
Deeply Supervised Artist Style Transfer

Adrian Schneebeli, Alain Ryser, Nicolas Baumann, Tim Fischer

Abstract—Style transfer is a technique by which the content
of an image is preserved while its style is modified. Existing
methods either transfer the style from an input image and
apply it to a content image, or learn a specific style which
they are then able to apply to an arbitrary image. While
the first type provides great amount of flexibility, it lacks
a wider understanding of what a certain style amounts to.
Conversely, the second type is severely limited in flexibility,
since the network has to be retrained for each style. We propose
an Auto Encoder (AE) architecture with deep supervision to
learn the styles of artists and transfer images from one style to
another. The style transfer is performed using normalisation
and swapping of the encoded latent space statistics between
source image and target artist embedding. Our method not
only allows us the transfer of the style of a single image but
rather of the complete works of a certain artist.

I. INTRODUCTION

Image style transfer is the act of transforming an input
image to a new target style. The input image has to be
separated into content information and style information.
The style information can then be swapped with a different
style before the image is recomposed. Previous work deals
with this problem by providing a content image and a style
image. The resulting image should then combine the content
and style of said images, i.e transferring the style onto the
content, hence style transfer.
Due to the previous two-input image approach, the style
transfer can only take place from one image to the other.
Hence the transferred style is bound to a single image. A
broader generalisation of style, would be to define it over
the entire painting collection of an artist.
Therefore instead of transferring the style from one image
onto another, this work focuses on learning the general
style of various artists. Following this, their works can be
visualized in any of the available artists style. The network
follows an AE structure with an additional regularization
branch. During training this branch learns to predict the
artist of the input image from the latent space. This forces
said latent space to contain meaningful information about
an artist style.
The work presented here implements a similar network
architecture as in [1] with instance normalization in the
latent space. The architecture is extended to use a Variational
Auto Encoder (VAE). Furthermore, style transfer results of
various normalisation statistics are presented and compared.
Finally, the classical AE architecture is compared to a β
Variational Auto Encoder (β-VAE) approach. The effects of
the disentangling properties of the latter, are analyzed with

respect to the reconstruction and style transfer results for
various β values in table I.

II. RELATED WORK

The preliminaries on Convolutional Neural Network
(CNN)s for style transfer was laid by Gatys et al. in [2].
Their method relies on an iterative optimization process to
minimize the content and style loss. This combines the style
and content of two images, effectively transferring the style
from the later onto the content of the first. This approach
is very flexible and can match style and content of any
two arbitrarily chosen images. The downside is the long
time it takes for the resulting image to converge. A possible
solution to this are feed forward networks trained to reduce
a similar loss function. Johnson et al. proposed a framework
for calculating perceptual losses i.e. content and style loss
from a pretrained network [3]. This method manages to solve
the optimization of [2] with comparable results but up to 3
orders of magnitude faster. The gain in speed comes with
a loss of flexibility as a separate network has to be trained
for each new style. To mitigate this problem, Chen et al.
introduce the concept of a StyleBank [4] containing explicit
representations of an arbitrary number of pretrained styles.
They use an AE structure to decouple the image style and
content to perform the style transfer.
Huang and Belongie also used an AE network as they
proposed the Adaptive Instance Normalisation (AdaIn) layer
[1] to align the style of a target image to the input image.
This allows for a fast style transfer with arbitrary input
images. Burgess et al. proposed a training method for
additional disentanglement of β-VAE [5].

III. MODELS AND METHODS

A. Architecture

The nature of our task forces us to train a model that
is able to give a disentangled representation of an artist’s
painting style based on their images. As described in [5],
so called β-VAE provide a way to achieve just that. We
hence base our model on this architecture, but extend it
with some additional tweaks. Data encoding is performed
with a 34-layer ResNet [6], pretrained on ImageNet [7],
which can be replaced with ResNets or VGGs of different
depths. The output of the encoder is then passed through a
Reparametrization Layer, which learns Gaussian parameters
µcij and σcij per feature in each channel. Additionally, there
is an injection layer that injects an artists style by using
one of the normalization layers described in Section III-D.

