
Analysis and implementation of the paper - On the Computation Power of
Neural Nets

Omkar Zade
D-INFK, ETH Zürich

omzade@student.ethz.ch

Abstract

As a part of the course project we analyze and
implement the paper - On the Computational
Power of Neural Nets (Siegelmann and Sontag,
1995). The paper is a famous result on the uni-
versality of first-order recursive nets, and has
important consequences regarding decidability
of such nets. We complete a constructive proof,
by providing an implementation of the main
theorem of the paper. In doing so, we model
the equations in the proof as efficient matrix-
vector computations.

1 Introduction

The paper provides an existential and semi-
constructive proof that any Turing machine can
be simulated by a recurrent neural network of finite
size with only rational weights. This result has the
implication that any partial recursive function can
be computed on RNNs and that RNNs, as a model
of computation, are as powerful as (deterministic)
Turing machines.

2 Our contributions

We implement Theorem 2 (a) from the paper using
numpy linear algebra routines, and hence complete
a full constructive proof of the theorem. This is
to our knowledge a first attempt at implementing
the paper. The computations in the original proof
are specified in terms of single neurons. We model
these computations as efficient matrix-vector com-
putations for an entire layer of neurons, as is con-
ventional in current neural network formulations.

Secondly, Lemma 5.1 claims the existence of
vectors v1, v2, . . . , v2t ∈ Zt+2 and constants
c1, c2, . . . , c2t ∈ Z such that equations (10) and
(11) hold. We show how to efficiently compute
these parameters which are ultimately used as
weights in the neural network, by providing an
algorithm.

The rest of the paper is organized as follows: we
briefly explain the setting and formalisms in sec-
tion 3. In section 4 we discuss the intermediate step
of modeling a Turing machine with a dynamical
system over rationals, and explain our implementa-
tion. In section 5, we see the final step of modelling
it as a sigma-processor net (i.e. a composition of
saturated-affine maps).

We only implement the linear time simulation -
one step of Turing machine by four steps (layers)
of the neural network. The paper also proves a
real time simulation (Theorem 2 (b)), with more
involved encodings, which we do not cover.

3 Setting and formalisms

3.1 σ-processor nets
A recurrent first-order neural network, or σ-
processor net is a network of processors such that
every processor’s state is updated by the equation
of type:

xi(t+ 1) = σ(
N∑
j=1

aijxj(t) +
M∑
j=1

bijuj(t) + ci),

(1)
i.e. a saturated affine combination of all neurons
j = 1, . . . , N , M inputs uj and a bias. σ is the
saturated linear function i.e. σ(x) = 0, x, 1 de-
pending on whether x < 0, 0 ≤ x ≤ 1, x > 1,
respectively. We will consider nets without input
and hence the terms uj vanish. Hence, we have in
matrix-vector notation:

F(x) = σ(Ax+ c) (2)

where A ∈ QN×N and x, c ∈ QN

3.2 p-stack Turing machine
The paper considers simulation of p-stack Turing
machines, as they are equivalent to p/2-tape Tur-
ing machines (Hopcroft and Ullman, 1979). It con-



sists of a finite control and p binary stacks of un-
bounded length. Input is written on stack1 at the
beginning of computation, and there are p−1 work-
ing stacks. At the end of computation, when the
machine reaches a special halting state, output is
written to stack1. We give the description of the
machine which is relevant for the implementation,
and refer the reader to Section 3.1 and 4.1 of the
original paper for details.

A p-stack machine M is a (p+ 4) tuple

(S, sI , sH , θ0, θ1, . . . , θp)

where S = {0, 1, ..., s} is set of finite states (con-
trol), sI = 0, sH = 1 ∈ S are initial and halting
states, θ0 is a function that computes the next state
defined as the map:

θ0 : S × {0, 1}2p → S

θi are functions that compute the next stack opera-
tion “no-op”, “push0”, “push1” or “pop”

θi :S × {0, 1}2p → {(1, 0, 0), (1/4, 0, 1/4),
(1/4, 0, 3/4), (4,−2,−1)}

for i = 1 . . . p
Instantaneous description of M is X := S×Cp,

where C is the “Cantor 4-set”
The complete dynamics map of M:

P : X → X

is defined as:

P :=[θ0(s, a1, .., ap, b1, .., bp),

θ1(s, a1, .., ap, b1, .., bp) · (q1, a1, 1),
...

