥ ܵሺݏሻ ⋅ ሻݏሺܥ

ܵሺݏሻ ⋅ ܲሺݏሻ ܵሺݏሻ ܶሺݏሻ
−ܵሺݏሻ ⋅ ܲሺݏሻ −ܵሺݏሻ ܵሺݏሻ

] ⋅ [
ܹሺݏሻ
ሻݏሺܦ
ܴሺݏሻ

] 

Must be asymptotically stable. 
 
Another way to check whether a closed-loop system is 
asymptotically stable, is to require that ܵሺݏሻ is asymptotically stable 
and to check whether the following interpolation conditions are 
satisfied 

ܵሺ�௜+ሻ = ͳ   ܽ݊݀   ܵሺߨ௜+ሻ = Ͳ 
 
A third method to check for closed-loop stability is to show that ͳ +
 .ሻ has no zeros in the right halt of the complex planeݏሺܮ

Steady-state error 
݁∞ =  ���௧→∞ ݁ሺݐሻ =  ���௦→ ଴+

ݏ ∙ ሻݏሺܧ = ݎ −  ∞ݕ
Where:  ܧሺݏሻ = ܵሺݏሻ ∙ ሺܴሺݏሻ − ሻݏሺܦ − ܰሺݏሻ − ܲሺݏሻ ∙ ܹሺݏሻሻ 
 

1. Set irrelevant terms = 0 
2. Laplace transform of relevant terms 
3. Solve limes 

 ࢝ሺ࢚ሻ = ૙  ࢝ሺ࢚ሻ  ≠  ૙ 
Static error is 
tolerable 
|∞ࢋ|  ൑  ࢞ࢇ࢓ࢋ

|
ͳ

ͳ + ܲሺͲሻ ∙ |ሺͲሻܥ

൑ ݁௠௔௫  

|
ܲሺͲሻ

ͳ + ܲሺͲሻ ∙ |ሺͲሻܥ

൑ ݁௠௔௫  
Static error is 
not tolerable 
∞ࢋ =  ૙ 

ܲሺݏሻܥ ݎ݋ሺݏሻℎܽ݁ݒ  
݇ ݁݌ݕݐ ݂݋ ܾ݁ ݋ݐ
൒ ͳ 

 ܾ݁ ݋ݐ ݏሻℎܽݏሺܥ
݇ ݁݌ݕݐ ݂݋  ൒ ͳ 

ሻݐሺݎ =
ͳ
݉! ∙ ݐ

௠                       ݐ ൒ Ͳ 

݁௦௦ ݉ = Ͳ ݉ = ͳ  ݉ = ʹ 
: Ͳ ݁݌ݕݐ ͳ ͳ

ͳ + ݇஻௢ௗ௘
 ∞ ∞ 

:ͳ ݁݌ݕݐ
ͳ
ݏ  0 ͳ

݇஻௢ௗ௘
 ∞ 

:ʹ ݁݌ݕݐ
ͳ
ଶ 0 0 ͳݏ

݇஻௢ௗ௘
 

Where : m = Ordung des Systems. Insert m in r(t) 
Example Steady-state error (HS 2005) 

Calculate the Steady-state error for the loop gain 

ܲሺݏሻ =
ͳ

ଶݏ + ͷݏ + ʹͷ ; ܥ   
ሺݏሻ =

ͳ
ݏ  

Solution 

ሻݏሺܮ = ሻݏሺܥ ⋅ ܲሺݏሻ =
ͳ

ଷݏ + ͷݏଶ + ʹͷݏ 

ሻݏሺܧ = |
ͳ

ͳ +  |ሺͲሻܮ

Since 

ሺͲሻܮ =
ͳ
Ͳ = ∞ → ሻݏሺܧ = |

ͳ
∞| = Ͳ 

 
Example Steady-state error (HS 2005) 

Calculate the steady-state error of a unit step for the 
closed loop control system. 

ܲሺݏሻ =
ʹ

ଶݏ + ݏ + ͹ ; ܥ   
ሺݏሻ = ͻ + Ͷ.ͷݏ 

Solution 

ሻݏሺܮ = ሻݏሺܥ ⋅ ܲሺݏሻ =
ͻݏ + ͳͺ
ଶݏ + ݏ + ͹ 

ܶሺݏሻ =
ሻݏሺܮ

ͳ + ሻݏሺܮ = ڮ =
ͻݏ + ͳͺ

ଶݏ + ͳͲݏ + ʹͷ 

ܻሺݏሻ = ܴሺݏሻ ⋅ ܶሺݏሻ =
ͳ
ݏ

ͻݏ + ͳͺ
ଶݏ + ͳͲݏ + ʹͷ 

݁∞ = ݎ − ∞ݕ  

Where  
ݎ = ℎሺݐሻ 
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݁∞ = ���t→∞ ݁ሺݐሻ = ���
௧→∞

(ℎሺݐሻ − (ሻݐሺݕ = ���
௦→଴

ݏ ቆ
ͳ
ݏ − ܻ

ሺݏሻቇ 

= ���
௦→଴
(ͳ − (ሻݏሺܻݏ = ͳ −

ͳͺ
ʹͷ =

͹
ʹͷ 

 
Example Steady-state error (Set.10, Ex. 1) 

Determine the static error ݁∞ of the system below with an 
input of a unit step. 

 
Solution 

݁∞ = ���t→∞ ݁ሺݐሻ = ���௧→଴ ሻݏሺܧ ⋅ ݏ = ���௧→଴ ܵሺݏሻ ⋅ ݏ ⋅
ͳ
ݏ = ܵሺͲሻ 

ܵሺͲሻ =
ͳ

ͳ +  ሺͲሻܮ

As in the Bode plot can be seen  
ሺͲሻܮ = ∞ 

݁∞ =
ͳ

ͳ + ∞ = Ͳ 

 

Time domain specifications 
Time-domain specifications impose constraints on the 
locations of the dominant closed-loop poles (e.g. peak 
overshoot, rise time, dominant poles) use root locus 

 Usually expressed in open-loop frequency responses 

 
• Rise Time : depends primarily on ߱௡: 

ଵܶ଴଴ =
ߨ
ʹ߱ 

9ܶ଴ =
ߨʹ ⋅ ሺͲ.ͳͶ + Ͳ.Ͷߜሻ

߱଴
= ଴ܶሺͲ.ͳͶͲ.Ͷߜሻ =

ͳ.͹
߱௖

 

9ܶ଴ ≈ Ͳ.Ͷ ∙ ଴ܶ ≈
ʹ.Ͷ
߱଴

 

଴ܶ =
ߨʹ
߱଴
=
ͳ
଴݂
 

߱௖ = √√Ͷߜସ + ͳ −  ଶ߱଴ߜʹ

• Peak time: depends on the frequency ߱:  

௣ܶ ≈
ߨ
߱ 

• % Overshoot: depends on the damping  ߜ:  

