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8. Recitol 08 11.2%

R&Cdp

We sacted to ook ot how o syskem reacts when introducing feedback:

r e w y

‘ﬁ)—‘ k L(s) >

Speciffically we looked ot how changing the gain k offected the closed lop poles. e noticed that we caw

detecmine the (ocation of the closed loop poles based on the open loop poles. This allows us to quidky see if Some

contcoler is feasble or ot . The results can be summasized inthe oot locus.

To skelch the coct locus we meed to consides the following tules:

The closed loop poles are symmetric abouk the reol axis.

The number of closed loop poles is equal to the rumbec of open loop poles.

The closed loop poles opproadn the cpen loop poles og k-0

they g0 "to infinity"
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The closed loop poles approodn the open loop zeros ag k—co. If theres more poles thenm zecs

=0
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E xom question: W13

Question 24  Mark all correct statements. (2 Points)

Consider the following pole/zero-diagrams of two plants P(s):

A Im A Im

X > — %O

Open-Loop System 1 Open-Loop System 2

Evaluate which of the following statements are correct:

Any controller C(s) = k with & > 0 will Any controller C(s) = k with & > 0 will

stabilize open-loop system 2. stabilize open-loop system 1.
@ A controller C(s) = ]‘: with £ > 0 will  [D] A controller C(s) = ": with & > 0 will
destabilize open-loop system 2 already for destabilize open-loop system 1 already for
very small gains k. very small gains k.
o) If I is lm3e b) for evecy k>o
~ o—s ?o|e is in RHP, VI A the pole ot the
i.e. destabikze X origin wil be. in
the RHP.
c.) I I
555{2::4 s d) Poles are
w1, always —e b alwoys in  y
shoble LHP for k>0

We olso introduced some new netotion for TFs of o closed loop system. In oo System with some. corbreles C (s)

ond o plad P(S) we can define some important TFs.

L(s)
r y
O——) C(9) -2 Pes) ,
= Open loop TF: - Complementacy Sensitivily : > Sensitivily
mops | F -y mops e
Ls) = C(s) Ps) Tig)= L) ()= -1

1+L(s) 1+L(s)



Tine -Domain Specificati ons

So foc, we assessed wether we can shobilize ous system with feedback , bosed on the open loop TF L(s).
Next €0 stability, there ace many diffecent requicements Ehat ace of intesest when designing o controler.

Consides o cac driving with cruise eontrol -
Assume we. can Wodell the car with o stable first-ordes syslem.

? ? G(S)=% Y e i=-%7€+%u
] l y=X.

We are stondivg ot o red teoffic light ond as scon as it tums green we want to accelerote to

the mox. allowed velocify of 50 km/h, So the reference. chonges from 0 fo 50 inthe instant that the light tums

grean . This corresponds bo o Scaled step-cesponse o aus system:

(] ‘k — 50 o
yit) = CeAJ‘;(o + Cfo At P)Bu,x,/,)d,, + Duw

r 50] (‘k P) 1 : ; ! Yss

37%[ /! | *5%

_t
=50(1-e7)

We can See that the behavior is dependend on . We can define o settling time T ,i.e. the bime it tokes
for the System to get withn d % of the steady-state
T, =  In100/d)
This weasuse of T; can help us odjust the benavior of the system, such thal it doesnt accelecate fon fast
or too Qow. Simce Ty is directly propostionol to © , and T influences the location of the pole of G(s),
this time -dowoin specificotion translotes o o constraint on the location of the pdes of the system.
This means thal we can choose ous conbroles in such o way that the time domaim Specifiation is

mel by contreling where owr poles go.