Figure 1. Let ω denote the latent classifier. For a single sample painting x ∈ Rn×m of artist s, let z be its latent encoding before reparametrization, x̂
the decoded reconstruction from the latent space after reparametrization, x̃ the reconstruction of x after injecting the latent space with a random artist t̃
and let z̃ be the latent encoding of x̃.

Subsequently, we apply the Reparametrization Trick [8]
on the latent space. The decoder then mirrors the image
pyramid of the ResNet encoder backbone. For each scale,
it upsamples the feature map of the next lower scale using
transpose convolutions and then applies an additional 3× 3
convolution blocks to it. Finally, the bilinearly upsampled
feature map of the next lower level is added on top of
the learned feature map, which adds residual link to the
decoding process. In order to regularize the latent space,
we introduce deep supervision into our model. The idea is
to add a classifier that extracts information about the artist
directly from the latent space. The latent space is thus forced
to contain information about the artist that drew a specific
painting. Lastly, we examine the effect that an adversarial
classifier has on the regularisation of the latent space by
additionally optimising a style loss on injected latent spaces.
See Figure 1 for a schematic of our architecture.

B. Loss

The model needs to be capable of performing the follow-
ing tasks: 1) Reconstructing an image from it’s latent space;
2) Extracting the artist style from a source image such that
it encodes the style in the latent space and can be saved in
an artist embedding; 3) Injecting a target artist style into the
source artists latent space.

1) As we are training a VAE, we maximize the Evidence
Lower BOund (ELBO) of the log-likelihood of our
training sample, given by a Binary Cross Entropy
(BCE) loss for reconstruction given a coding and the
sum of KL divergences between learned N (µcij , σcij)

per feature and a N (0, 1) prior.

LBCE =
∑

c,i,j=1

(xcij log(x̂)cij)

+ (1− xcij) log(1− x̂cij))

LKLDiv =
∑

c,i,j=1

KL(N (µcij , σcij)||N (0, 1))

LV AE = LBCE + LKLDiv

2) We encourage style extraction by adding a latent
classifier that is trained with the Cross Entropy (CE)
loss. Further disentanglement of content and style is
aided by the β parameter of the β-VAE. The latent
spaces are then normalised by taking advantage of the
normalisation methods discussed in section III-D and
saved as an artist embedding Z(a).

LCE = −ω(z)s + log(
∑
j

exp(ω(z)j))

3) Style injection is performed by sampling a random
artist during training, applying the aforementioned
target artist embedding, decoding the resulting latent
space and feeding it through the encoder again. The
deep classifier is then trained with the resulting en-
coding by applying an adversarial separate CE loss.
This time with the injected artist as target. We call
this additional loss function style loss.

LStyle = −ω(z̃)t + log(
∑
j

exp(ω(z̃)j))

Finally, the total loss amounts to:

LTOT = LV AE + LCE + LStyle

C. Inference

During inference, we fix paintings and define target artists,
whose style we wish to apply to the selected sample. The
images are fed through the encoder to get their latent repre-
sentations. The latent spaces are then transformed according
to one of the mechanisms described in section III-D. We
hence mapped the coding of the original paintings to the
target artists distributions by injecting their statistics into the
latent space. Finally, the modified feature map is put through
the reparametrization layer and fed through the decoder to
arrive at the transferred image y.

D. Normalisation Levels

As has been shown with AdaIn [1], one can apply style
transfer by swapping and normalising the statistics of source
artist s’ latent space and target artist t’s latent space. In
this subsection we introduce the normalisation techniques
and statistics with which we performed the injection in the
model. We define a latent space injection by:
• Extracting the source mean and variance with one of the

described methods, then normalising the latent space by
subtracting the mean and dividing by the variance, as
in eq. (1).

• Extracting the target mean and variance, then denor-
malising the acquired representation by multiplying the
variance and adding the mean, as in eq. (2).