௣ܯ =
ݐ݋݋ℎݏݎ݁ݒ݋  .ݔܽ݉
݁ݑ݈ܽݒ ݁ݐܽݐݏ ݕ݀ܽ݁ݐݏ −  ݁ݑ݈ܽݒ ݁ݐܽݐݏ ݕ݀ܽ݁ݐݏ

�nሺܯ�ሻ ≈ −
� ∙ ߨ
߱ = −

ߨߜ
√ͳ − ଶߜ

 

�ܯ =
ሺ͹ͳל − �ሻ
ͳͳ͹ל   

• Settling time (e.g. to 2%): depends on the real part 
of the poles �: 

ௌܶ =
− �nሺʹ%ሻ

�  

• Gain: ݇ =  ௦௦ݕ
• Further helpful equations: 

߱௖ = √√Ͷߜସ + ͳ − ଶߜʹ ∙ ߱଴ 

� =
ߨ
ʹ − a�c�an (

√√Ͷߜସ + ͳ − ଶߜʹ

ߜʹ ) 

 
 
 

Dominant Pole Approximation 
If a closed-loop system is higher order, often one can 
approximate it with a second-order (or even first-order) 
system. 

• Dominant poles are those with the larges real part 
(and the slowest decay rate) 

• Exception: If the pole with the larges real part also 
have very small residues (zero-pole cancellation) 

ሻݏሺܩ • = ௥భ
௦−௣భ

+ ௥మ
௦−௣మ

+ ڮ  ↔   ݃ሺݐሻ = ଵ݁௣భ௧ݎ +
௣మ௧݌ଶݎ +  ڮ

Example 1 

ሻݏሺܩ =
ͳ͵Ͳ

ሺݏ + ͷሻሺݏ + ͳ + ͷ݆ሻሺݏ + ͳ − ͷ݆ሻ 

The contribution to the response of the pole at ݏ =  −ͷ 
will decay as ݁−ହ௧ wile that of the poles at ݏ =  −ͳ ± ͷ݆ 
will decay at ݁−௧ 

• ݃ௗ௢௠ሺݏሻ =
ଶ଺

ሺ௦+ଵ+ହ௝ሻሺ௦+ଵ−ହ௝ሻ
 

 
Example 2 

ሻݏሺܩ =
ͳ͵

ሺݏ + Ͳ.ͷሻሺݏ + ͳ + ͷ݆ሻሺݏ + ͳ − ͷ݆ሻ 

The contribution to the response of the pole at ݏ =  −Ͳ.ͷ 
will decay as ݁−଴.ହ௧, while that of the ples at ݏ = −ͳ ± ͷ݆ 
will decay as ݁−௧ 

ሻݏௗ௢௠ሺܩ =
Ͳ.ͷ

ݏ + Ͳ.ͷ 

 
Example 3 

ሻݏሺܩ =
ʹͳ.͸͸͹ሺݏ + Ͳ.͸ሻ

ሺݏ + Ͳ.ͷሻሺݏ + ͳ + ͷ݆ሻሺݏ + ͳ − ͷ݆ሻ 

The zero at ݏ = −ͳ makes the magnitude of the residue ot 
the pole at ݏ = −Ͳ.ͷ small w.t.z. to the magnitudes of the 
residues of the other poles  zero-pole cancellation 

ሻݏௗ௢௠ሺܩ =
ʹ͸

ሺݏ + ͳ + ͷ݆ሻሺݏ + ͳ − ͷ݆ሻ 
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Frequency domain specifications 
• Usually expressed in closed-loop frequency 

responses  
• Make |ݏሺ݆߱ሻ| ا ͳ (hence |ܶሺ݆߱ሻ| ≈ ͳ at low 

frequencies)  ensure that commands are tracked 
with max 10% error up to a frequency of 10 Hz 

• Make |ܶሺ݆߱ሻ| ا ͳ at high frequencies.  ensure 
that noise is reduced by a factor of 10 at the output 
at frequencies higher than 100 Hz 

•  
Bode plot ͞oďstaĐle Đouƌse͟:  

 
The following requirement must be fulfilled for the crossover 
frequency ߱௖: 

�a�{ͳͲ߱ௗ, {+ߨʹ ൑ ߱௖ ൑ ��n{Ͳ.ͷ߱ଶ, Ͳ.ͷ�+, Ͳ.ͳ߱௡, Ͳ.ͷ߱ௗ௘௟௔௬}  

Where: 
• ߱ௗ  : Highest Frequency of the disturbance 
 highest/fastest unstable pole : +ߨ •
• ߱ଶ : uncertainty reaches 100%: | ଶܹሺ݆߱ሻ| = ͳ 
• �+: Non-minimum phase zero 
• ߱௡: lowest frequency of the noise 

• ߱ௗ௘௟௔௬ =
ଵ

೟்೚೟
 : frequency where the delay starts 

affecting the system 
 

 
Loop shaping 
Goal: steer through the bode obstacle course  Improve the 
robustness of your controller 

• Proportional (static) compensation: Choose a 
proportional controller with transfer function C(s)=k 

• Dynamic compensation: By choosing a controller 
(compensator) with transfer function C(s) so that 
L(s) = P(s)C(s) satisfies the requirements 

Procedure: 
1. How many Integrators are needed? 
2. Add Zeros/Poles 
3. Add Lead/Lag elements 
4. Fix the gain 

Proportional control 
Change the value of the gain k 
Effects: shift of the magnitude plot of the transfer function 
up and down. The phase plot is not affected 
Advantage: If the system is open-loop stable, we know that 
small enough gains (k  0) yield stable closed-loops. 
Disadvantage: we are not able to meet the other constraints 
(crossover/bandwidth, or command tracking/disturbance 
rejection), without compromising stability. 
 
 

Example Stability 
Question 

Stabilize the Plant ܲሺݏሻ = ௦−ହ
௦−ଵ

 with a P-Controller ܥሺݏሻ =
݇௣.  

a) Determine ݇௣. 
b) The absolute value of the amplification of the 

high-frequency sensor noise should be equal to 
1, determine ݇௣ 

c) Calculate the steady state error  
Solution 
a) To assess the stability, we have to look at the poles of 
the closed loop transfer function: 

ܶሺݏሻ =
݇௣ሺݏ − ͷሻ

ሺݏ − ͳሻ + ݇௣ሺݏ − ͷሻ
 

The pole of T(s) must be negative: 

ሺ௦ሻ்ߨ =
ͳ + ͷ݇௣
ͳ + ݇௣

< Ͳ 

Which leads to: 

−ͳ < ݇௣ < −
ͳ
ͷ 

b)  

|ܶሺݏ → ∞ሻ| = |
݇௣

ͳ + ݇௣
| = ͳ 

Solve for ݇௣:  
݇௣ = −Ͳ.ͷ 

c) 

