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0 Preface

This script is based on the materials from my recitals from Fall 2024. Additionally,
lecture slides were used, and this script is heavily based on the lecture content. The
script was made in the scope of the PVK in January 2025 and is intended to serve as a
study aid and review for the material. It contains both theory and example problems.

The exam questions are mainly taken from past exams from Prof. Frazzoli, especially
HS16, FS17, HS17, FS18. Since the newer exams have solutions with exaplnations,
I decided to focus more on the older exams, leaving the newer ones for self study. A
complete collection of old exams, with solutions, can be found on https://exams.amiv.
ethz.ch/category/controlsystemsi

Despite revisions of the script, I cannot guarantee either completeness or correct-
ness. It is possible that small errors are present. If you notice such an error, I would be

grateful if you could inform me by email so that the script can be corrected.

You can find the latest version of this script and other materials on my website: n.ethz.
ch/~nbartzsch/.

Thank you and good luck with Control Systems I.
Nicolas Bartzsch

Version: February 17, 2025
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1 Introduction

In this course we learn the basics of feedback control systems. Broadly the course can
be divided into three main parts:

e Modeling: represent real world systems with mathematical equations

e Analysis: understand how a given system behaves; how the input affects
the output, and how feedback influences the system

e Synthesis: change the system, so that it behaves in a desired way

In control systems, we examine physical systems, often referred to as the Plant, that we
aim to control. Examples of such systems include cars, planes, drones, and robots. These
systems can be represented using block diagrams, where the system itself is depicted as
a block, and the influences on the system or observable outputs are represented with
arrows.

Input Output
“Control” “Observation”

Plant

Y
\4

Our goal will be to generate the right input to the plant such that the output behaves
in the desired way. This is done using a controller. A good example is cruise control
on a car. We tell the cruise control that we want to go at a certain speed (reference),
and the cruise control generates the corresponding input (e.g. throttle position). A big
part of control systems is introducing feedback into the system we want to control. This
feedback is necessary since doing control without feedback would be similar to driving
a car blindfolded. For cruise control, feedback would correspond to a sensor giving the
current speed of the car. In block diagrams it is usually represented like this:

Reference Input Output
Controller Plant >

A 4

This quickly illustrates what we want to achieve in this course. Let’s get started then!



2 Modeling

lvtcoduction:
We wort to leam how to mathematically fepresest dsmm'\c. systems . Specj(‘im\\g we worl to wrile

doum equations thal express the oubput as o function of the imput, and Some internal poramaetess,

w Sgstem >y

|ImPocJ(av\{"- ALl models ate tofong bt some ore wseful.

Inpuds com be:
> Endsgenous: con be vuomipuloted by the designer e g. control inputs
> Exogenous: geneted by the ewviconmedd omd coxt be conlrolled , e.q. difurbonces

{hey encompass ‘evecylhing thet offects the system ovec Lime.

The outputs caw be classified o0s:
> Meosusced oudputs: Wwhot we com meosuce (sensedd) , e.q. Speed of cac
> ‘Reformance oubputs: not dicectly measuroble ,but we wont b covbrol , e.g. avy. fuel consumgh.

they encomposs ‘everything thot we obsewve aboul the System ovec tiwme.
Internal pocametess oce sysem gpecific avd do vet chonge over bime.

All sydems fhe we work fo deseribe , can be vepresented by diffesertiol eguotions. Thot wmeoms

thot the woy the system is chomging |, is reloted to Phe curent stafe

how the SYStCVL c‘nnnae_s = § (cusrent stole)

Exo«v\g\e,t
Newlons second low : F=wmo

3_\/\/\/\/_ m o ult)
K ult) -k = mp(t)

no 5rwi!3

> plt)= - o)+ L u) 2 ordes ODE




State Spoce Represertotion
If we toke closes look of the 2™ ordes ODE we cam vegoenize fhot i can be re-writen 0o o system of

1 ocdes ODEs (see Lineas Algebra I).

(ith the subsbitubion.:
X, = plt)

X, () = pt)
toe obkaw: which com also be e -written in mabrix Jorm.
X, = z,0) X, 0 1)[x,) 0
) " : = - = " + : wt)
) = "wmx, () + W ul) X, 4 w0/ \x,(t) =
This is Some{:\\ing we olceady knoto ond com Selve . The "Jﬂ “u'ng Left to do is deﬁuihg whot we wort {o Teasure

i our Systew,ie. Whot the output is. Hete we com messue, for exawge, bhe velocily of the mass . The

outpul y(t) is fhen egual to pt) and therefore X,(£). Now we con write everything logether o :

) (o1 [x®) o

N o Ju

pwl \wol \xwl \& - g_ww_ e u®
K

x1(’c)) v —

a0

yi = (0 1)(

This system of equotions nots cepresents the origmol Wase-speng system.

The vector X =(x‘(e)) contains all stote vaciables of the system The dlobes desceibe how o system changes internally

x, ()

ovec time . |t con be thought of as o memery , contoining o summory of how the sydem behaved i the past.
Givew the internol stofes owd the cnrvedt input , we can \m‘\qu‘ey predict any future behavior. We com vow

3ehecali2e twis & a stondacd form thet we wil genesolly wse to deseribe dynamic sysfems.

x(#) = f (@), ul)
y) = h(x@®),ult)

This is colled the stote -space forn , Since we ase obsexving how the stale vectsr x changes.



Block &g roms

Block dingrams ase o effeckive woy to visually show how diffeserd 53s'te.ns are connected. [E js the standacd

woy to illustrote the intecconnection of diffesent sgsfens and control ardutectures. Lets begm with the simple case

given by :

— > —

Hefe ¥ woaps on input w o om output y -We com write that:

We can alse have two systems,one offer the other, like so-

— 21 Zz —

To help us find the mpub-output relation we com define am ifermediate Signal o, and omolyze beth
blecks ceperatley :

1. y-= zzo.

combining both sesults w: [y=X T u

2. =2 u

1

We con also hove buo sgste'ns m pasalle] :

w zl y
y=liu+l,u
y=(z1+zz)u'
ZZ
f we combime both twe ebtain
y= o+ Z,u
w 21 o zz —’Oi’
a=Y u
y= LY u+Xu
pX
: y= (5,5,+ %, )u




We can also introduce (neoptive) feedback :

w x e 5, y_ We follow the Some frecipe
y:Z‘e y=zx(u'_zzy)
Zz esu- e:u,-zzyj
= zzy J

S y= Zi(u.— Zzy) , fearonaimg we obtain:
y=XZu-XIJXy
y+r,l,y=Zu
(1+5,5,)y=Su

onla X6y,

ase scolacs|

ye (155, s o |y-

With the help of bleck disgrams we cow olse wiawolize Some bosic conkrol acchiteckures.

Feed - forwosd :

requires precise Knowledge of plank

Feedback -

r e w y

SRpt.

cox homdle disbucbances and uncertainties bt can imtreduce indobility

To de_afees of freedom :

gqood transient behavior ond qood tracking of fost changing references.



2.1 Example Problems

2.1.1 Example from Lecture

Problem: Consider the swing/pendulum system shown in the figure The system
consists of a massless rod of length [ and a point mass m at the end of the rod. The
angle between the rod and the vertical axis is denoted by 6. The point mass is subject
to gravity and an external force u(t). Further, there is a friction force acting on the
system. The friction force is proportional to the angular velocity 6 and its magnitude is
given by the friction coefficient c.

d

Figure 1: Pendulum System

Question: Given equation [l| for the angular momentum balance, find the state space
representation of the system that has the angle 6 as output.

M=J-0 (1)

Hint: The moment of inertia is given by J = mi?.
Solution:
We consider

J-0= Mg,

where Mp is the sum of all torques acting on the hinge point, J the moment of inertia,
and 6 the angular acceleration. Considering the free body diagram in figure |2 we can
obtain all torques that are generated by the different forces.

no torque

u(t)
no torque

mg

Figure 2: Torques resulting from forces acting on the swing

The case on the left describes the torque generated by a horizontal pushing force, and
the one on the right the effect that gravity has on the swing. The torque induced by
the friction is proportional to the angular velocity and scaled by the friction coefficient
c. The total torque acting on the hinge point is thus given by



Mp = gravitytorque + frictiontorque + pushforce .
—Img-sin(8(2)) () -cos(8(2))-u(t)

Additionally, the moment of inertia for this setup given as J = mi?. Putting everything
together we get the following differential equation:

mi? - 0(t) = —lmg - sin(0(t)) — - O(t) + 1 - cos(A(t)) - u(t). (2)

As introduced above, we can transform this second order ODE into a system of first
order ODEs. For this we do the substitution

(t)
(t)

I1
xI9 t

)

=0(t)
=0(t)
and choose the output to be the swing angle y(¢) = 0(t) = z1(t). Putting everything

)
together, we can write the second order ODE [2] as a system of first order ODEs to get
the state space form

a(t) = — 2 - sin(a () — # 2o (t) + % - cos(z1(t)) - u(t) (3)



2.1.2 FS 2017, Questions 7 and 8

Problem: You have passed the Control Systems 1 exam, and now you are very bored.
To do something more exciting, you decide to build a jet-kart. However, before the fun
starts you need to model it and design a controller for it. Assume that the cart moves
in one direction only (1D motion). To control your vehicle you use thrust from the
jet engine (this is your control input) and you are interested in controlling the kart’s
position. Assume that there are only three kinds of forces acting on the kart:

e Thrust Force Fry(t) = krpT (t) where T'(t) is the thrust from the jet engine (can
be both positive or negative) and Ky is a constant.

e High velocity drag force Fpy = —kpnv?(t) where kpy is a constant and v(t) is the
linear velocity of the vehicle.

e Viscous drag force Fp = —kpv(t) where kp is a constant and v(t) is the velocity.
Question Choose the correct answer. (1 Point)

Let m be the mass of the vehicle and z(t) its position. Which differential equation
models your system?

m:L‘(t) — k‘DH.i‘2 — kpt = k‘THT(t) mx(t) — kDH:E2 — kpt = —kTHT(t)
mx(t) + k‘DHi2 + kpt = kZTHT(t) @ mx(t) + k‘DHi'Q +kpt =0
Solution: B

Using Newtons second law F' = ma we get:

kTHT(t) — kDHx'2 — /{?Djj = mx

mx + k}DHiQ + kpx = k‘THT(t)

Question Choose the correct answer. (1 Point)

If you represent your differential equation of the jet kart in state space representation
x = f(x,u), y = g(x,u), what is the dimension of the state vector, i.e. if x € R", what
is n?

[A]3 cl1

Cannot be determined from the infor-
mation given @ 2

Solution: D

Second order ODE — 2 dimensions of x.



2.1.3 HS 2016, Questions 6 and 7

Problem: Consider an electric motor which you would like to operate at a constant
rotational speed wy. Applying a voltage U(t) results in a change in the circuit current
I(t), which is governed by the differential equation

d
L2 I(t) = =R-I(t) = x-w(t) + U(2),

whereby L is the circuit inductance, R its resistance and « a constant relating the motor
speed w(t) to an electro motor-force (EMF). The dynamics of the motor speed are given
by

d
O - %w(t) =—d-w(t)+T(t),

where © represents its mechanical inertia, d a friction constant and 7'(t) = - I(t) the
current-dependent motor torque.

r e

i»gf—»C

Figure 3: Control Architecture

P y ,

Y

Question Choose the correct answer. (1 Point)
Relate the variables in the block diagram above to the correct signals.

Solution: A

Since we are subtracting r from y they both have to have the same units. Since the
reference is given by r(t) = wp, the output has to be y(t) = w(t). Only A & E

From the text we know that we apply a voltage to the plant, thus u(t) = U(t).



Question Choose the correct answer. (1 Point)
A colleague tells you that the circuit inductance is very small and can actually be ne-
glected. The arising motor model can now be represented as. ..

... a second-order system ...an integrator

... a first-order system @ ...a static system

Solution: B

We can set L = 0 and rewrite the two equations describing the system as:

LAKET2 —R-I(t) — k- w(t) + U(t) w(t) = 4 [FR+1(t) +U(1)]

O4u(t) = —d - w(t) + T(t) - w(t) [—dw(t) +T()]

Q@ =

2.1.4 HS 2017, Question 5

Question Choose the correct answer. (1 Point)

3

AE
O

Figure 4: System Diagram

You are given the above system diagram. What is the associated transfer function from
r—y.

Sy = (S1 4+ T84 + 5y) Sroy = TR
BT DWIVEDS DN DWW
Erﬁy - 11—‘,—%2%4 2 IE' 27‘_}@/ - ! 1-i2§ :

Solution: B

y = 21e+ d9de + Xge

y=[21+2Xs+33]e « e=r—3sze

Y 143X +33

r 1+X3 €=

1+33

10



3 System Classification and Linearization

Sgs'ten C lossiiico&ion

Now we Know how to describe physicol sydems with equations. With thet we caw alss classify them in
diffecedt woys. This classificokion is impectart for us,since we toill only considec one specific izpe
of cystem in this cass. (S0 colled [ineac time invariand or LTI systems)
Bu generally we classify System in these cobegories:

>

l.j neas Vs. Nonlivuu

4 Cousol vs. Now-cousol

?  Static (memoryless) vs. Dynamic
> Time invaciont vs. '];lne-\lo.\-gina
Lineosity:

For o systerw fo be linear two condilions have to be Jullfilled.
> Addibivity: X(wtu)=Zu+2u,

>

Homogeveity: Tku=kXuw , keR

Differentiabion ond ivtegration ose lineas opecations!