Ustolly the first order aproximation from obove is not enough b describe o system. So b5

oppfoximate with o gecond ocdes sss{em. We con define ouc TF to be -

. 0 1 0
= X
G(s) = u,’; * [—u,’( -2;(.:“] i [“&]u‘

4270, 5 +w? y=x

Jor an  undecdomped systew (7<) with zew imitial condition we get:

Y 1=l e cos(ut ve)

Agpin we can define. impoctant dnasacteristics
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We con mop out the poles im the complex plane Ee
; Il
and obsecve thot ench compenent of Ehe U S JRe
time cesponse offects the poles differently.

Thot means thaf L= can ogoin, take cequicements i the time domain and transform thew ik constraints

on the location of the pdes of the system. lhen designing ous closed bop system we can toke these

reskrictions info account.

desi:a;:m}
afeo,
j > Re

$eﬂlin3 time




A wou to relale these festriclions o the. roct locus is oveclaging bofn

Im
"~

[
X
X
P

Rost Locus

X
X

Time dowoin canstraints

A

we con now chaose K s.t. the poles follin the testricted oseo.

Dotminant Pole Agco)dm’tim:

Whot if ous system has more than twe poles ?

Often we can approximate the higher ocder sydem. Remember thot every pole corvesponds o an exponential .

The teal past of the pae ndicotes how fadt the exponential grows or decays. For poles inthe LHP we can

Say thot poles furthes oway from the imoginary axis ore "faster” since they decay of o highes fate

-10t

e-10{: +e-£’

We. obsesve thot the be combined behavior can be well approximated by the dowes pole, i.e. the pole clesec to the

imaginartj axis.



Examée:

i - L lock 0 since & i fost :
Given G(s) EEANETT we can neglect the pole of —10 since it e fostes than the othes two.

: | 1
Wwe. con Bhus approsimote G(S)y W AP A -

The foctor % ensuces thot the steady-state value romains the same

Step Response

006 T T

0.01 L 1

10 (s+l+j){s+1—j)
T (5410)(s+1+5) (s+1—))

0 1 1 T

0 2 4 6 8 10 12 14

Time (seconds)

Exor quection : HS 17

Box 7: Questions 34, 35

You are considering the following transfer function:

L(s) = 00015 | (s+1) (s + 155)

W (s+ 1) (s+3)(s+4)(s+30)

this

Question 34  Choose the correct answer. (1 Point)

To simplify the calculations, you approximate the transfer function with a simpler model. Select the
approximation which can reasonably be assumed to model the behavior of L(s) for low frequencies
w with negligible error.

~ oLl (D) PN B €2 )
D L(S) ~ 3000 (34_%)(34_3)(84_4) D L(S) ~ 30 (s+%)(s+3)(s+4)
7] ~ L. (etD(stdg) o +D(s+135)
l— L(s) = 35 (s+3)(s+3)(s+4) I:l L(s) = (s+3)(s+3)(s+4)

i. Toglest pde ot -30 ,to be eliminoted.

i correction foctor needed, such thot steody stote temams the same. (%)



Steody-state esvoc:

From o few weeks age, we Know the finol value theorem,

Lin y() = lim sY(s) = Lims G(s)Uls)

$-0 $-0

to determine the steady ctote cutput of o System. Con we do Something Similos with fhe closed loop system?

r e w y

ﬁ(f—» C(s) [ P(s) >

Let's tryto compute the steady-stote ecvor . We alreody defined the TF from r > e as S(s)=

1+Ls)

We can now write:

*l._i’\-;e t) = s,ll? s S(s)R(s) = }L\; ) I R(s) = G
Looking of L(s) in Bode-Form we gee thot:
k., ENE). &) L, K
= —Bole > = Do ill -0
L(5) X (%+1)<%+1) .”(%‘-:1) L(O) < W 90

§2 number of poles ot the origin,
type of system.

if L(0) 2o then Llims
0 1+[(s)

R(s) = ess -0

Thot means that in ordes bo obtoin o steody-stoke exver of 0,we need o pole of Ehe orign, alss knowh os integrator.
Depending on the input, we potentially need mose than ome integmator. When considesing the steady-stote exvor we

usuolly losk of fomp inputs. These ace given by:

um%f’ of m the S-dowain R(s)=% ordes of comp.