݁∞ = ܵሺͲሻ =
ͳ

ͳ + ሺͲሻܮ =
ͳ

ͳ + ͷ݇௣
= −Ͳ.͸͸͹ 
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Dynamic control 
Lead compensator 

௟௘௔ௗܥ = ݇
ݏ
ܽ + ͳ
ݏ
ܾ + ͳ

=
ܾ
ܽ ∙
ݏ + ܽ
ݏ + ܾ ,             Ͳ < ܽ < ܾ 

Where 
߱଴ = √ܾܽ , ሺ݈݌ ݊݋݅ݐܽܿ݋ℎܽ݉ݑ݉݅ݔܽ݉ ݁ݏሻ 

�ெ௔௫ = ͻͲ° − ʹ ⋅ a�c�an ቆ√
ܽ
ܾቇ  ݐℎ݂݅ݏ ݁ݏℎܽ݌ ݉ݑ݉݅ݔܽ݉,

Effects: 
• Increase the magnitude at high frequencies, by b/a; 

magnitude at low frequencies is not affected.  
• Increases the noise n(s) 
• Increase the slope of the magnitude at frequencies 

between a and b by 20 dB/decade. 
• Increase the phase around √ܾܽ (i.e., the midpoint 

between a and b on the Bode plot, by up to 90 
degrees. 

• Increases the gain margin γ 
• The larger b/a the larger the phase increase (max. 

90 deg.) 
Use:  

• Pick √ܾܽ at the desired ߱௖  
• Pick b/a depending on the desired phase gain 
• Adjust k to put ߱௖  at the desired frequency 

Example 1: 

ሻݏሺܥ =
ೞ
బ.భ+ଵ
ೞ
భబ+ଵ

  

 
 

 

 

Example 2: 
• Desired phase margin: > Ͷͷל 
• Desired bandwidth: ͷ ௥௔ௗ

௦
 

• Plant: ܲሺݏሻ = ଵ
௦మ+ଶ௦+ଶ

 

 Controller ܥሺݏሻ = ͷʹ ∙ ௦+ଶ.ହ
௦+ଵ଴

 

 
 

 
Example 3 

Design a lead-lag compensator ܥሺݏሻ for a system modeled by the figure 
below and the given plant ܲሺݏሻ and the following requirements: 

 

ܲሺݏሻ = ͷ
ቀͳ − ݏ

ʹͲͲቁ

ቀͳ + ݏ
ʹͲቁ ቀͳ +

ݏ
Ͷቁ

 

1. Small steady state error to a step response ሺ݁∞ = Ͳ.ͲͲͷሻ 
2. Rise time as fast as possible 
3. Phase margin around 40° to 45° 

Solution 
The Compensator is given as 

ሻݏሺܥ = ݇
ቀͳ + ቁܽݏ

ቀͳ + ቁܾݏ
 

The bode-plot without Lead 

 
We start with the fast rise time: 

9ܶ଴ =
ͳ.͹
߱௖

→ ݈݈ܵ݉ܽ 9ܶ଴ →  ௖߱ ݃݅ܤ

The crossover frequency should be as big as possible and is limited by 
�a�{ͳͲ߱ௗ, {+ߨʹ ൑ ߱௖ ൑ ��n{Ͳ.ͷ߱ଶ, Ͳ.ͷ�+, Ͳ.ͳ߱௡, Ͳ.ͷ߱ௗ௘௟௔௬} 

With a zero at 200 ݀ܽݎ ⁄ܿ݁ݏ  
߱௖ ൑ ͳͲͲ ݀ܽݎ ⁄ݏ  

We calculate the existing phase margin at 100 ݀ܽݎ ⁄ݏ  
∠(ܲሺ݆߱ሻ)�=ଵ଴଴ = −ڮ ͳͻʹ.ͻ͸° → � = −ͳʹ.ͻ͸° 

As � should be ≈ Ͷͷ° we can increase the phase margin by ≈ ͷ͹.ͻ͸° 

߱௖,௅௘௔ௗ = √ܾܽ = ͳͲͲ → ܽ =
ͳͲͲͲͲ
ܾ  

ଵ଴଴=�(ሺ݆߱ሻܥ)∠ = a�c�an(
ͳͲͲ
ܽ ) − a�c�an (

ͳͲͲ
ܾ ) 

= a�c�an(
ܾ
ͳͲͲ) − a�c�an(

ͳͲͲ
ܾ ) כ→  {ܽ = ʹͺ.͹Ͷܾ = ͵Ͷͺ  

→ כ  ℎܽ݊݀ ݕܾ ݏℎ݅ݐ ݁ݒ݈݋ݏ ݐ′݊ܽܿ ܹ݁
So the lead element is 

ሻݏ௟௘௔ௗሺܥ = ݇
ቀͳ + ݏ

ʹͺ.͹Ͷቁ

ቀͳ + ݏ
͵Ͷͺቁ

 

With the bode-plot: 
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Now, we have a phase margin of Ͷͷ° at ߱ = ͳͲͲ ݀ܽݎ ⁄ݏ , but because of 
the Lead-element, we also increased the phase, so ߱௖ is no more at 
ͳͲͲ ݀ܽݎ ⁄ݏ . We move it to the right place with the right ݇. 

ሺ݆߱ሻ|�=ଵ଴଴ܮ| = Ͳ݀ܤ = ͳ 

ሺ݆߱ሻ|�=ଵ଴଴ܮ| = |݇
ቀͳ + ݏ

ʹͺ.͹Ͷቁ

ቀͳ + ݏ
͵Ͷͺቁ

| ⋅ ͷ |
ቀͳ − ݏ

ʹͲͲቁ

ቀͳ + ݏ
ʹͲቁ ቀͳ +

ݏ
Ͷቁ
| = ڮ

= ݇ ⋅ Ͳ.ͳͷʹ 
݇ = ͸.ͷͷ͹ 

So the final lead element is 

ሻݏ௅௘௔ௗሺܥ = ͸.ͷ͸ ⋅
ቀͳ + ݏ

ʹͺ.͹Ͷቁ

ቀͳ + ݏ
͵Ͷͺቁ

 

 
Now we want to make the steady-state error smaller ≈ Ͳ.ͲͲͷ 

���
௧→∞

݁ሺݐሻ = ���
௦→଴

ݏ ⋅ ሻݏሺܧ ⋅ ܴሺݏሻ = ሺͲሻܧ =
ͳ

ͳ +  ሺͲሻܮ

We see that 

ͳ
ͳ + ሺͲሻܮ = Ͳ.ͲͲͷ → ሺͲሻܮ ≈

ͳ
Ͳ.ͲͲͷ = ʹͲͲ 

At the instant we have 
ሺͲሻܮ = ͸.͸ͷ ⋅ ͷ = ͵͵.ʹͷ 

So we need to multiply by 6.01 to get ܮሺͲሻ = ʹͲͲ 

For this, we take an easy Lag compensator ܥ௅௔௚ =
௦+௔
௦+௕

 

“iŶĐe ǁe doŶ’t ǁaŶt to distuƌď ߱௖ and �, a rule of thumb says, that the 
zero � should be one decade below ߱௖.  