We com summorize both to :

2(au+pu,)= alu,+flu,=ay,+fy, «,Bek

ui z yi uz z yz
aw, 5 oy, , Pu, 5 /3}]1

This implies the idea of superposition. That means fhat when a syctem is lineac, we cam:

>

Breok down “complicated” input signals inte Simples componerts

> Compule the oubput for each simple input Sepecatley

£

Sum ol of the simple oubputs {osel‘hu bo obtam the vesponse to the complicated input

11



Lineat

Nownlineas

1| y= £ utt-1

X

2. | yi#) = sin(u(t)

1y =t ulk-1)= Tlug)

Y=t u k-1 = Tlu,)

2. y )= sin(ug(t) = Zlu,)

Y= sinlu ) = T (u,)

! 5 (attqrPug)= £ laub-1)epu t-1)

=aY(ug)*+f Tlu,) — linex

! Y(aug+Buy)= sinlauylt)+ But)

# o sin(ug(t) « B sin(u(t) — nonlinea

A sv:,sfem is said bo be cousal ,iff the fuluce inpub does not offed the presed outpub. All Pmd:icdlﬂ

ceolizable s'ss{'-em ace causal . Otherwice tyou could predict the fubuce.

Causal |Non-causal
y({:)=u(4:-a),Va< 0 X
yt)=ult-r),ve>0 X
Yt = cos(3t+Dult-1)| X

Static vs. Dynamic

— Fubuce mputs

A input -oudput Sgs't&m T is datic oc memoryless if for all £, y(’c*) is only o function of U(t”).

In othes words - the present autput depends only om tne presert inpit and not ew post oc fubuce inpuds.

Sydtems descibed by ODEs ase always dynamic . Static sydems are usually descsibed by olgebraic

equations. You can think of systems from Mech T as static ,and those from Meck II os dynasic.

Stotic | Dynamic
yi =27 u) | X
t
y® = [ ukde X
yib) = (k) X

12

"Sums up" everything that hoppend

U (4)=Lim w(E)-ult-h)
k-0 k



Teme invasiont vs. Time - vasying :

A time invaciont sgs\.m will always have the some outpit to o cedain inpub , mdependent of When the input ie applied.

Formally this means Bt we con gift the nput in time ond the oubput wil alss be gufted .
u y
& ]i
t t
u y
L& |_£
t t
e o

T

Vosioxt Invaciant
&) = ult-1) ult+2) X

y(t) = cos(t) u(t) X

But what Kind of sydems ds we cace obait 2

-

- [ineas

+ Time invasiast

| LTI SIS0 Systerms
-+ Causd
vesy restrietive class of systems
2 Single input, Single output Mony S\SS{'&MS can be well approximated by LTI SISO 5\35{30'6

One chosactesidic of LTI gydems isthot e can write the clate space Model in the form:

x@) = Axw)+ Buw

y® = Cx) + Duw

wheee /,B,C.omd D axe constont wotrices oc vectors. One exomple of sudy system is the mass-spring sysem

foom befoce . The clate space form caw be re-wriften . mateix form.

13



2,0 = x4 x, ) x,®\ [0
. K 1 . B " 1 ut)
W= wa®swu) =\, W/ \%

Y =z, 2,
y(®)

b this exomple /,B,C,andD ase defined s follows:

The vector X,=( “) s the state of the SgStm. It cortoins the informabion needed , fogethec with the

x,®
x,'ﬁ)

cuscent inpub , o uniquely prediet future outputs.

The dimension v of the <lote vector X R is equal to the dimension of the Systewm .The choce of a systems stde is
nol unige . Every diffecent choice of states is colled realizotion (there are infinitley many realizations). 1§ we choose
a realization with fhe Smollest possible Stoke vector |, il is called minimal realization. A stafic system hos a

2es56 - dimensional  stofe vector.

When Linearizing we toke Some finite-dimensiohol , time -invariavt , cousal nenlineac sgs{em and approximate it os o
LTI system . This approvimation toorks very well and let's us use control systems designed for LTI systems even on
nonlineas systems.

The main idea is {0 pick an equilibrium point of the system and then make o linear approximalion arround that equilibrium
point. For o system modeled with ODE s @) = f(x@),ult) , we can define an eguilibeium point
(x..u,) to be of

flx, ., uJ)=0

Lets find Some equibbrium pomts of the Swing example . We will ok at equilbeia where U =0 .
[nl:mhvleg, where would those be 2
let's take a closes look:

u.=0 , $(x.,0)=0

14



2, W= 2@ =0

%0 = [- tmg s, 0 - 20+ Leos x, 0 1(0)]

yb =z,

=L sx,W=0 = x,=0 scx,=w

S Joc U =0 thece ace {wo equ\fibfium poin‘ls:
x.=(0,0) ,u,=0

e

X=(m,0) ,u,=0

This alss aligns with expectobions since. the first eq. is just pointing down, and the second is pointing

Vestically up.

In ordec to lineasize astound awm equilibrium we use the Jocobian Lineasization proceduce Where we

do o Tylor secies expansion around (X, ,U.) of the nonlineas systems dywamic . The

lineacized LTI system motracies ase then given by:

[ 84, 84, |
Ox, Ox,
A= Bf(x,u)
ox
(x..u,)
Tolted g4 84
ox, Ox,
- en (x,,u,)
eR
[ oh, oh, |
ox, Ox,
C- 0 hlx,u)
Ox
(x..u.)
Telted | op, Bh,
Ox, Ox,
- elRPx“ 1z, u,)

B-

D -

Grop\rﬁco.\lﬂ You con think of tis opproadn as follows:

0flx,u)

ou

0 h(x,u)
ou

[meas approx. asround

N

nenlineac System

15

Y
?

(x.,u,)

e_’u'z)

S35}
Eand

(x,,u,.)

(x.,u,)



3.1 Example Problems

3.1.1 HS 2017, Question 1

Question Choose the correct answer. (1 Point)
Your thesis supervisor hands you a quadrocopter and asks you to design a control algo-
rithm for it. Is the quadrocopter system causal or not?

Causal E Not causal

Solution: A

All real systems are causal.

3.1.2 HS 2016, Question 3

Question Mark all correct statements. (2 Points)
All signals are scalars. The system $y(t) = (u(t + 1))? is:

Causal Time-Invariant
Memoryless / Static @ Linear

Solution: C

A: not causal since dependent on future inputs.

B: not static since dependent on inputs different from ¢
C: Time-Invariant

D: Not linear:

ya = Ug(t + 1)
U = ui(t+1)
Jap = (ua(t +1) +up(t +1))% # da +

16



3.1.3 HS 2016, Question 4

Question Mark all correct statements. (2 Points)
All signals are scalars. The system y(t) = t2 - u(t — 1) is

Linear Causal

Time-Invariant @ Memoryless / Static

Solution: A, C
A: linear, check condition
B: not time-invariant because of the t2

C: causal, since not dependent on future inputs
D: not static since dependent on past inputs

3.1.4 FS 2017, Question 1

Question Mark all correct statements. (2 Points)
Which of these systems is not causal?

y(t) = u*(t) + 10 y(t) = ult+0), >0
y(t—a)zQe“(t), o>0 @yt—a o>0

Solution: B, C

B: input at time ¢ — o depends on the input at time t. Relative to time ¢ — ¢ the time ¢
in the future

C: depends on future input

17



3.1.5 HS 2017, Question 3

Question Mark all correct statements. (2 Points)
All signals are scalars. The system y(t) = n3t3u(t), with n € Ry is:

Causal Memoryless / Static
Linear Time-Invariant
D]

Solution: A, B, C

A: causal since not dependent on future inputs
B: linear, check condition

C: static since only dependent on current time ¢
D: not time-invariant because of the term ¢3

3.1.6 HS 2017, Question 4

Question Mark all correct statements. (2 Points)
All signals are scalars. Input u(t), output y(t), state x(t).
The system z(t) = @, y(t) = 3x(t) — 2%(t), with ¢ > 0 is:

Memoryless / Static Linear
Causal @ Time-Invariant

Solution: A, B

: static since only dependent on current input
: causal since not dependent on future inputs

: not linear, since u?

: not time-invariant because of the ¢t~ and ¢t—2

oQw
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3.1.7 HS 2016, Question 9

Problem: Given the system

d
—a(t) = (z(t))* +5 - u(t) — 10
Cdex(t)— 12

you have to linearize it around the equilibrium z. = 0, ue = 2.

Question Choose the correct answer. (1 Point)
Which are the state-space matrices A, b, ¢ and d?

[A] A=0,b=5c=4,d=-3. [C] A=-10,b=5,c=2,d=3.

B] A=5,b=5,c=2d=-3. D] A=0,b=5,c=2,d =3,

Solution: D
Using the Jacobian linearization procedure we calculate:
A=2 [ +5u—10] =22 25 A =0

c:a%[%x—%] =4y 2 =2

19



3.1.8 FS 2018, Question 5

Problem: Given the system

i1 (t) = 23(t) — sin(3zo(t)) + u?(1)
do(t) = z9 — u(t) + 21 (t)e "M,

you have to linearize it around the equilibrium point x. = {

Question Choose the correct answer. (1 Point)
What are the state-space matrices A and B?

ma=[2 0] s=[0]  @a=[ Y s=[{]
' =[] oa=[ 2] B=[]

Solution: B

2
I
——
=
—_

Using the Jacobian linearization procedure we calculate:
Ay = 2 [w% — sin(3xg) + u3] =271 =% A1 =0

A = 6%2 [l‘% — sin(3z2) + “3] = —3cos(3x2) = A1p = —3

20



4 Time Response and Stability

Time response:
We Know now how to represent physical systems with ODEs and how ko uniformally cepresert
thew in the LTI state space form :
@) = Ax)+ Buw

y®) = Cxt) + Duw

The sdubion for the stote space LTI sydem is given by:

L t

(=
b = e, foe(‘)

Bude

t
¢ )
yi = Ce "x, + foe “Butwdr +Duw

0

To obtain this selution we made use of the Lineasity of the equotions, decomposing it in simples bis.

2 |nitiol - condition response: ( x0) = x,
a
i

ud=0 ,tz0

> Jorced response: ( x 0 =0

wt)=u@ ,tz0 -~y
e can lotec idedify the different components in the output-

t
y@) = Ce_’“‘x0 d| e Buwdr +Duw
0

Yie A }'ee,dkkrousk

l§ we fake o closer ook , we See thol some temms contoin the malrix expanertiol e_A{.

But how do we compute e.AJc =

Throwback : Lineac Algebro. I

The wakeix exponential com be defined thraugh o Toylor -Sesies: (aleo volid for scalacs)

Mo Ly sl LR
n=o™"
Thesefore we would have bs eoleulate infinelley momy bems. Bub for some woabrices we can drashically

siwmphfy the caleulations:
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= Diogonal : w( ,110],‘>= [expu,t) 0 ]
0)'1 0 elp(l"%)

= Tordan Form. ,,q,( 2 1]+>= [exp(lf) ‘l:exp(l":)]
021 0 exp(1 t)
Whee 1; are the eigenvalues of the respective matrix,
To focilitate colculabions we can brecefore do o Coofdinate tramsfocmakion, X =T % such thot e.At

s eosiec to compute Note that the bime fesponse femains undhawged . Through the coordinate Eransformation ,

we simply use a diffeet reolizotion of the system i.¢. o diffecent chote vector.

Initial condition (homeqenesus ) responses:

Let us now take o closec Lok af 559}.% whete A is diogonal. Moce specific we will Lok ot the initial
condibion vespense ,i.e. ul)=0.
» For o diagonal , feol madsix:
A =['l10] s LeR
01,

y = Ce’t

where we Con wete ouk all teswms and Swplify for A being diagonal.

1t y
yo= Lo, ]85

Lt . o ekt

Yy = c.e

L 2

So foc dingonal , teal mabsices the iitial condibim respsnse ie the Lineas combination of two exponentials.

> For a diagoral , complex. matsix:

A=[U+Ju 0 ]
0 o-jo

yb) = Ce*x,

where we Can wrike out all teems and Siwelify for A being diagonal.

t jot t Y
/ x,(0)+ <:,_e.cr F

o —jwt
yib) = c,e e’ x,(0)

t jot -jwt
e (cie"u x,(0)+ c,_e.Jb x,(0))

ot )
e (a, sinlwt)+ 2, cos (i) t

ot
e snlut+P)
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Torced fesponse:

We have seen how 53sl’,et~\s teact to ivitial conditions , i.e. how the homogeneotis  solution CeMX.o behaves. [k
gives us a feeling obout the votural dynamics of the sydem. But whot obout the forced respomse , given by the

convolution tntegeal:

t

e

This is hacdec to interpret. To goin some induition, we will look ot how elementacy inputs offect e systew.