Norm(x, µ(s), σ(s)) =
(x− µ(s))

σ(s)
(1)

DeNorm(Nx, µ
(t), σ(t)) = Nx ∗ σ(t) − µ(t) (2)

where multiplication and division executed element-wise
and:
x = Latent space of input image
Nx = Normalised latent space
µ(s), µ(t) = Source/Target mean
σ(s), σ(t) = Source/Target variance

fig. 2 visualises the effect that different normalisation
levels have on the injection of the input images latent space.
In the following we describe different methods to extract
source and target means and variances in order to perform
artist injection.

Figure 2. Comparison of the different normalisation levels. Every row
shares the same input data.

1) Instance Normalisation: During training, the latent
space encodings Z(a) of each artist a are extracted and used
to compute the standard deviation and the mean per feature
and channel. During inference, the standard deviation and
mean of the source latent space of the input instance (hence
the name instance) is calculated as:

µ
(s)
cij =

1

CHW

C,H,W∑
c,h,w=1

xchw

σ
(s)2

cij =
1

CHW

C,H,W∑
c,h,w=1

(xchw − µ(s))2

µ
(t)
cij =

1

|Z(s)|
∑

z∈Z(s)

zcij

σ
(t)2

cij =
1

|Z(s)|
∑

z∈Z(s)

(zcij − µ(t)
cij)

2

We then apply the injection procedure described before
which yields the injected samples. As can be seen in fig. 2
this normalisation results in very aggressive injections.

2) Artist Normalisation: Opposed to the instance normal-
isation, we do not extract the mean and variance of the input
latent space as in eq. (1), but the mean and variance over
all Z(a) of the input artist a. More concretely:

µ
(s)
cij =

1

|Z(s)|
∑

z∈Z(s)

zcij

σ
(s)2

cij =
1

|Z(s)|
∑

z∈Z(s)

(zcij − µ(s)
cij)

2

The latent space is injected by the mean and variance of the
target artists embeddings, i.e. the same way as with Instance
Normalization. As can be seen in fig. 2, injections are much
more subtle.

3) Artist Channelwise Normalisation: This normalisation
level is similar to Artist Normalisation, but extracts the
statistics channelwise. This means that, instead of calculating
the mean and variance per feature and channel, we extract
the statistics as one scalar value per channel, i.e. for input
artist s and target t, with latent feature maps of size M ×N

µ
(s)
cij =

1

|Z(s)|MN

∑
z∈Z(s)

M,N∑
m,n=1

zcmn

σ
(s)2

cij =
1

|Z(s)|MN

∑
z∈Z(s)

M,N∑
m,n=1

(zcmn − µ(s)
cij)

2

µ
(t)
cij =

1

|Z(t)|MN

∑
z∈Z(t)

M,N∑
m,n=1

zcmn

σ
(t)2

cij =
1

|Z(t)|MN

∑
z∈Z(t)

M,N∑
m,n=1

(zcmn − µ(t)
cij)

2

This is essentially a parameter free and non learnable form
of instance normalisation as in [9]. The reduction of the
injection tensors to a lower dimensional space results in a
less aggressive style transfer, as not every single element of
the latent space is normalised, but only the channel itself. In
the case of Artist Normalisation the channelwise approach
does not seem to alter the outcome too much, as the input
latent space is again normalised by the entire input artists
embedding. Thus the artist based normalisation techniques
both seem to be too restrictive to perform style transfer.

4) Instance Channelwise Normalisation: Lastly, the very
aggressive Instance Normalisation and the more subtle ap-
proach of the channelwise mean and variance computation
are combined. Instead of extracting the source mean and
variance from the the input artists embedding, we extract
them only from the input latent space x, i.e.