ܽ → ͳͲ 
We want a static gain of 6.01, so ܥ௅௔௚ሺͲሻ must be 6.01 

௅௔௚ሺͲሻܥ =
Ͳ + ܽ
Ͳ + ܾ =

ܽ
ܾ =

ͳͲ
ܾ = ͸.Ͳͳ → ܾ =

ͳͲ
͸.Ͳͳ = ͳ.͸͸ 

So the lag compensator is 

௅௔௚ܥ =
ݏ + ͳͲ
ݏ + ͳ.͸͸ 

And the whole system 

ሻݏሺܮ = ܲሺݏሻ = ͷ
ቀͳ − ݏ

ʹͲͲቁ

ቀͳ + ݏ
ʹͲቁ ቀͳ +

ݏ
Ͷቁ
⋅ ͸.ͷ͸ ⋅

ቀͳ + ݏ
ʹͺ.͹Ͷቁ

ቀͳ + ݏ
͵Ͷͺቁ

⋅
ݏ + ͳͲ
ݏ + ͳ.͸͸ 

With the bode-plot:  

 
 

Example 4 
Design a compensator ܥሺݏሻ for the plant ܲሺݏሻ which meets the following 
performance specifications: 

1. The steady-state error following ramp inputs must not exceed 
2%. 

2. The error in response to sinusoidal inputs up to 5 rad/sec 
should not exceed about 5%. 

3. The crossover frequency should be about 50 rad/sec. 
4. The phase margin should be at least 50°. 

ܲሺݏሻ =
ͳ

ݏሺͲ.ͳݏ + ͳሻ 

Solution 
Part 1: 

݁∞ = ���
௧→∞

݁ሺݐሻ = ���
௦→଴

ሻݏሺܧݏ = ���
௦→଴

ݏ ⋅ ܴሺݏሻ ⋅ ܵሺݏሻ = ���
௦→଴
ݏ  ⋅

ͳ
ଶݏ ⋅

ͳ
ͳ + ሻݏሺܮ

≈
ͳ

ݏ ⋅ ሺͲሻܮ ൑ Ͳ.Ͳʹ 

ͳ
ݏ ⋅ ሺͲሻܮሺͲሻܥ ൑ Ͳ.Ͳʹ 

We can take the controller ܥሺݏሻ = ݇ 
ͳ

݇ ⋅ ͳͳ
=
ͳ
݇ → ݇ = ͷͲ → ሻݏሺܥ = ͷͲ 

Part 2: 
The error in response to sinusoidal input can be evaluated using ܵሺݏሻ 

|ܵሺ݆߱ሻ| =
ͳ

|ͳ + |ሺ݆߱ሻܮ ൑ Ͳ.Ͳͷ →
|ͳ + |ሺ݆߱ሻܮ ≈ |ሺ݆߱ሻܮ| ൒

ͳ
Ͳ.Ͳͷ 

|ሺ݆߱ሻܮ| = ͺ.ͻͶͶ ൒ ʹͲ → ݕܾ ݕ݈݌݅ݐ݈ݑ݉ ≈
ʹͲ
ͻ  

ሻݏ௡௘௪ሺܥ = ͷͲ ⋅
ʹͲ
ͻ ≈ ͳͳͷ 

Part 3: 
Currently, ߱௖ is at 

|ሺ݆߱ሻܮ| = Ͳ → ߱௖ ≈ ͵͵.ʹ° 
The magnitude at ߱ = ͷ݀ܽݎ ⁄ݏ  is ≈ Ͳ.Ͷ, so we need to lower the 
magnitude by 0.4  

ሻݏ௡௘௪ሺܥ =
ͳ
Ͳ.Ͷܥ

ሺݏሻ ≈ ʹͺͺ 

Part 4: 
Currently, the phase margin � is ≈ ͳʹ°, so it needs to be lifted up by ≈
͵ͺ°, we take a lead compensator: 

ሻݏ௅௘௔ௗሺܥ = ݇ ⋅
ͳ + ܽݏ
ͳ + ܾݏ

 

We doŶ’t ǁaŶt to ĐhaŶge the loǁ fƌeƋueŶĐies, so ݇ = ͳ 
We take the formula 

߱௖ = √ܾܽ = ͷͲ → ܽ =
ʹͷͲͲ
ܾ  

ͻͲ° − ʹ ⋅ a�c�anቆ√
ܽ
ܾቇ = �௖ℎ௔௡௚௘ = ͵ͺ° 

ܽ
ܾ =

ሺ�anሺʹ͸°ሻሻଶ →  {ܽ = ʹͶ.͵ͺܾ = ͳͲʹ.ͷʹ 

And with the superposition-principle, we get 

ሻݏ௙௜௡௔௟ሺܥ = ሻݏ௅௘௔ௗሺܥሻݏሺܥ = ʹͺͺ
ͳ + ݏ

ʹͶ.͵ͺ
ͳ + ݏ

ͳͲʹ.ͷʹ
 

Bode plot on the next page! 
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Lag compensator 

௟௔௚ܥ = ݇
ݏ
ܽ + ͳ
ݏ
ܾ + ͳ

=
ܾ
ܽ ∙
ݏ + ܽ
ݏ + ܾ ;            Ͳ < ܾ < ܽ 

Effects: 
• Decreases the magnitude at high frequencies by b/a 
• Magnitude at low frequencies is not affected 
• Decreases the slope of the magnitude at 

frequencies between a and b, by 20 dB/decade 
• Decreases the phase around √ܾܽ, i.e. the midpoint 

between a and b on the Bode plot by up to 90 
degrees 

• Improves command tracking/disturbance rejection 
Use: 

• Pick a/b as the desired increase in magnitude at low 
frequencies 

• Pick a so that it is sufficiently smaller than the 
crossover frequency, not to affect ߱௖ ܽ݊݀ ߛ 

• Increase the gain k by a/b 
 
 
 
 
 
 
 
 
 

Example 1:  

ሻݏሺܥ  =
ೞ
భబ+ଵ
ೞ
బ.భ+ଵ

 

 

 
 

 
Example 2: (vgl. Ex 2 lead)  

• Desired phase margin: > Ͷͷל 
• Desired bandwidth: ͷ ௥௔ௗ

௦
 

• Desired steady-state error to a unit step: ͳ% 
• Plant:  ܲሺݏሻ =  ͷʹ ∙ ௦+ଶ.ହ

௦+ଵ଴
∙ ଵ
௦మ+ଶ௦+ଶ

 

 Controller:  ܥሺݏሻ = ௦+଴.ଵ
௦+ బ.భభ5.య

 

 

 
 

 
 

Influences of Lead/Lag compensators in the Nyquist diagram: 