θp(s, a1, .., ap, b1, .., bp) · (qp, ap, 1)]

3.3 Discrete time dynamical system
A discrete time dynamical system (over rationals)
is a specified by a dynamics map

F : QN → QN

such that for each integer t ≥ 1, one defines the
state at time t, as the value obtained by recursively
solving the equations:

x(1) := xinit

x(t+ 1) = F(x(t))

4 Simulate a p-stack machine as a
dynamical system over Qs+p

As an intermediate step of construction, we sim-
ulate M (as described in 3.2) by a dynamical
system over Qs+p. A vector in this space is:
(x1, . . . , xs, q1, . . . , qp). The state vectors are unit
vectors in Qs, with e0 = (0, 0, .., 0) indicating the
initial state, e1 = (1, 0, .., 0) the halting state and
ei, i = 2..s indicating state i ∈ S. The q′is ∈ Q
encode content of the stacks, where the encoding
function δ is used to map binary contents of the
stack a1 . . . ak to rationals in [0, 1] as

δ[a1 . . . ak] =

k∑
i=1

2ai + 1

4i

. The motivation for this choice of encoding func-
tion is detailed in section 3.1 of the original paper.

Given the description of the Turing machine, we
want to define a mapping

P : Qs+p → Qs+p (3)

from the current state and stacks to the next state
and stacks:

(x1, .., xs, q1, .., qp) → (x+1 , .., x
+
s , q

+
1 , .., q

+
p )

Intuition. Assume the Turing machine M imple-
ments a partial recursive function

ϕ : {0, 1}m → {0, 1}n

for some m,n ∈ N. If given input ω ∈
{0, 1}m, if M computes ϕ(ω) ∈ {0, 1}n in
T time steps, the dynamical system P , start-
ing with xinit = (0, 0..., 0, δ[ω], 0, 0, ..., 0) as the
initial state, attains in T time steps the state
(1, 0..., 0, δ[ϕ(ω)], 0, 0, ..., 0).

4.1 Construction
We define maps

βij : {0, 1}2p → {0, 1}

which intuitively is the “next state”
map (βij(a1, .., ap, b1, ..bp) = 1 iff
θ0(j, a1, .., ap, b1, ..bp) = i) and

γkij : {0, 1}2p → {0, 1}

which intuitively are the next stack action maps
(and hence derived from θi’s). So for each of i =
1..p stacks and j = 0..s we have four such maps



for k = 1..4 corresponding to “no-op”, “push0”,
“push1” and “pop” on stack i when the machine is
in state j.

Now, the next state is computed as

x+i =
s∑

j=0

βij(a1, ..., ap, b1, ..., bp)xj

.
Letting x0 := 1−

∑s
j=1 xj , we implement this

as a single matrix computation which updates all
of x = (x0, .., xs) as

x+ = β(a1, .., ap, b1, ..bp)x (4)

For the sake of representation, we inter-
pret (a1, .., ap, b1, ..bp)base-2 as an integer in
{0, ..., 22p − 1}, and use it as the first index into β.
Hence, β is a tensor with shape (22p, s, s+ 1) and
x+ = (x+1 , .., x

+
s ).

The next stack contents are computed by equa-
tions (9.1-9.4) in the original paper,

q+i := (
s∑

j=0

γ1ij(a1, .., ap, b1, ..bp)xj)qi

+ (
s∑

j=0

γ2ij(a1, .., ap, b1, ..bp)xj))× (qi/4 + 1/4)

...

for i = 1..p. We also model these as a single
matrix-vector update:

q+ = (γ1(a1, .., ap, b1, ..bp)x)⊙ q

+ γ2(a1, .., ap, b1, ..bp)x)⊙ ((1/4)q + 1/4)

+ . . .

where ⊙ is the Hadamard product (element-wise
multiplication) and q+1/4 performs broadcasting
(addition of scalar to each element of vector q) in
numpy. The shape of γ is (22p, p, s+ 1).