µ
(s)
cij =

1

MN

M,N∑
m,n=1

xcmn

σ
(s)2

cij =
1

MN

M,N∑
m,n=1

(xcmn − µ(s)
cij)

2

Target mean/variance for denormalisation eq. (2) is then ex-
tracted by the channelwise mean and variance of the output
artists embedding, as with Artist Channelwise Normalisa-
tion. Comparing Instance Normalisation with the Instance
Channelwise Normalisation, one notices how the more
subtle and regularized channelwise normalisation technique
results in a much more subtle style transfer.

IV. RESULTS

A. Dataset

To train our model, we adapted the Kaggle Dataset
[10] and trained on the images of the 10 most frequently
appearing authors, resulting in a total of 3948 samples for
training. Most of the digitalized paintings were originally
provided by the WikiArt [11] database.

B. Training

To train the experiment runs described below, we used the
Adam Optimizer with a learning rate of 10−4. We trained
with a batch size of 8 for 512 epochs in total. Additionally, to
make the training generalize better, we applied various data
augmentation techniques. All images were first scaled to a
size of 512 × 512 pixels, from which we removed random
vertical and horizontal stripes (random cropping) to arrive
at a size of 256 × 256 pixels. Further, we applied random
scaling between factors 0.9 and 1.1, randomly reflected
the images horizontally and vertically and also allowed for
rotations of up to 2π.

C. Experiments

As described in [5], increasing/decreasing the β parameter
in β-VAE can result in different levels of style disen-
tenglament since it leads to greater values of the LKLDiv

term in the loss, effectively penalizing information flow
from the encoder to the decoder. We thus experiment with
different β values in the training. To realize the impact
of having a β-VAE, we also compare to a non-VAE by
disabling the reparametrization layer. Additionally choosing
between normalization levels out of the ones described in
section III-D influences the style loss, thus having impact
on the effectiveness of the injection model. Since Instance
and Instance Channelwise normalization levels seem to have
the most impact on the decoded image, we choose these
two for our experiments. We evaluate the effectiveness of
the injection model, by first reporting precision/recall of the
prediction of the latent classifier when encoding the input
image; then compare it to the precision/recall of the latent
predictions when encoding the injected image. Note that
precision/recall is computed for each class separately and
then averaged over all classes. The results can be found in
table I and a comparison of the instance normalised networks
is visualised in fig. 3.

Norm
Level

β Precision
Input

Recall
Input

Precision
Injection

Recall
Injection

Instance No VAE 0.086 0.114 0.098 0.029
Instance 1 0.053 0.094 0.087 0.029
Instance 5 0.064 0.095 0.121 0.046
Instance 20 0.058 0.100 0.101 0.035
Instance
Channel

No VAE 0.0479 0.133 0.0938 0.0499

Instance
Channel

1 0.0586 0.157 0.108 0.0724

Instance
Channel

5 0.046 0.0769 0.0765 0.0205

Instance
Channel

20 0.0686 0.082 0.0757 0.0182

Table I
RESULTS OF EXPERIMENT WITH DIFFERENT β AND NORMALIZATION

LEVELS.

D. Comparison with AdaIn method

In this subsection, we compare our approach with the
AdaIn [1] that is constrained within the bounds of the
abilities of our encoder and decoder. Further it is to mention,
that the AdaIn encoder is trained with a different style
loss function, which our implementation does not consider.
As our approach deviates with the common methodology
of style transfer, namely that AdaIn (and others) use an
input image and a target image, contrary to our approach
of defining the target style as an artist embedding, the
comparison of the methods has to be taken with a grain of
salt, as they try to answer different questions. Specifically
AdaIn poses the question: How would this content image

Figure 3. Visualisation of the instance normalised networks from table I
and the effect of the β parameter.

look like in this style images style? While our approach gives
rise to the question: What would Picasso have done with this
input image? Thus our approach is a broader generalisation.

Figure 4. Visualisation of the difference between the AdaIn approach by
[1] in contrast to our approach with the same input image.

fig. 4 Shows how the aforementioned AdaIn implementa-
tion in section IV-D and our approach differ in results, by
inputting the same input image for both approaches. Due
to the different nature of the methods, AdaIn gets a single
style image, that is within the embedding of our target artists
embedding.