 
Nonminimum phase /unstable systems 
• Non-minimum-phase zeros limit the crossover 

frequency (closed-loop bandwidth) 
• Open loop unstable poles require the crossover 

frequency to be higher 
ܲሺݏሻ = ௠ܲ௣ሺݏሻܦሺݏሻ 

Where: 
• \ ௠ܲ௣ሺݏሻ: mirror image of the poles/zeros of P(s) 
ሻݏሺܦ • = ܲሺݏሻ ∙ ௠ܲ௣

−ଵሺݏሻ  |ܦሺ݆߱ሻ| = ͳ 
Example 

ܲሺݏሻ =
ݏ − ݖ
ݏ −  ݌

௠ܲ௣ሺݏሻ =
ݏ + ݖ
ݏ +  ݌

 ܦሺݏሻ = ௭−௦
௦+௭

∙ ௦+௣
௦−௣
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Feedback Control Design 
PID Controller 

Tune a PID Controller by choosing the parameters ݇௣, ݇௜, ݇ௗ 
P: Proportional 
• Control action is proportional to control error 
• Fast reduction of control error, but static error may 

result 
• “houldŶ’t ďe used foƌ ƌeaĐhiŶg faƌ aǁaǇ set poiŶts, 

because a large gain ݇௣ leads to: 
o Large overshoot  
o Maybe unstable response 

I: Integral 
• Control action is proportional to integral of previous 

control error 
• Slow but complete reduction of control error 
• Faster decay of magnitude in the bode plot 
• Lower crossover frequency ߱௖   Prevents 

problems with noise 
• To prevent a static error ݁∞ an Integral is a better 

alternative than using a large gain ݇௣ 
D: Derivative 
• Control action is proportional to change of control 

error 
• Attenuation of control action to a change in the 

plant output signal  damping 
• Amplification of control action to a change of the 

reference signal 
• D-Part leads to: 

o Less overshoot 
o Faster rise time (?) 

• A too large gain in the D-Part leads to a slow 
response 

• DoŶ’t use it ǁith high fƌeƋueŶĐǇ, ďeĐause it ŵaǇ ďe 
corrupted by noise: 

o ���
௦→∞

݇௣ ௗܶݏ = ∞ 

• To prevent this, use a low pass filter: 
o ܦ = ௞೛்೏௦

ଵ+்೑௦
 

o ���
௦→∞

௞೛்೏௦
ଵ+்೑௦

= ௞೛்೏
்೑

 

o Bounded output  Noise has no influence 

 
Time Domain 

ሻݐሺݑ = ݇௣ ⋅ ቆ݁ሺݐሻ +
ͳ
ܶ௜
∫ ݁ሺ�ሻ݀� + ௗܶ

݀
ݐ݀ ݁ሺݐሻ

௧

଴
ቇ 

 

 
Frequency Domain 

ܷሺݏሻ = ݇௣ ∙ (ͳ +
ͳ

௜ܶ ∙  ݏ 
+ ௗܶ ∙                 ⏟(ݏ

஼ሺ௦ሻ

∙  ሻݏሺܧ

Where: ݇௜ =
௞೛
்�
,               ݇ௗ = ݇௣ ∙ ௗܶ  

 
Roll-off 

A system is non-causal, thus not implementable in real-time 
conditions. Therefore, in practice a PID controller is 
augmented with a roll-off term with a small-time constant � 
Goal: Turn of the controller at high frequencies. 

ሻݏ௣௥௔௖௜௖௔௟ሺܥ = ሻݏሺܥ ∙
ͳ

ሺݏ� + ͳሻଶ

= ݇௣ ∙
ͳ + ௜ܶݏ + ௗܶ ௜ܶݏଶ

௜ܶݏ
∙

ͳ
ሺݏ� + ͳሻଶ 

 

 
Example on the next page!  

݇௣ ͳ
௜ܶ ∙ ݏ

 

ௗܶ ∙  ݏ

ͳ 

ܷሺݏሻ ܧሺݏሻ 

݇௣ ͳ
ௗܶ
∙ ∫ ݁ሺݐሻ݀ݐ 

ௗܶ ∙
݀
ݐ݀ ݁ሺݐሻ 

ͳ 

 ሻݐሻ ݁ሺݐሺݑ
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Example: 
PID controller with ݇௣ = ͳ;   ௜ܶ = ͳ;  ௗܶ = Ͳ.ͳ;   � = Ͳ.Ͳͳ 

  
 

 

Example PID 
Question: 
The Bode Plot of the Plant P(s) is given (The y axis is not in 
dB!!). Design a PD controller ܥሺݏሻ = ݇௣ሺͳ + ௗܶ ∙  ሻ withݏ
the following specifications: 

• Crossover frequency ߱௖ = ͳ
௥௔ௗ
௦

 
• Phase margin � = ͸Ͳל 

 

Solution:  
We can find ݇௣ and ௗܶ  with the following equations: 

|ሺ݆߱௖ሻܮ| • = |ܲሺ݆߱௖ሻ| ∙ |ሺ݆߱௖ሻܥ| = ͳ 
(ሺ݆߱௖ሻܮ)∠ • − � = ∠(ܲሺ݆߱௖ሻ) + (ሺ݆߱௖ሻܥ)∠ =

−ͳͺͲל 
Magnitude and Phase at the crossover frequency can be 
found in the bode plot: 

• |ܲሺ݆߱௖ሻ| ≈ Ͳ.͹ͷ 
• ∠(ܲሺ݆߱௖ሻ) ≈ −ͳ͵ͷל 

Therefore the controller C(s) is:  
|ሺ݆߱௖ሻܥ| • ≈

ସ
ଷ
 

(ሺ݆߱௖ሻܥ)∠ • ≈ ͳͷל 
Add the magnitude and phase from the Controller to the 
formula of the PD controller: 

|ሺ݆߱௖ሻܥ| • = ݇௣√ͳଶ + ሺ ௗܶ ∙ ߱௖ሻଶ 
→  ݇௣ ∙ √ͳ + ௗܶ

ଶ = ସ
ଷ
 

(ሺ݆߱௖ሻܥ)∠ • = a�c�an ቀ
்೏∙�೎
ଵ
 ቁ 

→ a�c�anሺ ௗܶሻ = ͳͷל 
Now we can find the Parameters: 

• ௗܶ = �anሺͳͷלሻ ≈ Ͳ.ʹ͹ 
•  ݇௣ =

ସ

ଷ∙√ଵ+ ೏்
మ
≈ ͳ.ʹͻ 

Follow up question: 
Would it also be possible to design the Controller C(s) wit 
a PI Controller? 
Solution:  
No! A PI controller always leads to a phase loss.  