(t-1)
Bumdr +Duw

Step -tesponse. of 1% ordes sgdem:

Lets look of o Siwple example where we opply a step input , given by the Heaviside function

0,t<0

1120 as wout fo the ficst ordes system: XE) =+ 2@ +%u(&)

ult)=ht)= {

i) = 1

u®=a®) | LW =L 2w +Luw yib)
1y = 1 xb

we can compule the outpit Y(t) as follows:

¢
¢ (t-p)
yw=Ce "2, + f PBu,x/)d,, Duw
£ t el
e X.o + f e T dP

0

I
=e"x +keT fe" dp

1

=ét*x. +ke"*( -1)

i -t
=e® x,+k(1-e%)

v
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Stobility:
In the fwo cases obove L con See thot the oudput i Somehow linked Lo
y#) = c,ex,(0)+ ey x,(0)
Y = we  snlotee)
The growth of these teems is dictoted by the. ceal past of the cigenvalues of A . W can see that if the eigenvalues 2
have o positive teol past , the outpul will grow exponestially ovec time ,i.c. become unslable. (y+), There ace fou

ways to dossify s‘toh'nlils-.

- ijo.?unov Stability: o .sxaé'-em is Lﬂo.pumo\l table if, for awy bounded initial condition , and zeco mput,
the Zate temams bounded,i.c.:

Ix,l <€, od u=0 = lxtl<8§ Vt=zo0

2 Asymptotic Stability: o sydemis asymptotically stable if, foc any bounded initiol condition,
and zeco mput, the gote convesges to zeso,i.e:

Iz, <€, ad u=0 = ln lzwl=0

- me]ed—lnput. Bow\ded-Ou‘tpu{'. S{’Abilﬂ:g: o s‘détem is BIRO-stoble l'f. Jot any bounded inpu’c ,the
output femoains beunded , i.e:

luthll <€ Vt=0 ,andx,=0 = ly)ll <8 Vi=o

Every system that is not stable , is called tnstable.

We can check stabilily by leoking of the eigenvolues of A

- Lgaptmov stable if  Re(;) =0 V:

- Asymptotically stable i Re(2;) <0 Vi
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4.1 Example Problems

4.1.1 FS 2018, Question 6

Problem: Consider a system with the following dynamics,
. 0 1 0
z(t) = [0 O] x(t) + L] u(t)

Question Choose the correct answer. (1 Point)

If u(t) = et t >0, and 2(0) = [8} , find x(t) for ¢t > 0.

—1+t+e? —1+e?
x(t) [ 1 _e,te ] z(t) = [14_75_664

o= 1] Dl =| 1}y

Solution: A

From the equation above we can read out:
T = T2

o =u(t)=et = a9=01 — e

We can plug in the initial condition to find the integration constant and an expression
for x9:

ZEQ(O):OZCl—l—)Cl:l

xo=1—¢t

And finally plug this into the equations for x; and solve for it
T1=x0=1—-et =z =cp+t+et

21(0)=co+1—co=-1
x]=—1+te?

25



4.1.2 FS 2016, Questions 11 and 13

Problem: The figure below shows the response of an internal state x of a system as an
impulse is applied to the systems input.

internal state x

time

Question Choose the correct answer. (1 Point)

No conclusion about the stability is The system is asymptotically stable
possible

The system is unstable @ The system is Lyapunov stable

Solution: B

The state grows indefinitely

Question Choose the correct answer. (1 Point)

The system is BIBO stable
No conclusion about the BIBO stability is possible

The system is BIBO unstable

Solution: B

No information about the output is given.

26



4.1.3 FS 2018, Question 7

Problem: Consider the two systems with output signal y(¢) and input signal u(t),
described below:

1. y(t) = sin(t)u(t)

2. y(t) = fot sin(7)u(r)dr

Question Choose the correct answer. (1 Point)
Which system is BIBO stable?

None of the systems Both of the systems

System 2 @ System 1

Solution: D

Take the input u(t) = sin(t) as an example. Even though the input is bounded the
integral of sin? grows unbounded.

4.1.4 FS 2017, Question 12

Question Choose the correct answer. (1 Point)
Consider a linear time-invariant SISO system. Pick a correct logical relation between
different stability criteria.

Asymptotically stable <= BIBO stable
Asymptotically stable = BIBO stable
Asymptotically stable <= BIBO stable <= Lyapunov stable

@ Asymptotically stable = BIBO stable <= Lyapunov stable

Solution: C

If all states converge to zero (asymp. stable), then the output also goes to zero/remains
bounded. This is not valid the other way, since one state might “blow up”, making it
impossible to be asymp. or Lyapunov stable, but if it is not visible in the output, it can
still be BIBO stable.
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4.1.5 FS 2016, Question 13

Problem: Given a system with the state space representation

-1 10-a?

i(t) = {0 a_l] 2(t) + [(ﬂ u(t)
y(t) = o~ 2(t) + u(t),
where o € R.

Question Choose the correct answer. (1 Point)
For which values of « is the system asymptotically stable?

a<1 agl
a<0 @aZl

Solution: A

Asymptotically stable if Re(\;) < 0, Vi. We can calculate the eingenvalues:

2
‘10” A =N —1-x =0
a—1—-Xx=0
A=a—-1<0
a<l
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5 Transfer Functions

(renecal respense.:

Since we are Working with Lineac sydems , we can make use of supesposition. So we. re-write any input u
o6 u=u;+..+u, . We canthen opply u,, ..., u, Sepentley to the system ond sum all oubputs y=ys+...+ Yu.
In this cose # would be convinient if e could find Some input v that when Lineacly combined wilh ilself could
sepcesert oll,oc most othes signole,ie. w=a,v+..+av. Luckily we can use o mathematical fool from.
ArclysisIL to help us with thdt.
The invesse Loplace. tancform. tells us , how to wiite a function () as o lineas combination of terms et weighted
by F(s), the Logace transformof ). Whese S is o complex variable of the form: S =0 +jw . So
o we Know thot if we compute the outpit b some genecal e e com lates eosily compube the cubput b
any input, since. it will be a lineac combination of et terms. L’ see how the fesponse. 4o &t il genesally
look Like :
y@ = CeAJ‘xo +C fo Jc A Buwdr +Duw
with u(t) =
yb = CeMy, + Cf: AR 4 WD
fearrange -
yi) = Ce"v‘xo + Cer: ARy LDt

if (s1-4) is investible :

yi) = CeAkx.o . Cef (s1-A 2 lel- Ak B)|t +Det
P—

y = CeMx, + Ce® (s1-A7" (54 )) Bo Dt
ond finally:

y = Ce* [x,- (s1-aT" B +[C(s1-47" B+ D] et

Output y

Input u

Transient | Steady State
L I |

0 20 40 60 80 ) 20 40 60 80
Time 7 [s] Time 1 [s]
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We can row generally soy that the steady state tesponse fo the input tis gven by
¥ss = GS) &t with Go)= Clsl-AI'B+D € C

The complex function G(S) is known as the and describes how o stoble system G tramsforms an input es* into

the oudput G(s) &t You com thing of it Lke the 3 in bhe Hock diograms.

But how exactly do we decompose. some. ashitrary inpit 2 Let's see Wow his looks if ous input is o sinuseid e.q.:

U= cos(ot) = Lot + 1 T
We notice that we con decompose wu@) as Jollows:
uw =3 U, &t Wil 3 and st
The output ie then given by
Yy = Glio) Fedt 4 Glojr et

or

Y& =¥ Gesp U, &

In genesal we can soy that:

ub=Y & = yw -3 &

We com now make use of the. invesse Loploce transform thot geneamlizes this sum , Sudh that we con represert all inputs:

Ys)= G(s)Uls)

By using the Laplace transform the outpid can be computed by wuliplying the input with the. transfec funchion!

Relotisnsphip bebueen date -space vepresentation ond TF:

> Ais diagomal:
1, I
G($)= P1 . Pz . . Pn. . d /4 = 'ln . B = ‘IE‘
»5‘1-1 's‘lz o S'ln_ <:

c-Lyw -], D=4
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> If A is inthe contcollable canonical form:

- - 0 1 0 0 ..0 0
bo_gS" by 8" el b,
Gl = = — A=|0 0o 1t o .. 0 | BR[O
net .t 0
1 1
Qo Ay - Qg

C=[te bybas], D=4

The cocts of the denomimator of G(s) ase called of the system. They ace olso the eigenvalues

of A. S0 if we woant do M\o.l.s‘ie the gability of o sgskw\ , we hove ko losk at it's poles.

loys to write TFs

HMostly we conm write TFs an rotional functions.

g8 ek 8" e b,

G(s) =
n n-1
S +a,\_1.s +...t0,

We can do partiol fraction expansion and get:

T, T A
1 + 2 o+ oo n
Spy 5P, S

Ge) =

We can also fadorize the numecator and denowminator in differest ways %o obtain :

- Root -locus form: G - k, (5-z)(s-2,) ...(5-2.,)
e e G B =S
> Rode form: . ke.. (:%1+1)(:%2+1)m(%n+1)
(s) = o S
(#+1)(3+1) ...(-_h-g”)

m oll coses p,,...,p,, ase called poles ond z,.., 2. 2esos. Poles ase the coots of fhe denomiator and
the zecos the voots of the mumesator. Thece are othes ways to wrile the TF, depending on the application

some ase more usefull then cthes. (ot insides con we gin form the TFs [2

Steady state response to o unit slep:

Given o TF of o cloble system we econ obtain the steod stobe response by Looking at how the system reacks to a unit

S, ie. ub=h®=et=1 120
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Exanple: Gs) =3 222

ST45S+h

st
we Know thok: Yss = Gls) e impulse: §(t)

Q| ==

pluging in: Y., = GO €= GOI=6 step: h(0)

You con also use the

= lins GEOIUS)= ms Gls) L= linG(s)=6

$-0 $-0 l

This is olso called the Bode qoim (ks,.)

ui) i)

> ¢

o
preg 4
o-

teondent dendy dhate

Poles:

We Know thot we can write TFs an rotional functions in the form:

b S™+. 4+ byS+b,

Gls) = —

s n-1

ta, 8t ra S,

the rocts of the mnowinator (zecos) and denominator (poles) ace vecy importat amd foll us o Lok about the behavier of

o system. To undesstand peles , lets look ot the impulse. response.

Impulse response:

Let us consides the tesponse fo a unit impuls , i.e. u(t)= 8(t)

We can SoNe the genetal equotion for Y(t) by pluging in: D=0, X, =0, and ult)= &(t)
t 0
At ° Alt-T)
yt =Ce J‘/“Cfo e Bumdr +Duw
t Ao At ke
Yoo lt) = Cfo e Béidr = Ce fo e Bér)de

y b= Ce™B
now we can apply ous knowledge from the Loploce transform. Since Yis) = G(s)U(s), we

can apply the Laplace transform to y, and u to obtam G(s). Lets consides o fied -ocdes system.
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at L impulse: 5(t) 1
= — -_¢cb - _*
Vit = ce b p Yis) = s sten: h(t %
ult) = 6t) = Us)= 1 h(D) - S:il
h(t) - e !
S —a

now  Gs) = Yis)= 2 ond y(’c)=re“J‘

S-a
e can extend this o highes ordes s“slem,o.nd ousr TF will take the form

T2
=P, T S°F,

G =g * 3

w»l.'lc\\ tfa“sln‘:es £0 * t t
yi#) = r1eP‘ sre s el

So each pole in ous TF generoles an exponential i the Eime domain. For real poles these ace  exponertiols and

for complex-cmjusafe. pole paifs , Smuscids.

Im(\) =w
Mo T e
NSl e <
V- M= e L T

Ze«' 0S:

To urderstand the effects of zeros consider the folowing sgsten-.

w — 4L Y= 2 ub

This is o differentiotor . Let's see what happens o some gqenewal Ut = et Gince yd) Y uw) . inthis case yid) = set,

We can conclude that the TF of o differentiotor is givew by :

Gs)=s

So by vultiplymg G(s) with s , essentially adding a zeco to the sriginal TF, introduces some desivotive action. This usually

hoS on “anbicipotory effect”.
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Step cesponse:
The sl:cp responSe 15 the sgims output given o stepinpul ie.. ut)= Alt). The ‘-eguu-;“s araphe gve good ;“5;3),‘{5'
Consider the plet below , showing the step response of tue Syclems. Both hove the same poles,

but the system hos an oddibional 2ecs of 5= -1

T
e X 14

F2s13

Re

eeeeeeeeeee

Zeros in the Left holf plane awr called mmimum phase zeros.They add some desivotive action b the response. Whaf

hoppens When the 22w is i bhe right holf plane ,i.e. positive teal pack 2

we obsere thol the dhabilily is consecved. bul the nen-minimum phase 2ero  couges fe outpul to nibially

move in the wrong direction ie we have Sowe Sort of "negative” decivabive action.