V. DISCUSSION

From the results seen in table I, we can make out a trend
that the precision of our classifier seems to increase, when
we inject an artist into an input image, while recall seems to
decrease. We can thus follow, that the correct (injected) artist
is classified with more certainty after injection, even though
less frequently as suggested by the recall. This implies, that
injection does not always work. But if it does, it is able
to convince our model that the injected image was in fact

painted by the injected artist. Due to the fact that the recall
and precision values are rather low and decoded images of
the β-VAE seem to be pretty blurry, it is hard to draw a
definitive conclusion. Interestingly, the images of the non-
VAE are reconstructed much more accurately and judging
from eye alone, the injected images seem to mimic the
injected artists style slightly better. Further investigating into
non-variational models might thus be worthwhile. It would
also be interesting to see how the results change, if our
model was trained on a larger dataset. Unfortunately, be-
cause of the nature of our task, it is hard to find an adeuqate
dataset. Artists usually only create a limited amount of
paintings during their lifetime and taking even more artists
into our dataset would actually increase the difficulty of the
learning task instead of leveraging it.

VI. SUMMARY

In this project, we present a novel approach to image style
transfer by regularizing the encoded latent spaces of images,
instead of transferring the style of a single image onto an-
other one. Our method captures the general style of an artist
and is able to transfer it onto an image painted by a different
artist. Thanks to the deeply supervised AE architecture and
the novel losses we introduced, the artist style represen-
tations could be disentangled. We experimented both with
normal AE and β-VAEs and were able to show that while
β-VAE are an interesting approach due to their inherent
disentanglement capabilities, the reconstructed images are
too blurry and are not able to properly represent the style
of the target artist. Further we proposed and compared
various normalization methods, which produced different but
nevertheless interesting results.

In future work, we will try to examine how the intra-class
variance influences the extraction and injection occurring
in the latent space. As, over the lifetime of an artist, its
individual style might evolve significantly which would
produce ambiguous results. Further, our architecture still has
room for improvements and modifications, since the time
spent on training our network was rather short due to limited
time and resources.

ACKNOWLEDGEMENTS

The authors thank the reviewers of our proposal for their
helpful feedback and guiding us in the right direction. The
training of our network was carried out on the Leonhard
GPU cluster managed by the HPC team at ETH Zurich.

REFERENCES

[1] X. Huang and S. J. Belongie, “Arbitrary style transfer in
real-time with adaptive instance normalization,” CoRR, vol.
abs/1703.06868, 2017. [Online]. Available: http://arxiv.org/
abs/1703.06868

http://arxiv.org/abs/1703.06868
http://arxiv.org/abs/1703.06868

[2] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style
transfer using convolutional neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[3] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for
real-time style transfer and super-resolution,” in Computer
Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Springer International Publishing, 2016,
pp. 694–711.

[4] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua, “Stylebank:
An explicit representation for neural image style transfer,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[5] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters,
G. Desjardins, and A. Lerchner, “Understanding disentangling
in β-vae,” 2018.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” CoRR, vol. abs/1512.03385,
2015. [Online]. Available: http://arxiv.org/abs/1512.03385

[7] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-
Fei, “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009, pp. 248–255.

[8] D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” 2014.

[9] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Improved texture
networks: Maximizing quality and diversity in feed-forward
stylization and texture synthesis,” 2017.

[10] Kaggle, “https://www.kaggle.com/c/painter-by-
numbers/overview.”

[11] WikiArt, “https://www.wikiart.org/.”

http://arxiv.org/abs/1512.03385

	Introduction
	Related Work
	Models and Methods
	Architecture
	Loss
	Inference
	Normalisation Levels
	Instance Normalisation
	Artist Normalisation
	Artist Channelwise Normalisation
	Instance Channelwise Normalisation

	Results
	Dataset
	Training
	Experiments
	Comparison with AdaIn method

	Discussion
	Summary
	References