 
Ziegler Nichols 
• Useful when no model of the plant is available   
• Not precise 

Assumption: The Plant can be approximated by the transfer 
function 

ܲሺݏሻ =
݇

ݏ� + ͳ ∙ ݁
−்௦ 

Procedure Nyquist: 
1. Set ௜ܶ = ∞,   ௗܶ = Ͳ, � = Ͳ,   

P-Controller: ܮሺ݆߱ሻ = ሺ݆߱ሻܥ ∙ ܲሺ݆߱ሻ = ݇௣ܲሺ݆߱ሻ 
2. Increase ݇௣ until it goes through ሺ−ͳ,Ͳሻ  it is in a 

steady-state oscillation 

3. Note critical ݇௣כ  and the corresponding critical 
oscillation period ܶכ 

4. Use ݇௣כ  and ܶכ to calculate the control gains: 
Procedure Bode: 

1. Frequency where the Phase Plot crosses the ͳͺͲל 
line  ߱כ 

כܶ .2 = ଶగ
כ�

 
3. Where does the Magnitude Plot cross ߱כ  …dB  

convert this number to ͞Ŷo uŶits͟  ݇௣כ  
Equations: 

1. ∠ ቀ݇௣כ ∙ ܲሺ݆߱כሻቁ =  ߨ−
a. ∠(ܲሺ݆߱כሻ) =  כ߱  solve for     ߨ−
b. ܶכ = ଶగ

כ�
 

2. |݇௣כ ∙ ܲሺ݆߱כሻ| = ͳ       solve for ݇௣כ  
 

Type ݇௣ [−] ܶ௜ [ܿ݁ݏ] ௗܶ  [ܿ݁ݏ] 
P Ͳ.ͷ ∙ ݇௣כ  ∞ ∙ Ͳ כܶ ∙  כܶ
PI Ͳ.Ͷͷ ∙ ݇௣כ  Ͳ.ͺͷ ∙ Ͳ כܶ ∙  כܶ
PD Ͳ.ͷͷ ∙ ݇௣כ  ∞ ∙ Ͳ.ͳͷ כܶ ∙  כܶ
PID Ͳ.͸ ∙ ݇௣כ  Ͳ.ͷ ∙ Ͳ.ͳʹͷ כܶ ∙  כܶ

 
 
Example on the next page!  
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Example: 

• Plant: ܲሺݏሻ = ଵ
ሺ௦+ଵሻ∙ሺ௦మ+ଶ௦+ଶሻ

 

• Approximation: ௔ܲ௣௣௥௢௫ =
଴.ହ

଴.ହ∙௦+ଵ
∙ ݁−଴.଴ଵ௦ 

• Set ௜ܶ = ∞,   ௗܶ = Ͳ, � = Ͳ,  and increase gain 
݇௣ 

• ݇௣כ = ͳͲ  → כܶ   =
ଶగ
כ�
= ଶగ

ଶ
=  ߨ

 
 

 
Nuisances  

Time Delay 
Definition: The evaluation of sensory information aimed at 
deciding the best course of action, will require a finite 
computation time. 
Input:   ݑሺݐሻ = ݁௦் 
Output:  ݕሺݐሻ = ݁௦ሺ௧−்ሻ = ݁−௦்ݑሺݐሻ 
Magnitude :  |݁௝�்| = ͳ,             
Phase :   ∠ሺ݁−௝�்ሻ = −߱ܶ 

 ܮ′ሺݏሻ = ݁−௦்ܮሺݏሻ 
 |ܮ′ሺ݆߱ሻ| = ሺ݆߱ሻ′ܮ∠     ,|ሺ݆߱ሻܮ| = ∠ሺܮሺ݆߱ሻ − ߱ܶሻ 

How to find T: at which frequency ݂ = ଵ
்
 is the phase −ͷ͹ל 

Effects: 
• Reduction of phase margin: �ௗ௘௟௔௬ = � − ߱௖ܶ 
• Phase margin reduction  crossover frequency 

increase 
Example  

• Without time delay: ܮሺݏሻ = ଵ
଴.଴ଵ௦+ଵ

 

• With time delay: ܮ′ሺݏሻ = ଵ
଴.଴ଵ௦+ଵ

∙ ݁−଴.଴ଵ௦ 

 
 

 
 

 
Approximation 

The root locus method cannot be used for continuous time 
models with delays  transfer function must be rational 
Therefor we use approximations: 

Taylor series expansion 

݁−௦் ≈ ͳ − ܶݏ +
ͳ
ʹ
ሺܶݏሻଶ 

This is a rather naïve approximation. It only holds for   
|ܶݏ| ا ͳ.  
The magnitude of the frequency response diverges for     
߱ → ∞ , while the magnitude of ݁−௦் = ͳ 
 
 
 
 
 
 
 
 

Padé Approximation  

1. Order:  ݁−௦் ≈ ݇ ∙
మ
�−௦
మ
�+௦

 

Advantage: magnitude is equal to 1 
 Useful to plot root locus  

 
Example: 

Transfer function ( ௗܶ = ͳ): ܩௗሺݏሻ = ݁−௦ 
1. Order: ʹ−௦ = ଶ−௦

ଶ+௦
 

2. Order: ݁−௦ ≈ ௦మ−଺௦+ଵଶ
௦మ+଺௦+ଵଶ

 

3. Order: ݁−௦ ≈ −௦య+ଵଶ௦మ−଺଴௦+ଵଶ଴
௦య+ଵଶ௦మ+଺଴௦+ଵଶ଴
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Nonlinearities 
Most real-world systems are not linear: 

• Linear Input  ⇏linear Output  
• PƌiŶĐiple of “upeƌpositioŶ doesŶ’t hold 

Nonlinear System: 
݀
ݐ݀ ݔ

ሺݐሻ = ,ݐ)݂ ,ሻݐሺݔ  (ሻݐሺݑ
ሻݐሺݕ = ℎ(ݐ, ,ሻݐሺݔ  (ሻݐሺݑ

Jacobian Linearization 
• Approximation only holds for very small �,   ݒ

Hartman-Grossman: ͞If the linearized system is closed-loop 
BIBO stable, then the nonlinear system is also stable, for 
ሺξ, �ሻ iŶ a Ŷeighďoƌhood of ;Ϭ,ϬͿ͟ 
Procedure: 

• Find the desired equilibrium condition 
• Linearize the non-linear model around the 

equilibrium 
• View p.3: Linearization 

Anti-reset windup (ARW) 
Problem:  

• Once the input saturates, the integral of the error 
keeps increasing 

Idea: 
• Once the input saturates, stop integrating the error 

Implementation: 

Integral gain: ܭଵ′ = {
ଵܭ → ݁ݐܽݎݑݐܽݏ ݐ′݊ݏ݁݋݀ ݐݑ݌݊݅ ℎ݁ݐ ݂݅
Ͳ →               ݏ݁ݐܽݎݑݐܽݏ ݐݑ݌݊݅ ℎ݁ݐ ݂ܫ

Effects of anti-windup schemes: 

• guarantee the stability of the compensator when 
the (original) feedback loop is effectively opened by 
the saturation.  