Pole - Zeso Cancellotion:

What hoppens ¥ we odd o zero neoc o pole T I the 2eto coincides with the pole they cancel aut!

51
(s+#1) (s+1+j)(5+1-))

Gs)=

Since the TF desesibes imput -output belaviot | we can cancel out poles, such that we cont obsesve the asocioted benavior |
of we conndt influence it theugh the input. If the pole fhat isbeimg camcelled is stoble this is of o comcen , bul

it the pde is unstable this becomes o big problem.
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5.1 Example Problems

5.1.1 HS 2016, Questions 18 and 19

Problem: Given a linear time-invariant system in state-space description.

-1 0 0 2
zt)=12 0 =8| z(t)+ 0] u(t)
1 0 —4 0

y(t)=1[1 0 1]=(t)

Question Choose the correct answer. (1 Point)
The transfer function g(s) is...

_ 25410 _ +5

g(s) - s(s-iil)(s-i-l) g(s) - s2j—5s+4
2(s+5

9(s) = sgig;$4 @ g(s) = 325-855424

Solution: B

dj(A
G(s)=C(sI —A)~'B+D (remember that: A™! = ZeiEAg)
s+1.0 0 ]17'[2
=101} -2 s 8 0
-1 0 s+4 0
1 -52+4 2
=10 1] g—r—r| e o ] |0
s(s* +5s +4) S .. ... 10

9 s“ +4s

2
1o 1 _2(s +4s+s): 25+ 10
s(s? 4+ 5s+4)

© s(s2+5s+4)  s2+5s+4

Question Choose the correct answer. (1 Point)
The system is. ..

Asymptotically stable Unstable
Lyaupnov stable

Solution: B

—1-X 0 0
2 A =8 |[= (1NN (4=N) 5 A =0, Ao =—1, \g=—4
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5.1.2 FS 2018, Question 8

Problem: You are given a linear time-invariant system in state-space form.

01 2 0
z(t)=10 0 3 | x(t)+ [0] u(t)
00 —1 1

y(t)=1[0 0 1]=(t)

Question Choose the correct answer. (1 Point)
The transfer function g(s) is:

g(s) = sg)(_gisl) g(s) = SZJ(}S_-ET)
[B] g(s) = o4 [D] g(s) = 5

Solution: B

adj(A)

_ -l e
G(s)=C(s[-A)""B+D (remember that: A det(A))

s -1 —277' 0

=0 0 1]]0 s -3 0
0 0 s+1 1

- 1 001 001

= 261D .8.2.

52 1

s2(s+1) s+1
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5.1.3 FS 2018, Question 11

Problem: You are given the following set of input to output transfer functions:

1. G(s) = 3545

$240.55+1
2. G(s) = =52
. §) = 5 —r
524-0.55+1
s
3. G(s) = ot
( $240.55+1
1
4. G(s) = o
s%40.55+1
Figure A Figure B
=14 -
=1
E-12 E— 06
51
5 3
® 10 O 04
c
g 5
oS08 8
7] o 02
Qo6 o
Q Q.
Q 04 E 0.0
1%} 2]
E o2 E o2
> 0.0 2
0 5 10 15 20 25 0 5 10 15 20 25
Time [s] Time [s]
Figure C Figure D
g 1.50 5_10
§ 125 3 o
@ 1.00 OC) :
S I}
S
8 o075 Q06
%) [
QO os0 <4
o o 04
@O 025 o
2 0.00 2 0.2
= =
D 025 2 0.0
0 5 10 15 20 25 0 5 10 15 20 25
Time [s] Time [s]

Question Choose the correct answer. (1 Point)
Choose the correct assignment of transfer function to unit step responses.

[A]1-D,2— 435 B4—>C [C]1=A42-C3-5D4—B

B]1-D,2-C3—-B4— A D] 14,25 B3-C4—D

Solution: B
Figure C goes initially goes into the wrong direction. — Zero in the RHP. Only TF 2
Use the final value theorem: limy_o y(t) = lims_0 sY (s) = lims_0 sG(s)U(s)

TF 1: limg 0 577552051 = 0.5 = lim; o0 y(t) — Figure D.
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5.1.4 HS 2017, Question 19

s—1

Problem: A system given by its transfer function g(s) = e

Question Choose the correct answer. (1 Point)
Which of the following state space representations is equivalent to the system given by
its transfer function?

[A] A= 0 1 B=|1 ,0=1[1 0],D=1
B] A= g _11 B = _12 ,C=[0 1],D=0

. ]
cl A= 0 1 ,B:__2 ,0=1[1 0],D=0

D] 4= 0 11 p_ |1 ,0=1[0 1,D=1

Solution: C
We see that D must be zero, leaving only B&C.

Calculate the TF for B with G(s) = C(sI — A)"'B + D:
-1
B s -1 17 1 s+1 1][1
0 0% A [ el 0 )

- —9
s—1 — T2 otB
s24+5—2
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5.1.5 HS 2016, Question 21

Problem: Given the transfer function g(s) of a system.

(S)_$
I = 2 075+ 1

In addition, the figure below shows the four time responses A, B, C, and D.

diagram 1 diagram 2 diagram 3 diagram 4
4 4 4 4
3 3 3 3
2 2 2 2
> 1 1 1
0 0 0 0
10 5 10 15 10 5 10 15 10 5 10 15 10 5 10 15
time in seconds time in seconds time in seconds time in seconds

Question Choose the correct answer. (1 Point)
Which of the four diagrams shows the correct step response of the system?

Diagram 3 Diagram 1
Diagram 4 @ Diagram 2

Solution: D

Use the final value theorem:

tllglo y(t) = ;1_1[}% sY (s) = lim sG(s)U(s)

s—0
s+ 3 1
li —— — =3 only 1&2
sl—r>I(1)832+O.7s+1s ony

conversely, to the FVT we can also use:

limy(t) = lim sG(s)U(s)

t—0 $—00

s+3 1 1,1
li =5 s _(only?2
S 10T +1s 1+ 4L O

39



6 Root Locus

Whot we did s for

c
]
l
3l
w—>
- Modeling
N
Physical sgs{em 7'(.,(4:) = X,z(f)
nt’icz(l:) = -l.na s, (1) - c X, (B) + Leos X, (£) u(t)
yit) = x,(t)
Diffesential equotions
Lineacization
74
X=(w.0) ,u,=0
0] 1 0
4 . B-
4 _c 1
Tt ™l
c-L10] . D-o
S-Domaim el G l,
LTI Stote space form
Gls) = 22— I

tes -2

Tronsfer Functions
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Root Locus:
We owived of o point where we can atoct bo Look of how diffecent controler imfluence ouc syster. But how do

we know how bo chese ous controler 2 Lok take ous invested siwmg example . Firdk of all, we word ouc sysfer o be. alable ,

i.e. Mo poles i the right half plave. Ous originol System. has two poles ,which can be represated as follows:

lm
open
LoopTF

y __02 - 02  _
R s B o T R

X
P

l#
!

In ordec to control this syctem, leb’s add come centroller C(s) ond introduce come feedback. The block diagram would lock as

follows:

J 02 s
k 1 stes-2 ’

For o, the controller C will jud be o constaxt that mulliglies the ervor e. This also called a gqain and we will dende it with

the Lelr k. The TF mapping r o y ,im this closed loop sydem ,is now givew by:

k 0.2
T —se2 . o2k
1+ k=02 s*es-2+ 02K
steg -2

T(s) i also refesred b0 as the Complemedtary Sensitivily.
So ideally , by changing k , we con bring the undoble pde ko the left half plane, sbabalizing the system. Now indeod of Looking ot
L(s) we Vove to consider T(s) . Luckily the ples of T(s) ase dependend on. K ,i.c. by odjucting k e influence. the position of the

closed loop poles. Let's see Wow they behove.

Im Im Im
Solve.: sts-2+ 02k =0
fo\' dif,fo.m\tk —e— s JRe  —se—ek e ape e L s Re
(e com troce out the paths that the poles toke and ebtain: Im
= >Re
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We con now seefhol for come volue Kk both peles ace w the LHP ond the system e globle. The plot we just creoted is
called reck locus , and it hows hoto the [ocation of the closed loop poles, based on the open loop poles. It allows us b quickly see
if Some controler is feacble or not . Ideally we dont wavt to caleulote the position of the pes for oll values of k to be oble 4o

etk a toct Locus. Luckily there ace some rules we con follbow:

1. Root loci start at poles = go to zeros

2. There are n lines (loci) where n is the degree of
Poles or Zeros (whichever is greater).

3. Askincreases from 0 to o, the roots move from the
poles of G(s) to the zeros of G (s).

4. When roots are complex, they occur in conjugate
pairs.

5. At no time will the same root cross over its path.

6. The portion (Anteil) of the real axis to the left of an
odd number of open loop poles and zeros are part
of the loci. > Roots are always sketched from the
right to the left.

7. Lines leave and enter the real axis at 90°.

8. Ifthere are not enough poles or zeros to make a
pair, then the extra lines go to / come from infinity.

9. Lines go to infinity along asymptotes.

10. If there are at least two lines to infinity, then the
sum of all roots is constant.

11. K going from 0 to —oo can be drawn by reversing
rule 5 and adding 180° to the asymptote angles.

Contact point / Centroid of asymptotes
S _ ZxPoles - ZxZeros
com — #Poles — #Zeros
x; = Coordinates on the Real axis
Angle of asymptotes

2n+1

- #Poles — #Zeros
n = {0;1;...; (#Poles — #Zeros — 1)}

o

an

Exawmples:
Let's Eoke the exampe fiom obeve , amd folbw the rules.

Im Im
The portion (Anteil) of the real axis to the left of an
odd number of open loop poles and zeros are part
of the loci. = Roots are always sketched from the
right to the left.

>Re Contoct pamf of asymp. : %= -0.5 —x \ = Re

-3

-2 -4

An3\¢ of osymp. : %-190“
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Let's add o 2ew, and look ot some mote examples. The centroid 15 the imtecsection peint of the osyrplotes

|

Im Im
#Poles: 2. #Zecos:1
Asymptote centroid: ’—L%_I‘ﬂ =1
—- 3% > Re e —& ¥—Re
4 3 2 -1 12 3 Asymptote an3|e,-2+_14-180°=
Im Im
#Poles: 2. #Zecos:1
Asymptote centroid: M =L
= 3¢ % >Re T M ®Re
R L IR Asymptote angle : O "1 180" =
- -
#Poles: 2. #Zecos: 1
X X
Asgmp{‘.o‘be centeoid: % =1
© Re ——O Re
e 3 2 -1 1 2 3 Asldvxp{'.oto. angle : 2 01*1 180° =
% X
- -
#Poles:4  #Zecos:1
X X
Asymptote centroid: % =
© >< Re S ¢4 * Re
4 3 2 - 1 2 3 Asanptol:o. angles: 40 1’1 480° =
=§0.1
X X { l 214 41 480° =
-4
224 aap° =
a3 180
- -
#Poles:&t  #Zecos: 0
X X
Asymptote centroid: M‘# =-
> Re 3o Re
4 3 2 - 12 3 Asymptote an les=2+*1 480° =
x x fot) 24 4
P 2 .l 1so° =
L
221 480"
L
2341 480°-
L
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If we want b implomert wore complex corbrolles | thot is itself o dynamic system, the open logp TF is the product

d the plaxt with controler,ie. L(s)=C(s) P(s)

C(s) [ Pls)

k sy L(s) >

The cortrolec C(s) is offen colled dgnamic. compensator. e com use. dynamic compensobors bo eq. Stabolize Unstable systems

Lets lock ot o Simple example:

row we con design the dynamic compensator to have o winimum phase 2eso.

I lm
. y

X
®
(0]
X
X
®

()

By adding o 20 We ase oble to make the feedback connection stable. . This is also colled o PD controler.
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6.1 Example Problems

6.1.1 FS 2018, Question 16

Question Mark all correct statements. (2 Points)
Which of the following statements are true?

For k = 0 the open-loop poles are equal to the closed-loop zeros.
The closed-loop poles are symmetric with respect to the real axis

For the root locus of a causal system, the number of closed-loop poles is equal to
the number of open-loop poles.

@ The angle rule of the positive root locus states that >, Z(s—z)—>_, Z(s—pi) =
0°(£¢360°), ¢ € Z.

Solution: B, C

A: false, for k = 0, the CL poles = OL poles

B : true, always complex conjugate pairs

C: true, the number of poles always stays the same
D: false, angle rule for k >= 0:

D (s—z) = (s —pi) = 180°(£q360°)

Zi pi
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6.1.2 HS 2017, Question 25

Problem: The transfer function of a blood pressure regulator is given by:
_1 s+ 5
10 (54 55) - (54 55)

Consider the following four root-locus curves:

P(s)

Question Choose the correct answer. (1 Point)
Out of the four root-locus sketches displayed, which one is corresponding to the previous
transfer function and values k € {0,20}?

G
\

C a
[B] b D] d

Solution: A
One zero at _2—%1 and two poles at 5—&.