=1 =2,

LRy

Depending on the ordes of the ramp ond the type of the system we get different steady-state esvors

€ss qg=20 g=1|qg=2
Type 0 1
e —_— 00 00
P 1+ kBode
1
Type 1 0 00
kBode
1
Type 2 0 0
kBode




EXANEIC:

Given an opew loop TF L(s) =% . caleulote the steody-stote error to a 1* ocdes famp.

onler

+1

, where kwE%

Let's bring L into Bode form:  L(s) = %% -

wle

We con see thot this o system of type 1 ,since =1 . We also know thal the input cowp is of order 1.

Using the boble from above we gdt: i

=3
5

The final value heotem would yield the Same cesult.

PID CEontrel

a beief mtroduction.

Reall what cus cowtroles is designed (s do:

r e
ﬁi}—‘ Cs) = PLs) >

R tokes the eror,ie.the diffeence between fhe curredt adput avd the reference we want to achieve ,ond

transforms it into on input to the plavt. Consides an elelsic cos ond it's closed loop representolion

(/,Q\

|—>x. Kee
Zeeg - The contsoles mugt vow intecpret this eror and

In this conlext the cortroler will take tne desited
pesition Z o ond sushstract the actuol position x ,

eeeees M

genexo{(ns the esvor , i.2. how fac ooy e afe from

tromeform it b o wput B the plart (the car). This cold be o Nolboge &0 the woloss. Se the conbsoles

bsansforme the ewor b an iwpub. The question is hot do we corvest an exvor ivks o command?

One. wosyto do it & with PID control .

PID control is everywhece! Whot does 1D dond for?

= Proportional
&QCk tem ¥
= Integrol hondles the hd _>|:_,C')L)
error diffecently T
D = Derivotive
k D S




How do we mterpret oll of these feems ?

efsroc esroc efsroc
+ \\ +
== > = WU
| —xr" 1} ‘ NS !
: tokes the volue of the : takes the mtegrol of the D takes the decivolve of the
esrof ond scoles it with ervor ond Scales it with ervor and Scales it with kD

The TF of such o. corbraller is then ajven by:

/(D62'+ S+

Cls) =k + =+ Kkps = <

t
et dr + kpelh)

ot i the time domam:

w(t) = £ _eld)+ ];

The challange is then to find the rigit gains thot fullfill the requicements. This is colled PID tuning.

Prof. Fra.zzoli's PID design fecipie:

1. Assume proportional control P.
2. Draw the root locus.

3. If the root locus does NOT go through the “good” region = Need to add a D term. Go
back to step 2.

4. Choose a gain that places the dominant poles in the “good” region.

5. If the steady-state error is too large = Need to add a | term. Go back to step 2.

6. If PID is not enough, stay tuned for more advanced methods.

The effects of eadn Term can be summanzed.

- Proportional

Decceose steady skate escos

Incrense close-loop bondwidth

Incsense sensitivity to noise

Can. reduce stobility macgin for high ordes Systems.

- Integral

Elimimotes the steady skote esces bo o step (if cL is stable)
Reduces sfab'\\klg ™macging.

= Derivative

Reduces ovesshoet , increnses darping
Improves stobility macgins
Incteose sensitivity to noise




Exam Problem:  S19

D The derivative action can be highly sensi-
tive to measurement noise, thus it is often
fed with a filtered error signal.

D Inserting an integral action always helps
to achieve better tracking error.

|:| As the derivative gain increases, the
steady-state error is not affected.

Question 29  Mark all correct statements. (2 Points)
Mark all the correct statements about the behavior of PID controllers.

I:I As Athe/ préportional /gain jricredses; the
phagé margin ircredses’

|:| The derivative action amplifies overshoots
in the system.

D High proportional gain does not affect the
sensitivity to noise

Check Summacy obove