• Prevent divergence of the integral error when the 
control cannot keep up with the reference.  

• MaiŶtaiŶ the iŶtegƌal eƌƌoƌs ͞sŵall͟.  

 

 
 

How to implement a compensator 
Pseudo Code(Euler approximation): 

• Make state space realization 
• Initialize the state to, e.g. ݔ ← Ͳ 
• Initialize the error to, e.g. ࢊ࢒࢕ࢋ ← Ͳ 
• Let ݀ݐ be some small-time interval 
• Loop 

→ Read the reference value r 
→ Read the measured output value y 
→ Compute the error e 

→ Update the state as ݔ ← ݔ + ሺݔܣ + ሻ݁ܤ ∙
 ݐ݀

→ Compute the output as ݑ = ݔܥ + ݁ܦ +
஽ܭ ∙

௘−௘೚೗೏
ௗ௧

 
→ Compute the output as ݑ = ݔܥ +  ݁ܦ
→ Send the command u to the actuators 
→ Store the error: ݁௢௟ௗ ← ݁ 

 Additional steps for Non-proper functions are red 
(In)Proper 

௔ݏ + + ௔−ଵݏ +ڮ ଵݏ

௕ݏ + ௕−ଵݏ + +ڮ ଵݏ  
A system is:  

• Proper:  ܽ = ܾ 
• Improper:  ܽ > ܾ  
• Strictly proper:  ܽ < ܾ  
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Influence of PID Controller 
Influence of PID without roll-off on the open loop gain L(s): 

ሻݏሺܥ = ݇௣ ∙
ͳ + ௜ܶݏ + ௗܶ ௜ܶݏଶ

௜ܶݏ
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Relevant standard elements Guzzella 
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|Σሺ݆߱௠௔௫ ሻ| =

ͳ
ͳ√ߜʹ − ଶߜ

 

߱௠௔௫ = ߱଴√ͳ − ; ଶߜʹ ߜ <
ͳ
√ʹ

 

ߜ ݂݅ ا Ͳ 

|Σሺ݆߱௠௔௫ሻ| ≈
ͳ
 ߜʹ

߱௠௔௫ ≈ ߱଴ 
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Minimumphase Zero 
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Examples 
Legend: 

ͳݏݕݏ .1 = ଵ
௦మ+ଶ௦+ଶ

∙ ݁−௦ 
ʹݏݕݏ .2 = ଷ

௦మ−௦+଺
 

͵ݏݕݏ .3 = ସ
௦య+ଶ௦మ+ସ௦

 

Ͷݏݕݏ .4 = −ଶ௦+ଶ
௦మ+ଷ௦+ସ

 
 

Nyquist 

 
 

Bode  

 
 

Step Responses 

 
Root Locus 

 

  

root locus cannot be 
used for continuous 
time models with delays 
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Appendix 
Mechanics 
Energy 

Spring energy  ܧ�௘ௗ௘௥ =  
ଵ
ଶ
݇ ∙ ሺݔ −  ଴ሻଶݔ

Kinetic energy  ܧ௄௜௡ =  
ଵ
ଶ
 ሻଶݐሶሺݔ݉

Potential energy  ܧ�௢௧ =  ݉ ∙ ݃ ∙ ሺݔ −  ଴ሻݔ
Rotational energy ܧோ௢௧ =  

ଵ
ଶ
�߱ଶሺݐሻ 

Forces 
Spring force  ܨ =  ݇ ∙ ሺݔ −  ଴ሻݔ
Damping force  ܨ = ݀ ∙ ሶݔ  

Power 
Translational Power ௧ܲ = ܨ ∙  ሻݐሶሺݔ
Rotational Power  ௥ܲ = ܯ ∙ φሶ  

Partial fraction expansion 
ݏ

ሺݏ − ͳሻଶሺݏ + ͳሻ =
ܣ

ݏ + ͳ +
ܤ

ݏ − ͳ +
ܥ

ሺݏ − ͳሻଶ 

ݏ
ሺݏ − ͳሻሺݏଶ + ͳሻ =

ܣ
ݏ − ͳ +

ܤ
ଶݏ + ͳ +

ݏܥ
ଶݏ + ͳ 

ͳ
ݏଶሺݏ − ͳሻ =

ͳ
ݏ − ͳ −

ͳ
ݏ −

ͳ
 ଶݏ

ͳ
ݏଶሺݏ + ͳሻ =

ͳ
ݏ + ͳ −

ͳ
ݏ +

ͳ
 ଶݏ

Trigonometric functions 
 [ל]�
 [ࢊࢇ࢘]�

૙ 
૙ 

૜૙ 
�
૟ 

૝૞ 
�
૝ 

૟૙ 
�
૜ 

ૢ૙ 
�
૛ 

ሻ Ͳ ͳߙሺ ݊݅ݏ
ʹ √ʹ

ʹ  
√͵
ʹ  

ͳ 

͵√ ሻ ͳߙሺ ݏ݋ܿ
ʹ  

√ʹ
ʹ  

ͳ
ʹ Ͳ 

͵√ ሻ Ͳߙሺ ݊ܽݐ
͵  

ͳ √͵ ±∞ 

͵√ ሻ ±∞ √͵ ͳߙሺ ݐ݋ܿ
͵  

Ͳ 

 
Euler equations 

��nሺݔሻ =
ͳ
ʹ݅ ሺ݁

௜௫ − ݁−௜௫ ሻ 

c��ሺݔሻ =
ͳ
ʹ ሺ݁

௜௫ + ݁−௜௫ሻ 

�anሺݔሻ =
݁௜௫ − ݁−௜௫

݅ሺ݁௜௫ + ݁−௜௫ሻ 

��n�ሺݔሻ =
ͳ
ʹ ሺ݁

௫ − ݁−௫ሻ 

c���ሺݔሻ =
ͳ
ʹ
ሺ݁௫ + ݁−௫ሻ 

�an�ሺݔሻ =
݁௫ − ݁−௫

݁௫ + ݁−௫  
��n�ሺͲሻ = Ͳ 
c���ሺͲሻ = ͳ 

݁௜௫ = c��ሺݔሻ + ݅ ∙ ��n ሺݔሻ 
Conversion ODG ࢎ࢚࢔ order to ODE 1st order 

Consider the general ODE: 
ሺ௡ሻݕ = ܽ଴ݕ + ܽଵݕ′ + ܽଶݕ′′ + +ڮ ܽ௡−ଵݕሺ௡−ଵሻ 

Substitute  
଴ݕ ≔ ݕ
ଵݕ ≔ ′ݕ
ଶݕ ≔ ′′ݕ

ڭ
௡−ଵݕ ≔ ሺ௡−ଵሻݕ

 

We form a matrix 

(

 
 

଴ݕ
ଵݕ
ڭ

௡−ଶݕ
(௡−ଵݕ

 
 

′

=

(

 
 
Ͳ ͳ Ͳ Ͳ
Ͳ Ͳ ͳ ڮ Ͳ
ڭ ⋱ ڭ
Ͳ Ͳ Ͳ ͳ
ܽ଴ ܽଵ ܽଶ ڮ ܽ௡−ଵ)

 
 
∙

(

 
 

଴ݕ
ଵݕ
ڭ

௡−ଶݕ
(௡−ଵݕ

 
 

 

Eigenvalue problem 
The eigenvalue of a Matrix ܣ ∈ ℝ௡×௡ are the solution of the 
equation 

d��ሺߣ� − ሻܣ = Ͳ 
The eigenspace ݒ� of an eigenvalue ߣ solves this equation: 

�ߣሺ݊ݎ݁݇ −  ሻܣ
Or equivalent 

ሺߣ� − ሻܣ ∙ ݒ = Ͳ 
Matrix Exponential 

Consider a matrix ܣ ∈ ℝ௡×௡. The matrix exponential is  

݁஺௧ ≔∑
௞ݐ௞ܣ

݇!