Remember that: The portion of the real axis to the left of an odd number of poles and
zeros are part of the root locus. The only one following this rule is c.
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6.1.3 FS 2018, Question 15

Problem:

Which points are on the root locus?

w
o
s}

N
o
S

S 100
e
6) 0 { ] L J { 3 J
©
£ -0

-200

-300 °

-6 -4 -2 0 2 4
Real

You are given the open-loop transfer function L(s).

s+2

L) = e+

Question Mark all correct statements. (2 Points)
Which of the following points p (marked in the figure) are on the positive root-locus for

the above L(s)?

[A] p~ —1.5+0.0§ D] p~ —5+0.0j

B] p~ —3+40.05
pr~—1+0.0j p~~ —1.5—300j

Solution: B, C, E

Draw the poles and zeros and sketch the root locus:

Which points are on the root locus?

Imaginary

2
Real

Centroid of asymptotes: s = _73 =-15
Angle of asymptotes:

1 3
ap =5 180° = 90° a =g 180° = 270°
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6.1.4 FS 2018, Question 17

Problem: Your coffe-enthusiast friend experimentally determined the second-order
closed-loop poles a coffee machine should have. Both poles should have real-part Re(m 2)
= —2.5 and there should be no oscillations.

Your open-loop coffee machine transfer function is P(s) = m

Question Choose the correct answer. (1 Point)

Can this be achieved? If yes, what is the P-controller gain k£ needed to reach the desired
poles?

k=3 k=1
@ It is not possible to reach the desired
E k= % closed-loop poles.

Solution: B

The CL transfer function is given by: T'(s) = Lﬁ%. In out case this is
k. L
T(S) . (s+2)(s+3) _

1+Wk(s+3) (s+2)(s+3)+k

k
24 5s+6+k

we can evaluate the root of the denominator as:

has to be zero
—5i\{25/44'(— 6+ k 1
i )—>25—4(6+k):04:>1—4k:04:>k:4

2
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7 Time Domain Specifications

So (o, we assessed wether we can stobilize ous 53stew\ with feedback , bosed on the open loop TF L(s).
Next o sf:obiliés,l:hefa oce Many diffecent reguicements Ehot ace of intesest when designing o controler.

Consides o cac driving with cruise conteol :

Assume we can Wodell the car with o stable first-ordes yslem

® G(s) = p=-1x.1
e O '.55+1 &= JX=-FXrgu

y=x

We ase stonding ot o. red teoffic gt and as soon os it tums green we want to accelerote to
the max. allowed velocify of 50 km/h. So the veference chonges from O fo 50 inthe instont that the light tums

green . This corvesponds bo o Scaled  step- cesponse b ous system:

o t - 50 o
yib) = CeAJ‘;(,‘, +C fo At P)Bu,(/,,)dp + Duw

: i Yes
= 50‘[ (t p) 1 37%[ /: - T5%

_t
=50(1-e7)

We can see that the behavior is dependend on . We con define o Settling time T ,i.e. the bime it lokes
for the Suctem bo get within d% of the steady-state
T, = = In(100/d)
This weasuse of T; can help us adjug the benavior of the system, such thal it doeswt accelerate fon fast
os too Qow. Simce T is directly propostional to T ,omd T influences the Location of the pole of GI(s),
this time -domoin specificotion translates 4 a constrainl on the location of the poles of the system.
This means hat e can chasse ous conbrolen im Such o wny that the b, domain Speciiaabion i

wel by controling whwe our poles go.
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Ustolly the first order aproximation from obove is not emough b deccribe o system. So leb’s opproximate with o

second ocdes sgs{eh. We con define ouc TF s be -

0 1 0
2 x=[ w? -20w ]7“[05]1"
Gs) = —n B W L
L e}
$z+2;u,\5+u& y=x

Jor an  undecdamped system (7<) with zew wmitiol condifion we get:

Y& =1- =1 &7t coc(ut +¢)

CoS ¢
Agoin we can define impoctart cnasacteristics
Yoo
of the step response:
Mpi /I ~ Yss
= Time to peak: 7;=% 3/4'/'7
- Peok ovesshect =MP= e® /// 3 E
T_e Lo
~ Risetime: T,z 2% =1 B
©y,
TlOO%Tp t

We con magp ouf the poles in the complex plane S

and obsecve Ehot eoch campomvat of the S Re

time cesponse offects the poles differently.

Thot weans thot e con ogoin, take requicements in the time domain and transform them indo constraite on the location of

the poles of the system. Lhen designing ous closed bop system we can take these restrietions inko account.

desi:h:sx)?
aseon
j 3 Re

Seﬂlina time
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A was to relole these festriclions b the roct loeus is oveclaying bot

[}
X
4(
®
®

Rodt Locus Time dowmam consteaints

we con now choose K 5.t. the poles foll in the testricted oseo.

Dominant Pole. Appeosimation:

What if ous system has wore thon twe poles ?
Often we can approximate the highes ocder sydtem. Remewbes fhot evecy pole covespands to an exponential . The ceal past
of the pde indicotes how fast the exponential grows or decays. For poles inthe LiP we can Saythat poles further away

from the imoginary Oxi5 ofe “faster” since they decay of o highes rate,

— o0k

e-10{: . e-l:

We obsesve that the be combined behavior can be well opproximated by the dowes pole, i.e. the pole cleses to the imoginary axis.
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Steody- state esvoc:

The s{:eudg -slofe error refers ko the ertor e when t- 00 If the emor is zeto, we fully achieved the conbrol. dbjective.

r
ﬁ?L’C(s) w oY

To obtoin o steady-stoke esvor of 0,we need o pole of the erigin, alss known 0 integrator. Depending on the input, we potentiolly

nieed more thon ome integrator. lohen Considecing the steody-state ervor we usually look of ramp inputs. These ace given by:

r(t)= %{q or i the s-domam R(s)= % ordes of comp.

=2

] / ]Q/_

Depending on the ordec of the romp ond the type of Ehe system we get different steady-state ervors

§=0

€ss g=0 g=1|qg=2
Type O 1
_ 00 00
Yp 1 + kBode
1
Type 1 0 00
kBode
1
Type 2 0 0
kBode

|

number of poles of the origin

PID Covdsol:

Reall what ous coufroles is designed b do:

.
—ﬁ?:~6m % Ps) v,

i takes the ercor,i.e.the diffecence between fhe current cdput avd the cefecence we want to achieve ,ond transforms it

into an input to the plowt. The question is how de we convest an ewor ivts o command? One woybo do it & with

PID contsol .
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PID control is evesywhece! Whot does PID stand for?

- Proportional
each teom .
- Integral hondles fne e O,
eror diffesently T
D = Derivative

The effects of eadh Term com be suwmarized.

- P\'gettimul

Decceose steady skote escor

Increase close-loop bondwidth

Increose sensitivity to noise

Con ceduce stability macgim for high ordes Sydtems.

- lvd.:arol

Elimimotes the steady ckote escor bo o step (if ci is stable)
Reduces stabilily macgins.

= Derivative

Reduces ovesshodt , incsenses dawping
Improves stability macgins
Incseose sensitivity to noise
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7.1 Example Problems

7.1.1 HS 2016, Question 31

Problem: Consider the system described by the following block diagram

C(s) P(s)

where

1

P(s) = —
(5) = Tos 71’

C(s)=k.

Question Choose the correct answer. (1 Point)
Determine the smallest positive gain k such that the feedback system is stable and, when
r(t) is a unit step, lim;_,|e(t)| < 0.1.

The smallest positive gain k is:

10 @5
B] 2
c]1 E] 9

Solution: E

The function P(s) is of type 0, since it has no integrators. The step is ¢ = 0. From the
table we now know that

1
Cgg = ————
> 1+ kBode
The OL TF is L = C - P in our case:
1
k-
10s +1
we can transform this into the Bode form to get the Bode gain:
1
k- —
o1 +1
k = kBode
the egs 18 now:
L co1sk=9 (4)
o — —
S8 1 + k —
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8 Frequency Response and Bode Plots

Recall thot for LTI syskems the TF com modell the Steody-state output fo Some generol input et The TF is given by:

¥ss = G) e,s* with G(s)= C(sI-A)-iB+D , seC

We chose he agneal input &t Smee virtually ecvesy input com be generofed s o lineas combination of temms &t

Since ous system is LTI, we con thus cakulate the fesponse fo complex imputs by breaking it down , and summing up
the tdividual outputs, f the input is o casine we Saw thot :
" iy
U= coslwt) =2/ +1e jot

We notice that we con decompase u) as follows:

ub= T U w3 and syt
(3
The oubput ie then given by

YO =GGo) 2Pt + Gljur e

we can vewrite G(J'u) as Me‘# with M = |G(Jw)|
$=< G(Ju)
ond then y) = Med* %e‘jwt +Me-#% oot

) = Meos (wt +4)

The output is ansther sinusoid with o diftecert amplitude omd phase bk same frequency. This means that | in
ocdes bs onalyze how o Sinuseid offects ous system we enly have b know how the magnitude. and phase change . These
charges ace given by M=1G(jw)| and ¢=2G(jw). So by plging i $=ji we can completley define the
Steady-stote tesponse. b o sinusoidal impub, this is also called frequency response.

Whes cepresenting the frequency respavse we ore essentiolly plating o complex function Gjw) € €

with o reol acgument weR. There axe fwe ways fo represent this:

as pasametsic curve, w is implicit two Sepacole plots as o function of w
Im 2
Husni'bude 0
s 8] 5
A N B %
w Phose 0
........ [des] -30—_\
10%  40* 10" 40° 40"  40*
o[z
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Bode Plot:
We. wont & plot M = |G(w)| ond $=2G(w) os a function of w. We will use two plots with o dhased frequency axis.

The frequency axis is Shown on o log,, Scale in 2 The magnitude is ploted im deciBells,i.e.

|G(jwo) [ 4B = 20109, | G(j) |,

T 1 1 1 yz 2 10 100

X 1 1
1000 100 10 2 2
~3 ~6 20 40

—-60 —-40 -20 ~—-6 =-3 0

XdB

and the phase usually in degrees. This results i o plot of this form.

20
ﬂost\ifude
[4B] 20
%0
Phose 0
[deq]
T 10*

10° 10* 10" 10° 40

e
s
One reason for choosing this Scoling is that when we have multiple inputs the mognitude gets rulliplied and the phoses odded.

Since the mognitude plot is in log scale we can then add tws lnes mthe plot insteod of multiplying.

To sketch the Rode Plot e follow these bosic rules:

Magnitude
Phase —20 dB/dec +20 dB/dec
—-90° stable pole non-minimum phase zero
+90° unstable pole | minimum phase zero

Lets tey drawing Some plots. To drow these Plo{S by hond we can do o hcaight line. opproimation with the table obove.

Alsp cecall the Bode Form of o TF:
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Lets lock o simple examples

= GE) =k , k>0 and k<O

Muﬂv\‘-{ude : 20 |03|k|=1lrJB

- @(s) = —1 — W Bode Form
S+1

to draw thic plet we Loke the ohsolte
position of the pde and wosk it on the
pbt. Drow the low jw;. ogym te
of 0dB unkil the location of the
pole. Then the high freg. osymplote frow
the po‘o. wbil w00,

The phose usualy stacts chonging 4 dec
befos the pole location and continues until
4 dec ofter the pole.

k=t

—30 -

Phase (deg)

-180

Magnitude (dB)
i
o

I

= |
w o B
o o O

Bode Plot

107! 10° 10! 102

Frequency (rad/s)

Magnitude (dB)

Phase (deg)

Bode Plot

.
ez
.

.

-30

107! 10° 10* 10?
Frequency (rad/s)

we can put both togethes omd draw the Bede plet for:

- @Gs) = ;T in Bode Fom

Since we chose o log
Scole for the magnitude
we can now add everythirg
up.

Magnitude (dB)

Phase (deg)

Bode Plot

T
107t 10° 10! 102
Frequency (rad/s)




We can alse add o 2eco: N Bode Plot
- = S-83 @ * :
G(S) 5+ S 2 3 .
E 10
brivng to Rede Form! g _12_
= +1 20
Gls) = 58,,_—1 180
135 4
Proceed 0 obove ,but look of g o0
the table for the behavioe of the 4 42
NON - MM phose zexo. S s
-90
1072
Frequency (rad/s)

This con be done for on asbibrucy vumbers of poles ond zesos. Two importort cases ace poles ond zesoz of
the origin. The respective plots fook like fhis:

s =] =1
Gls) = 5 = jw Gls) = ¢

Bode Plot Bode Plot
40 ‘ 404
301 30 \ “
g 201 g 204 ; :
P L e S e S LIS S & S o 10
g -10 g 10
2 -2 2 -2
=30 e e =30 et T
-40 T -40 T
135 ‘ 135 ‘
% 20 ¢
FRER . B 454
KA ! hoA
o 0 ) o 01
3 : 3
£ s : 2 a5
& ‘ &
-90 i -90
-135 T i -135 ;
1072 107 10° 10! 102 1072 10! 100 10! 102

Frequency (rad/s) Frequency (rad/s)

A moce complete toble with sketching tules is gjven by:

Rules for Making Bode Plots

Term Magnitude Phase
Constant: K 20-logio((KJ) o s

« Low freq. asymptote at 0°.