∞

௞=଴

 

Remark: ܣ଴ = � 
 

Example: 

ܣ = [Ͳ ͳ
Ͳ Ͳ] 

݁஺௧ = ∑[Ͳ ͳ
Ͳ Ͳ]

௞
∙
௞ݐ

݇!

∞

௞=଴

 

= [Ͳ ͳ
Ͳ Ͳ]

଴
∙
଴ݐ

ͳ + [
Ͳ ͳ
Ͳ Ͳ] ∙

ଵݐ

ͳ + [
Ͳ ͳ
Ͳ Ͳ]

ଶ
∙
ଶݐ

ʹ +   ڮ

= [ͳ Ͳ
Ͳ ͳ] ∙ ݐ

଴ + [Ͳ ͳ
Ͳ Ͳ] ∙ ݐ + [

Ͳ Ͳ
Ͳ Ͳ] ∙

ଶݐ

ʹ   ڮ+

= [ͳ ݐ
Ͳ ͳ] 
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Matlab 
General Commands 
Command  Description 
A(i,j) Matrix(Zeile, Spalte) 
abs(X) Betrag 
angle(X) Phase in Bogenmas 
X' Transponierte & complex 

konjugiert 
X.' Transponierte ohne complex 

konjugiert 
conj(X) Complex konjugiert 
real(X) Realteil 
imag(X) Imaginärteil 
eig(A) Eigenwerte 
[V,D]=eig(A) Eigenwerte D und 

Eigenvektoren V 
s=svd(A) Singulärwert 
[U,Sigma,V]=svd(A) Singular value decomposition 
rank(A) Rang 
det(A) Determinante 
inv(A) Inverse 
diag([a1,...,an]) Diagonalmatrix 
zeros(x,y) Nullmatrix 
zeros(x)  
eye(x,y) Identitätsmatrix 
eye(x)  
ones(x,y) Matrix mit allen Einträgen =1 
ones(x)  
max(A) Grösstes Element in Vektor 
min(A) Kleinstes Element in Vektor 
sum(A) Summer aller Elemente  
dim=size(A) Dimension der Matrix 
dim=size(A,a) a=1dim Zeilen; a=2dim 

Spalten 
t=a:i:b Zeilenvektor(Anfangswert, 

schrittgrösse,Endwert) 
y=linspace(a,b) Zeilenvektor mit 100 "linear-

spaced" Punkte im Intervall 
[a,b] 

y=linspace(a,b,n) n : Anzahl Punkte  

y=logspace(a,b) Zeilenvektor mit 50 
"logarithmically-spaced" Punkte 
im Intervall [10^a,10^b] 

y=logspace(a,b,n) n : Anzahl Punkte 
I=find(A) Indizen von nichtnull Elemente 

von A 
disp(A) Auf Kommandozeile ausgeben 

 
Control Systems Commands 
Command Description 
sys=ss(A,B,C,D) State Space M im Zeitbereich 
sys=ss(A,B,C,D,Ts) Ts= sampling Zeit 
sys=zpk(Z,P,K) State Space M. mit Nullstellen Z, 

Pole P und Gain K 
sys=zpk(Z,P,K,Ts)  
sys=tf([bm 
...b0],[an ...a0]) Übertragungsfkt., b:Zähler, 

a:Nenner 
P=tf(sys) Übertragungsfkt. Von sys 
P.iodelay=... Mit Todzeit 
pole(sys) Pole 
zero(sys) Nullstellen 
[z,p,k]=zpkdata(sys
) 

z: Nullstellen, p: Pole, k: 
statische Verstärkung 

ctrb(sys) oder 
ctrb(A,b) 

Steuerbarkeitsmatrix 
obsv(sys) oder 
obsv(A,c) 

Beobachtbarkeitsmatrix 
series(sys1,sys2) Serieschaltung 
feedback(sys1,sys2) sys1 mit sys2 als (negative) 

Feedback 
[Gm,Pm,Wgm,Wpm]=mar
gin(sys) 

Gm: Verstärkungsreserve, Pm: 
Phasenreserve, Wpm: 
Durchtrittsfrequenz 

[y,t]=step(sys,Tend
) 

y: Sprungantwort von sys bis T, 
t: Zeit 

[y,t]=impulse(sys,T
end) 

Impulsantwort 
y=lsim(sys,u,t) Simulation von sys mit dem 

Input u für die Zeit t 
sim('Simulink 
model',Tend) 

Simultion von Simulink Model' 
bis Tend 

p0=dcgain(sys) Statische Verstärkung (P(0)) 
K=lqr(A,B,Q,R) Verstärkungsmatrix K (Lösung 

des LQR-Problems) 

 
Plotting Diagrams 
Command Description 
nyquist(sys) Nyquist Diagram 
nyquist(sys,fa,bg) Im Intervall [a,b] 
bode(sys) Bode Diagram 
bode(sys,fa,bg) Im Intervall [a,b] 
bodemag(sys) Nur Magnitude Plot 
bodemag(sys,fa,bg)  
rlocus(sys) Root locus 
impulse(sys) Impulsantwort 
step(sys) Sprungantwort 
pzmap(sys) Pole-Nullstelle Map 
svd(sys) Singularwertverlauf 
plot(X,Y) Plot von Y als Funktion von X 
plot(X,Y,...,Xn,Yn)  
stem(X,Y) Diskreter Plot von Y als 

Funktion von X 
stem(X,Y,...,Xn,Yn)  
xlabel('name') x-Achsen Name 
ylabel('name') y-Achsen Name 
title('name') Titel 
xlim([a b]) Schranke für x-Achse 
ylim([a b]) Schranke für y-Achse 
grid on Gitter ein 
legend('name1',..., 
'namen') 

Legende  
subplot(m,n,p) Mehere Plots in Figur, m: 

Zeilen, n: Spalten, p: Position 
semilogx(X,Y) Logarithmischer Plot mit y-

Achse linear 
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