Real Pole: 1 + Low freq. asymptote at 0 dB 0
L 0 - High freq. asymptote at -90°,
8,y |-Highfreq asymptoteat 20 dB/dec | o\ oo i iraioht line from
o + Connect asymptotic lines at o, 0100 to 1000

« Low freq. asymptote at 0°.
« High freq. asymptote at +90°.
« Connect with line from 0.1-oo

5 + Low freq. asymptote at 0 dB
Real Zero™: =41 « High freq. asymptote at +20 dB/dec.

@, o
« Connect asymptotic lines at wo. T
Pole at Origi 1 . - i o
" « -20 dB/dec; through 0 dB at w=1. « Line at -90° for all @.
Zero at Origin « +20 dB/dec; through 0 dB at w=1. « Line at +90° for all @.
Underdamped Poles: |, | oy freq. asymptote at 0 dB. « Low freq. asymptote at 0°.

L « High freq. asymptote at -40 dB/dec. | * High freq. asymptote at -180°.
— 1 | Conncct asymptotic lines at wo. + Connect with line from

[s) +24[ s J” « Draw peakt at freq= o, with @=0'10% to @p-10°

o amplitude H(j00)=-20-logio(20)

Notes:

| ©0 is assumed to be positive. If w0 is negative, magnitude is unchanged, but phase is reversed.
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EX&ﬂEIQ'-

G(s) = (5+0.5)(s+12) _ (2+1)(5+1)
(5+2)(5+01)(5+3) (£41)(Z+1) ($41)

Bode Plot

|
= =N
o ooo

Magnitude (dB)

[ |
[C NV N]
© O o o

—60

©
o

IS
[l

o

Phase (deg)

|
= |
W o B
0 o o

-180 : :
10! 102

H
2
8
-
5
L
.
5
2

Frequency (rad/s)

Bode Plot

=N
o oo

e (dB)

o —10 1

Magnitud

| R N T |
QU s WN
S o ooo

Phase (deg)
|
IS
o

Frequency (rad/s)

Until now we only considesed real poles. But whok if the TF has a complex-comjugate pair of poles 7 we can geneally

write a corvesponding TF as:

Gls) = 1 = ol
iju s 4 S42gs0,+ 02
Ly Wy

fo these sysloms the dosping ratio 3 influences the form of the Bode plol .

dB A m(w/wo) 7=005 1\

—\
— 2\

- — m
-1or J=07 w/wo

w/wo

degrees | p(w/wo)

90 F

;: 0.05 ™~

Figure 8.3. Bode diagram of the second-order system (8.15) for six different damp-
ing ratios = [0.05,0.1,0.2,0.33,0.5,0.7].

Despite this they can be breoted (ike notmol poles.
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Polas Plot:

We con olse tepresert the Jrequency fesponse as o pasametric curve, whese w is implicit. We. can then plet one cucve inthe complex

plave. Lets start with a simple example. @Gls) = 617

I
Bode Plot

|
= =N
© o o o

Magnitude (dB)

[ |
goB W N
© © o o
~,
a

-60

g’

""""""""""""""""""""""""""""" ~ -
RUTS S ac

|
N
«

|
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We will go theaugh Some o and note dotm mognitude and phase:
wet , |-l=-3R=%, 4 =-45"
w=10, |12 -2048=01 , £ =-90°
Based on this we con moke o rough skekch.
Avothes exomple - G(s) = — 1

$+0.55+1
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Bode Plot
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Ouside of wnict cicele between ~ 40°-435°
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G(s) ==

1

$+0.55+1

50

Bode Plot

40
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-135
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1072

107t

10°
Frequency (rad/s)

10t

102

Powt ot -180° opprox 5dB ~ 2, Pomt ot 0 dB ~-210°
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8.1 Example Problems

8.1.1 FS 2018, Question 18

Problem: You are given the following Bode plot

0
g 10
3
c
()]
©
=
10”"
107 10" 10° 10
5 0
[0}
S
[0
& -45
Ny
o
-90
107 10" 10° 10'

Frequency (rad/sec)

Question Choose the correct answer. (1 Point)
Which of the following transfer functions corresponds to the above Bode plot?

[A] G(s) = oy [C] G(s) = b2y

5240.55+1

[B] G(s) = =805 [D] G(s) = mrgery

5240.55+1

Solution: B

Because of the spike we expect some complex conjugate pole of the form:
wa
s2 4+ 2(swy, + w2
which translates to —180° in phase. But the plot only goes from 0° to —90° which means
that there must be a minimum phase zero, reducing the phase.
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8.1.2 FS 2018, Question 19

Problem: You are given the following magnitude plot of a plant. Furthermore, you
know the plant does not have any unstable poles.

Magnitude plot of a transfer function

Magnitude

107 10° 10' 10 10
Frequency (rad/sec)

Question Choose the correct answer. (1 Point)
Which of the following phase plots corresponds to the above plant?

Phase A Phase B

100
75

50

Phase (deg)
Phase (deg)

100 100
? ° - 10° 10' 10° 10

107" 10° 10' 10 10 10
Frequency (rad/sec) Frequency (rad/sec)

Phase C Phase D
100

Phase (deg)
Phase (deg)

-100
107 10 10' 107 10° 3 ’ 10' 10° 10

Frequency (rad/sec)

Phase plot B
Phase plot C

Frequency (rad/sec)

Phase plot D

@ Phase plot A

Solution: C

Zero at ~ 7% since magnitude slope becomes positive. Pole at ~ 150% since magni-

tude slope becomes zero again.
Since the pole must be stable — —90° and all phase plots start and end with the same

phase, the zero has to have a phase of 4+90°. The phase should be max in the middle of
both pole and zero.
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8.1.3 FS 2018, Question 30

Problem: A plant P(s) with non-minimum phase poles or zeros has been reformulated
in order to design a controller in the following way:

P(s) = Pup(s)D(s)
Where D(jw) = 1, Vw. All transfer functions P(s), Pnp(s) and D(s) are displayed in
the Bode plot below:

|L(jw)l(aB)

Ajw)

Question Choose the correct answer. (1 Point)
What is the transfer function of P(s)?

P(s) = 10554:120 @ P(s) = ss+_120
P(s) = (55_—;(5))2 P(s) = (si—gg)Z
P(s) = 353 P(s) = oy

Solution: D

P(s) has to have one NMP zero around 2% since slope + and phase -. Later a stable
pole around 10724 since slope - and phase +. Only A & D remain.

S

1
kBode = —14dB =~ g
_3 —_
P(s)zz 2—i—1:2 S
10 5+1  s+10



8.1.4 HS 2018, Question 18

Problem: You are given the following Bode plot.

o 0
=
(5}
O
=
c
oo
= 20
-2 -1 0 1 2 3
180 10 10 10 10 10 10

Phase (deg)
s o
ot O Ot

o

1072 107! 100 10! 102 103
Frequency (rad/sec)

Question Choose the correct answer. (1 Point)
What are the poles m and zeros ( of the system?

7= {=0.1,-100},¢ = {1,-10} 7 = {1,-100},¢ = {1,—10}
m={-1,-10},{ = {-0.1,-10} [D| 7 = {-0.1,-10},¢ = {—1,-100}
Solution: A

Ar first the magnitude and phase decrease indicating a stable pole at —0.1%. Then the
magnitude stops decreasing, but the phase continues decreasing indicating a NMP zero

d
at 1757,
8.1.5 HS 2017, Question 28
Question Choose the correct answer. (1 Point)

If a Bode plot of a rational transfer function is plotted for w € {—o00, 00} then both the
magnitude plot and phase plot are symmetrical with respect to the y-axis.

True . False

Solution: B

Consider G(s) = s and the corresponding phase plot.

/G (jwy) = Ljwy = 90°
/G(jw_) = Ljw_ = —90°

The phase plot is not symmetric.
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9 Nyquist Plot

To draw this plot , just take the polac plst and mircor it along the real ayis!

Im
.

We will understand why, in just & Second. Hese ace some more. examples:

L ..

g

With these plots we will be able & asses slobilily and robusiness of ous closed bop system!

TFicst leb's take o slep back and See how #his plot comes about.
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Principle. of vasiokion of the ocqument (Couchy's Acument Principle)

Given o. TF G(5), we con plugin diffesert Values of s and qet another complex numbes . fe. can plot this new complex  number
in o plone and call it the w-plane . We can now soy thot ous TF G(s) o point from the S-plane fo the
w -plane. We can extend this ond wap enfire lines fom S ko w. We caw aleo look of how cloced curves , So

called contouss , map from S Lo w.
s-plane Im w-plane ™

zcontou.r

o closed curve inthe S-plane will also result in o closed curve in the w -plane . This closed curve inthe w -plane new olze includes

informotions oboul the TF we used to from S to w. Consider a Simple example

s-plane Im w -plane  In

/ »Re 45 »Re

<

We observe that the phasor of the point in the w -plane is the same 05 the one from the 2eco to the original point in

the s-plane. Leb’s add in o pde and see what happens:

s-plane Im w -plane  In
.A %0°
At & >Re = >Re
_ s+
Gl = 333

The genesal rule is: Add phoses of zesos subtract phoses of poles. Let’s look of some differert confoucs.
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) S-plane Contour ) W-plane Plot ) S-plane Contour N W-plane Plot
15 15 15
2
1 /\ 1 1
05- g 05 - 05
0 X 4 * 0 A X v o v %
05 05 05 i
\/1 \_/ ‘
1 1 1
e
15 15 15
2 2 2 3
s 2 a1 o 1 2 s 2 a1 0o 1 2 s 2 4 0o 1 2 s 2 a4 0 1 2
) S-plane Contour . W-plane Plot ) S-plane Contour . W-plane Plot
15t 15
2 2
1 1
/N , /\ :
0s 0s
0 A v 4 0 A X N 4
05 05 i
\/ ‘ \/ ‘
1 -
2 2
15+ 15
2 3 2 3
a 2 a4 o 1 2 3 2 a4 0o 1 2 s 2 a4 0o 1 2 3 2 a4 0 1 2

Wt we can see is thk for every time we encitde o pole/2es0 in the s-plane we olss encitcle the origin
in the w -plane. For each clockwise ewcitdement of zeos we geb ome CW encicdement of the origin , and fos
each CW encicdement of o pole we get one CCW encicdement of the origin. Think of o 2et0 as adding

360" and o pole as sublracting 360°. If we have os many peles 05 Zews we end up with v encirdements , and if

we have one more pole than 2ers , we end up with one CCW encicdement of the origin.

B S-plane Contour . W-plane Plot 5 S-plane Contour B W-plane Plot
15 15 15
2
1t 1 /-\ 1 /'\
q / Y
0s s 1 Y 0s
[ 0 * EA 0 A (28 v [] + #* A
05 05 i 05
‘ \/
-1 1 1 v
2
15 15+ 15
2 3 2 2
3 2 10 1 2 3 2 1 0o 1 2 3 2 10 1 2 3 2 10 1 2

This means that You can Lell the relative difference. of pdes and zers inside o contous by how many times bhe plet circles
the origin and in which direction.

Let’s get back b the Nyguist pldt. Recall that for an open loop sgs&’.h ,

— L) ——
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we can check wethes the system is slable by looking of the poles of 1§ these are any paes in the RHP the Systew is

unstolle . In closed-loop Syslems:

L»_gﬁ—» Lts) J
we now have ko look ot the pdes of :
Tis1= L)
1+ L(s)

i all poinks whete 1+ L(s)=0 . To asses the closed loop s{abi(ibj we have Lo check if omy of the the ZEROS of 1+ [(s)

ase in the RHP. To do this we con use the principle of vasiation of the acgument intoduced above. We can choose ous

contour to endicle the enlire RHP:

s-plane I w -plane I

+Jco
1+ Lis) //\
S © = Re \ Re
| \jl Nyguist - plot of 1+ Les)

-joo 1 quuisl -contous

we now know:

# Encicclements of O using 1+ L(5) = # Zecos of 1+ L(S) in RHP - # Poles of 1+ L(s) in RHP

We can moke use of these chacactediskics:

* Insteod of cowting the encicdements of 1+ L(s) osround zero,we con ehift the coordinate systen by -1 ond cout the

encicdements of arvound -1 .

> |f =% , then the poles of ase given by D(s). We can also re-write 1+ [(s):

1+Ls)= 1 +% = D(S)D'ESI;I(S) ,the pdes ace also  given by D(s)

Thug, and 1+ [(s) have the same poles

We can combine both and get:

# Encicclements of —1 using = # Zecos of 1+ L(s) mRHP - 3 Poles of in RHP
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Which finally yields the Nyquist stabilily theorem:

Z=N+P
/ ) 1 \ \
# Zecos of 1+ () in RHP #CW Encicclements # Poles of in RHP
of -1 using
= 3 ungloble closed loop pdes = 3 unglable open loop pdes

We. can vow osses wether o closed loop system is stoble, by only looking of the OL poles and the Nyguist-plot

Special case :
How do we trest poles and zeos of on the imaginacy axis 7
s-plane " w-plane =
k] I NG S
®) \
>Re > Re
@ !
)]
-job— |

e moke little indenls on the imoginacy axis. If you move acound the poles CCW, then gyou hove o clase the Nyquist-plat CW

at infimily.
Note:
If yous CL hag some gaim k:
r
k L(s) y >
kL(s)
T(g)= ———22
1+kL(s)

you have to count the #CW Fncicclements of - 17 .

Stability Mocgins:
Next 4o stability of the cL syslem, the Nyquist-plot con also tell us how for away we ase from being unstable.
Assuwme ous OL b be stable, i.e. P=0. Tor our CL syslem to be stable we wow need N=0.Then Z= N+P=0.

We con wow define o phase- and gain mosgin that tell us how "close” we ace to enciceling -1.
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T
Im L(iw) 0
A 210
- N 3 \Lfg“’ 9
) N 107"
—11 —1/g \ Re L(iw) -90
\\\S‘: ) g~120
o\ K S -150 om
. N _180
e 107" 10° 10!
Frequency w [rad/s]

Whot does each margin mean 7

= Goin Mocgin 9. The point of 180°.1t tells us hew much we cam Scale until veaching -1.

= Phose Macgin P Point ot wagnitude 1. It tells us hew much we can chonge the phase until ceaching -1.
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9.1 Example Problems

9.1.1 HS 2016, Question 45

Problem: Consider the following Bode plot of a plant:

20 . — ——

——Bode plot |

Amplitude [dB]

-120
-150
-180

Phase [°]

1

107 10° 10'
Frequency [rad/s]

Question Choose the correct answer. (1 Point)
Use the bode plot shown above to determine the approximate crossover frequency we,
phase margin ¢ and gain margin ~.

we ~ 251adfs, @~ 30°, y~1
we ~4drad/s, p=x15°, y=~3
we &~ 2.5rad/s, p=~30°, y=~3

@wc%4.4rad/s, p~30°, v=3

Solution: C

——Bode plot |

Amplitude [dB]

-_—_ - & — =

10°
Frequency [rad/s]
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9.1.2 HS 2016, Question 26
Problem: The Nyquist plot for a loop transfer function L(s) with two unstable poles

is shown below on the left. On the right is a feedback configuration for the closed loop
system.

Nyquist Plot for L(s)

Imaginary Axis
+
l#
™
—~
V)
~—

—

-2 -1.5 -1 -0.5 0 0.5 1 15
Real Axis

Question Mark all correct statements. (2 Points)

Which of the following statements are true about the closed loop system T'(s) = Hkii(;()s)?

The closed loop system T'(s) is stable when k = 1.
The closed loop system T'(s) is unstable when k > 2.
The closed loop system T'(s) is unstable when k = 1.

@ The closed loop system T'(s) is stable when k > 2.

Solution: C, D

2 unstable OL poles means that P = 2. So the system is stable when we have 2 CCW
encirclements of —1 (N = —2).

In this case this is only true for & > 2. For all other values of k, the system is unstable.
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9.1.3 HS 2016, Question 30

Problem: Consider the following Nyquist plot of an open loop gain L(s):

Nyquist plot for L(s)

Imaginary Axis

- - 4
Real Axis
Question Choose the correct answer. (1 Point)
Select the transfer function which matches the Nyquist plot.
L(s) = (51(1)3 L(s) = (s_+110)3
L(s) = (sj—ol)3 D] L(s) = (12)3
Solution: A
Write all the TFs in Bode form:
-10 10 —10 10
A:—rrnr——= B:———, C:—+——, D:—F———=
Gt VG G Ty

Plug in s = jw — 0 and compare the resulting value with the Nyquist plot.

A:-10, B:10, C:-10, D:10 only A & C.

Let’s now consider the phase to see in which direction the Nyquist plot goes.

—10

A1 5 starts at 180°, the 3 unstable poles add 90° each — CCW
(Z+1)
—10
C: m starts at 180°, the 3 stable poles subtract 90° each — CW
1
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9.1.4 HS 2017, Question 29

Problem: We consider the following transfer function:

1 s+ %
10 (s455) (54 55)

L(s) =

Furthermore, we consider a Bode plot:

0.01 0.1 1 10

IL(jw)|dB
0
-25
-50
-75
-100 +
-125
061 OH i 16
2 L(jw)

Question Mark all correct statements. (2 Points)
Which statements are correct:

The phase margin of L(s) is oc. @ At crossover frequency, the system

shows a gradient of —40dB/dec.
The closed-loop system for L(s) will

be able to track a reference signal
r : t — sin(t) without steady-state
€error.

The displayed Bode plot is the cor-
rect Bode plot for the transfer func-

The gain margin of L(s) is co. tion L(s).

Solution: C, D, E

A: pp, = 60°

B: There is no integrator, so there will be a steady-state error
C: Phase never crosses —180°, so 7 = 0o

D: Two poles at 1/20 result in a gradient of —40dB/dec

E: Check phase and magnitude plot
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9.1.5 FS 2018, Question 24
Problem: You are given the following Bode plot.

. Bode plot

Magnitude

1 2

0” 107" 10° 10’ 10
135
90
0? 107" 10° 10" 10°

1

Phase (deg)

Frequency (rad/s)

Question Choose the correct answer. (1 Point)
What is the associated Nyquist plot to this Bode plot?

Nyquist plot 1 Nyquist plot 2
15 =
15 el L
1.0 4 N
1.0 ya \
// N
05 08 / A\
’ )
,/ )
00 + 00—+ 4
\ \
! ]
05 \\ & -05
\ /
-1.0 S -~
RN -~ -10
~ e
-5 SN~ T
"""""" -15
-35  -30 -25 20 -15 -10 -05 00 -1 0 1 2 3
Nyquist plot 3 Nyquist plot 4
I R e A L =
15 el h
/” \\\\\
10 - ™,
1 i \
’ \
4 1
5 I/ 1
1 ,ll
0 + 0 +
Y \
! |
5N /
\ /
N\, ’ -1
-10 RS s
N .
~ »
-15 Sl Petis
___________________ 2
-3 -3 25 20  -15 =10 -5 0 -35 -30 -25 -20 -15 -10 -05 00 05

Option 3 Option 1
Option 4 @ Option 2

Solution: A

For w = 0 the magnitude is ~ 30 (log scale, not dB!) and the phase is 180°. Only plot
3 has this property.
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10 Frequency Domain Specifications and Loop Shaping

Similos £ the Lime-domain specs. thot resultedin feasible atens in bhe s-plane, e can define Jrequency domain specs,

that diclate/shape how ous Bode plot ghould look like. Recoll the Sensibivity/CL TFs we intraduced o while back.

L(s) d
—t—
r e w y r e w y
. Cs) > P(s) > X Cs) P(s)

= Open loop TF: = Complementacy Sensitivily - > Sensitivily
maps >y, may mops Fre, doYy

Ls) = C(s) P(s) Tis)= - L) S(g)= 1

1+L(s) 1+L(s)

If we hove. disturbonces d and/or noise 1 ertering ous CL system, we conuse T and S to map the noise . ond
disturbances d to the owtpud y. Usually disturbanees have low frequencies and meise hos . The commands

we input fo ous system usually also have a velativley (ow frequency. Knowing this we can constrain the magwiludes of

S(jw) and T(jw) the followins way:

- |5¢ J'w)l <1 o bw frequencies for disturbance rejec{:ion ond good command tracking.

> Tt J'u)l <1 o high frequencies for noise rejec{:ion.

Remembec: S+T =1 vuw . We cont make the sensitivily functions asbiteasily small over all frequencies.

As alwoys, e would like f hove these constraints os o fundien of the OLTF L(s). In this cose:
>1S ()l = I#WI <1 & L) hastobe lasge of bow frequencies

-7 J‘u)l = |1_l;(,‘_1;_l)| <1 <& L(s) hasto be small of high frequencies

We can quantify how lacge or small we want L(S) b be,with some function W (jis). So we can write :

appfoXx.
15l Wit <1 = MLt > Wil TS | Lia) > 1wt

foX. -1
TGl W)l <4 °E 1Ll Wyl <1 = LG | < Tl
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This results in the following "obstacle cousse" for the Bode plot of L(jw).

T T — T

Load disturbance
attenuation i

Robustness

Wi

High frequency
measurement noise
sl MRS | L

logw

Next b high - and low-frequency behavior we con also Constraim the bandwidth of CL system. The banduwidth fells us fhe
moximum frequency for which the oubput con rack commands within o factor ~ 0.7 . In other words the bandwidth dells us for
which max freg. we get sabisfactory opecodion. (17 J’u)l >44§' ) We can usualy approximate the CL bondwidth with the

OL crossoves frequency wye . But how do we apply these constraints to our L(jw) ?

Loog Shaping
Now we get to design our contrder . Lsually we approach this problem wilh some. basic building blocks Lo steer L(s) through

the Bode obdacle couwse. That woy we. consteuct o dynamic compensator C () that fullflls our requiraments.

Proportional compensation:

I this cose C(s) =k ,where k is o gimple goin.
- Shifts the mogritude , while phase is unaffected.
~ Toc dable O sydtems , smoll k (k=0) yield stable Cls.
= |mproves command tracking ( highes magnilude ot low &) and CL banduwidth (moves crossoves freq. bo cight)

- Stabilil:g con be compromized !

L(s) 40-L(s)

Bode Plot Bode Plot
100 100
80 80—
60 60
40 40 \ST\
20 \.\ 20
0 0 "

=20
-40

Magnitude (dB)

Phase (deg)

|

@

3

< /n

Magnitude (dB)

Phase (deg)

\

T T T
1072 1071 10° 10t 10? 1072 107! 10° 10t 102
Frequency (rad/s) Frequency (rad/s)
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Lead compensofor

A lead compensatec is o pole zeco pair .We can write i in o general form os:

In o lead compensator the zeto always comes before the pole. Graphically it can Lock like this:

Bode Plot

40
)
Z
Q
520
c
g
=

0 T T T

90
g
o
@ A5 bt
3
<
o

0 T T

1073 1072 107t 10° 10! 10? 10°
Frequency (rad/s)
. = dos+1 _ $+04
Exomple for a=01,b=10,i.e. C,_ () =537 =100 3155

The moin effects ace:
= Increace mognitude of high freg. by 2, while low freq. ase unofected.
= Increase slope of mognitude befween o and b by 20 Bdec

= Increose phose around VaB by upte 30°. The mox phase inereose is of

Lﬁ‘ o 2 a.rctah[E] -90°

b S+a
o S+b

Main use:  increase phase morgin. G (8)=
i. Pick VaB ot desiced c.
i6. Pick £ depending on desiced phose. increase.
iii. Adjugt X to put we ot desiced freg.

Side effects: increose magnitude of high freq.
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Log compensotor:

A log compensatoc is also o pole zeco pair .We ean write il in a genecal form as:
S
Cl“s(s)=g_= ESA 0<b< a

In o lag compensatos the pole olways comes before the zeto . Graphically it can Lodk Like this:

Bode Plot
0
o
z
o
220
g
=
—40 T T T
0
g
s
g —45 T A T
-90 T T
1073 1072 107t 10° 10! 10? 10°
Frequency (rad/s)
. = 04s+1 _ 1 s+10
EXGMPIQ fof a=10,b=01,i.c. CL“S(S) 105+ 1 100 5+01

The moin effects ace:
- Decrease mognitude of high freg. by % ,while low freq. ase unafected.
- Decrease slope of mognitude befween o and b by 20 Bdec

— Decreose phose around VaB by upte 30°. The mox phase inereose is of

tﬁ‘ o 2 a.rctah[E] -90°

S,
HMoain use: improve command tracking/ distusbance. rejection. Clas (s)= g—+1
B
t. Pick % os the desifed incceose m nosniluda. of low freq.
ic.  Multiply < by % ( high freg. not affected)
iii. Pick o tobe sufficiently small not to affect w,

Side effects: reduction of phase macgin.
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Limitations:
The tools from obove work well for Stable , minimum phose systems. Bub whet if we have poles and zesos in the RHP 7

Loop shoping for non-minivum -phose systems:

Remember from the. roct locus thot closed loop poles approach apen loop 2ecos. If one of the zeros is non - minimuwm

phase , the closed loop system might become unstable.

Im
4

This means for lasge encugh gains the closed lop will become unsloble. A n.m.p. 2eco also limits the maximum crossover freg.

The concequence is that the CL system becomes slow.

Loop shoping for_open-loop undable sustems:

We com look of the root locus ogain bo See what happens when we have o CL pde in the RHP.

Im
1

We need a high gain ts stabalize fhe system. In real Life o high gain meons fask ond strong octuotors. In this case

the crossover freq. becomes lacge.

This should give yow a sense of how, for mang systems , there ase cleas pesformance limitations. Certain requitements can

thus never be sotisfied. £.g. have good moise and distucbance. tejection wiulst alss having goed Command tracking.
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10.1 Example Problems

10.1.1 HS 2018, Question 33

Problem: Consider the Bode plot “obstacle course” below.

T T T T T T T

Load disturbance
attenuation i

Robustness

log|L(iw)|

High frequency

measurement noise
| Lol P

logw

Question Mark all correct statements. (2 Points)
Mark all correct statements:

Lead elements decrease the magni- A combination of lead/lag elements

tude at high frequencies and lag ele- can re- move the steady-state error
ments increase the magnitude at high to unit steps for any plant P(s).
frequencies.

Lead elements are most useful to in- @ It is good practice to start the loop
crease the phase in a certain fre- shap- ing design procedure from low
quency range. frequencies.

Solution: B, D

A: the other way around

B: main use of lead elements

C: lead / lag don’t have integrators

D: always start design from low frequencies
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10.1.2 HS 2022, Question 37

Problem: Consider a lead compensator
241
Clead(s):i%—}—l’ 0<a<b,

used in a standatrd feedback architecture to control a given plant P.

Question Mark the correct answer for each statement. (0.5 Points)

Statement True | False

A lead compensator is typically used to reduce the phase
margin.

A lead compensator can increase the sensitivity to high-
frequency noise.

The slope of the magnitude at frequencies between a and b
is approximately +20 dB/decade.

Solution: F, T, T

See list above.

10.1.3 HS 2022, Question 39

Problem: Consider a lag compensator

£41

e 0<b<
%—'—17 a’?

Clead (S) =

SalS]

used in a standatrd feedback architecture to control a given plant P.

Question Mark the correct answer for each statement. (0.5 Points)

Statement True | False

A lag compensator is frquently used to improve command
tracking/distrubance rejection.

A lag compensator cannot cause the system to become
unstable

The slope of the magnitude at frequencies between a and b
is approximately —20 dB/decade.

Solution: T, F, T

See list above.
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11 Time Delays

Aftec choosing ous contrles C(s) , we have o implement it . Usually we use computess for this task. Unforturatley ,
Computers hove a finite compute time , which means that the control input fo o cectain error has seme delay. Some physical

Systems themselves olso have delays. An exbreme example wold be communication with e.9. 0 moss tover.

L

In this example the delay com be Sevesal minutes. How con we Lake this into accourt 7

Mnmemlicoﬂg we can express a time deloy as:
y® = ui-1

The fime deloy is o Lineas opesotor fhot trancforms am input (k) into a deloyed output Y(1). T is dhe ammourt of delay.
The TF of o Lime. delay is thus given by: €51

This not o rationol function! Lde hove vis poles or zecas! Rook locus doesnt work fo agses closed loop behovior.
Let's take a doser look of frequency response of o fine. delay. Remewbes khat for fhe frequency response we plug v

s=juw and lok ot the resulting phase and wagnitude . Assume. T'=1

|GG = €94T| = 1

2GGeT)=< T T

05 ] u: Y '”H\\m

&y
Re[e™*] ] w00

05 0 05

i ‘\H“HH

Thus we con Summasize the effect of o time deloy as o phose hift of -wT.

Gain_ond phase macgin:

To aet the gain Masgin we look of the fird

time we cross -180°,1.e.: £ G(J'u) -wT =-180°

Similacly we con look of the effect on the

phase macgin and See thot - ¢=¢ T
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Padé _approximation
I the Podé approvimation we cepresent the time delay as a ratio of two polynomials, A Jicdk ordec apptox'w\a{ioh

toeuld look like fhs:
—STz k S+P
e 5+q

To gel the values of the coefficients we con compore. this term b the

S+P _
k 549 -

And considesing theaws ugto order 2 we get -
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11.1 Example Problems

11.1.1 FS 2018, Question 34

Question Choose the correct answer. (1 Point)
The transfer function of a time delay is. ..

linear and rational. nonlinear and not rational

E nonlinear and rational @ linear and not rational

Solution: D

e~T is not a fraction, and thus not rational, but the operation is linear.

11.1.2 HS 2017, Question 44

—sT

Problem: Let P(s) = (SiT)Q.

You are given the frequency w* = 1 rad/s at which ZP(jw*) = —180°.

Question Choose the correct answer. (1 Point)
What is the time delay T of the system?

[A] T~02s
B] T~29s
ClT~175
(D] T~0.15

Solution: A

LP(j)= < [fﬂm] =7

= Le T — L(j+01) =7
— —T=—-1+Z(—-0.99 +0.25)

— —-T=- t —_—
7 + arctan (0.99

> + 7 (remember conversion rules!)

0.2
T = —arct — | = 0.2
& arctan (_0.99> s
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11.1.3 HS 2017, Question 45

Problem: You are given the Bode plot of a plant however the time delay has not been
included in the model. You have a time delay of Ty = f; s.

10} [——PO)] |

o
o o

Magnitude (dB)
SR
o o

A
o

P(s)

10°
Frequency (rad/s)

Figure 5: Bode plot of a plant with a time delay.

Question Choose the correct answer. (1 Point)
What is the new phase margin of your system?

Prew ~ 45° Prew ~ 60°
©Pnew ~ 30° @ ©Pnew ~ 90°

Solution: A

Magnitude (dB)
& h b b ok A s
-8 8 8883038

Phase (deg)
2 @ b A
& & 8 &
T —

&
R
o &
S

i

10’ 102 10°
We (D gy caom

T T

@m:(;om,O_WC'TdZQ 10 4
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12 Nonlinearities and Describing Functions

In this section we want bo stact to undesstand nonlinear sydems. Today we wil briefly introduce. Some concepts thot can help us.

We will manliy consider systems [like this:

NL s L(s)

where L(s) is lill o Lineas funckion ,and N is & now-lineas gein. NL can represent Some impostart nonlinearily like :

Static, memoryless:
e e Yy Y

ull

Solusation Switdh ,oc Reloy Deadzone Quortizes
Dynamic, with memory :
aJ
We can also tepresent them mothematically. The. satusation ,e.q.:
' 1 i w2i;
y={u i 1< w<i;
-1 w2 -1
Schwilt Fissu

Stability:

Tor this we wil consides the. general case from absve where where L(s) is <lill o Lineac funchion ,and NL

is & non-lineas goin. We con now define Some. boundacies thot contain all possible. values of NL .

R ‘/(,_u,

Jfa&hmal:icnllg-
ko
sy kaws NL@w) S k,u

NL(o)=0

De can check the CL shabilly of the system with the NL in the Nyquist plet.
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Necessacy condition..
The way we defined the N , it can include all lineos qaing k, S k < k, . Tor the Nyquiet critereon this means thot we have bo

concides net only the point _}k but all points in . Grophically you have to consides

Sufficienl condition:

We go even fudhes and extend the Nyquist condition to court enciclements of o circle with diametes

Im

Describing Functions:

As wilh the frequency response. for Lineas syslems ,we. will considec what hagpens when we. apply

ui) = Asin(wt).

The oulput will new be. of the form
A sin(wt)) .

Thal means some. pesiodic function with the same frequency as the. input. The output is now alse dependend on the input ampliude A .

Since y(£) = $(A sin(wt) is o pesiodic funclion we can write the corvesponding Fousies Seties exponsion

= 2.5 [a, coslnst)+ by sininsb)],

with the coefficents a, and b, given by

T T

a, =1 costnwt)dwt) and b= sin(newot) dlwt)

-T -

Jor 0dd fundions a,=0 Vne N.lWe can use this and approximote. the oulput with the firsdt hacwonic , i.e. only consider n=1.

For an odd NL this would mean
= by sin(wt).
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This opproximation. torks since physical systems usually attenuale high frequencies, acting as o low pass filler. The value of by is a fundion

of A, the input amplitude. Le now define the describing funchion b be
N(A) = 5% -4 f: sin(wh) dlwh) |

the catio % . We con use this function b approximate Nl as an amplitude-dependend gain. The tusulling descsibing funclion. con
also be complex , if the NL introduces o phase shift.

How is this useful ?

Consides again the. slading poirt:

Ti T

We can row Say for some  u(t) = Asin(wt) we Ccon opproximate y(H)= b, sin(wt). Simce N(A) = b e can

Lts)

olso sy
yt)= AN(A) sinest)

Limit Cycles:

Consides the cose of the input o yous N to be of the form Ae.'ju* Lel's see how this sigral peopagotes.

jot
e

o A AN(A) ANAIL G

iT o NL Les)

A=- AN(A)L(jw),

e can obsesve thal if

then the feedback loop is Self -sustaining. The inpud Ae‘jwt produces an output of -Aejw{ which i negobivley fed-bock .
This couses the system {o oscilote indefinetley, cousing o so called Limit eycle. A condition for the exsistance of (imit cycles

can be derived from above:

N - L
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C heckins Jor Limit cycles:

Thece is a.nice way to veify graphically wethec there ace limit cycles present :

lm
+ Skelch polas plet of L(je)
+  Skelch polas plot of " / Re
N(A) /
, —
+ Check for intersections. NG \ L(je)
Stability of Limit cycles:
Limit cycles con be stable or unstable:
stable unstable
“atlracts” "repels”

How does this look on the. Nyguict plet 7 (Assume oL stability) .
1 1
If o point “N(A) is m an unstoble past of the Nggu.ist plet (W), the amplitude of oscilations will incrense . If o poit NG isin

a doble part of the Nyguist plet (S), the amplitude of oscilofions will dectease.
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12.1 Example Problems

12.1.1 HS 2023, Questions 40 and 41

Problem: Consider the closed-loop system T' shown in the Figure [6] where L is a linear
time-invariant system and N L is a saturation non-linearity.

r 4+

V@

NL

A 4
b{

Figure 6: Standard feedback architecture. System L and saturation non-
linearity denoted by N L.

The descirbing function N(A) of the saturation non-linearity is given by,

2 (1N 1 1\?
N(A):; arcsm<A>+A 1—<A)

It is known that L(s) has a pole at the origin, i.e. at s = 0, and that L(s) has one
unstable pole. Figure ﬁ shows the Nyquist plot of L(s) (solid line) together with ﬁ
(dashed line). Further, assume that all assumptions required for a describing function
analysis are met.

Imaginary Axis
o
i
|
|
A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+

1 1 I 1 1 1 1 1 1 i
-18 -16 -14 -12 -10 -8 -6 -4 -2 0
Real Axis

Figure 7: [Solid line] Nyquist plot of L(s). [Dashed line] Plot of ﬁ,

where the arrow indicated the direction of ﬁ as A increases.
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Question Mark the correct answer. (0.5 Points)
First, without doing any stability analysis, what is the maximum number M of potential
limit cycles that the closed-loop system T’ could support?

MZO M—>oo
B] M =2 D] M =1

Solution: B

There are two crossings of the Nyquist plot and —ﬁ

Question Mark the correct answer. (1 Point)
What is the number M of stable limit cycles that exsist in the closed-loop system T'7

[A] My=0 [c] My —
[B] M, =2 D] M, =1

Solution: D

We have one unstable pole, for stability we therefore need 1 CCW encirclement. The
pole at the origin closes the Nyquist plot at infinity CW. Looking at the polt:

Imaginary Axis
°
T
I
|
I
]
I
|
T
]
I
|
|
]
]
]
I
|
I
I
]
I
I
]
]
]
1
X

-18 -16 -14 -12 -10 8 6 -4 2 0
Real Axis

93



	Preface
	Introduction
	Modeling
	Example Problems
	Example from Lecture
	FS 2017, Questions 7 and 8
	HS 2016, Questions 6 and 7
	HS 2017, Question 5


	System Classification and Linearization
	Example Problems
	HS 2017, Question 1
	HS 2016, Question 3
	HS 2016, Question 4
	FS 2017, Question 1
	HS 2017, Question 3
	HS 2017, Question 4
	HS 2016, Question 9
	FS 2018, Question 5


	Time Response and Stability
	Example Problems
	FS 2018, Question 6
	FS 2016, Questions 11 and 13
	FS 2018, Question 7
	FS 2017, Question 12
	FS 2016, Question 13


	Transfer Functions
	Example Problems
	HS 2016, Questions 18 and 19
	FS 2018, Question 8
	FS 2018, Question 11
	HS 2017, Question 19
	HS 2016, Question 21


	Root Locus
	Example Problems
	FS 2018, Question 16
	HS 2017, Question 25
	FS 2018, Question 15
	FS 2018, Question 17


	Time Domain Specifications
	Example Problems
	HS 2016, Question 31


	Frequency Response and Bode Plots
	Example Problems
	FS 2018, Question 18
	FS 2018, Question 19
	FS 2018, Question 30
	HS 2018, Question 18
	HS 2017, Question 28


	Nyquist Plot
	Example Problems
	HS 2016, Question 45
	HS 2016, Question 26
	HS 2016, Question 30
	HS 2017, Question 29
	FS 2018, Question 24


	Frequency Domain Specifications and Loop Shaping
	Example Problems
	HS 2018, Question 33
	HS 2022, Question 37
	HS 2022, Question 39


	Time Delays
	Example Problems
	FS 2018, Question 34
	HS 2017, Question 44
	HS 2017, Question 45


	Nonlinearities and Describing Functions
	Example Problems
	HS 2023, Questions 40 and 41