Plugging these two vector equations in a loop
with a termination condition that x = e1 (halt-
ing state) finishes the simulation. q1 then contains
the encoding of the output if the original Turing
machine also terminates, otherwise the simulation
runs forever. We note that each iteration of the loop
is one step of the Turing machine, hence, this is a
real time simulation.

5 Simulate P by a compositional
σ-processor net

The final step of simulation is to simulate P [as
defined in (3)] by a net. Precisely, we will model

P as the composition of saturated affine maps [as
defined in (2)]

P = F1 ◦ F2 ◦ F3 ◦ F4

The authors show in Lemma 5.1 that for
any function over binary strings such as β :
{0, 1}t → {0, 1} (such as βij from section 4),
there exist vectors v1, v2, . . . , v2t ∈ Zt+2 and
constants c1, c2, . . . , c2t ∈ Z such that for each
d1, d2, . . . , dt, x ∈ {0, 1}

βij(d1, . . . , dt)x =

2t∑
r=1

crσ(vr · µ) (5)

where µ = [1, d1, . . . , dt, x] ∈ Zt+2 and · is the
dot product.

However, to actually implement the maps, we
need a systematic way to find these constants,
which is omitted from the original paper.

5.1 Solving for parameters
We provide an algorithm to compute vr’s and cr’s,
given description of any binary function βij such
that (5) holds.

The crux of the algorithm is solving for cr’s
assuming a polynomial representation of β as in
equation 12 in the paper:

βij(a1, ..., ap, b1, ..., bp)x = c1 + c2a1 + · · ·+ c2p+1bp

+ c2p+2a1a2 · · ·
+ c22pa1a2...b1..bp

Now, given the maps βij , we can set up
22p linear equations in cr’s by substituting
a1, ..., ap, b1, ..., bp on the right hand side and the
value βij(a1, ..., ap, b1, ..., bp) on the left hand side.
Hence we have the linear system:

Ax = b

where x = [c1, c2, . . . , c22p ] ∈ Z22p ,
b = [βij [00..00], βij [00..01], . . . , βij [11..11]] ∈
{0, 1}22p , and A ∈ {0, 1}(22p)×(22p) is the
such that rows of A represents substitutions of
a1, ..., ap, b1, ..., bp with 00..00, 00..01, . . . , 11..11
respectively on the right hand side of (1).

There is some ingenuity required in computing
A efficiently (i.e. in constant time, instead of actu-
ally performing the substitutions) as shown in the
code.



We can now use np.linalg.solve to find
cr’s, for each of βij for i = {1..s}, j = {0..s} and
store them as vectors cij ∈ Z22p .

Intuitively, vr’s are “projection vectors”
which select the appropriate terms from
(a1, ..., ap, b1, ..., bp) for the corresponding
coefficient cr. We refer the reader to the code for
the detailed algorithm.

5.2 4-Layer construction
(This section references objects and figures from
the original paper, to preserve brevity of the report).
[See FIG. 1. The universal network] The main chal-
lenge in implementing the 4-Layer construction
proposed by the authors is to arrange computations
of the form:

x+i =
s∑

j=0

βij(a1, ..., ap, b1, ..., bp)xj

=
s∑

j=0

22p∑
r=1

crσ(vr · µ)

as matrix-vector computations.
To demonstrate the necesarry transformations,

we show how to compute the next state x+ and
note that next stack contents q+ can be computed
analogously.
F4-layer neurons contain xi’s. Then, x+i is com-

puted in two steps as follows:
F3-layer neurons compute each of the terms in the
inner summation i.e. σ(vr · µ). F2-layer neurons
then compute the linear combination with cr and
the outer summation, and hence the new states x+i .

Let’s look at the map from F4 to F3,
i.e. the map F4, restricting our attention to
x0, . . . , xs, a1, ..., ap, b1, ..., bp in layer F4. Layer
F3 has for each xj , 22p neurons. Hence, the shape
of this map is F : Q((s+1)22p)×((s+1)+2p+1).

The (s+1)+ 2p+1 columns of this map corre-
spond to x0, . . . , xs, a1, ..., ap, b1, ..., bp. The rows
of this map are divided into s + 1 groups of 22p

rows in each group. The first group of rows selects
x0, the second group selects x1 and so on and the
(s+1)th group selecting xs in the dot product with
µ. In each group, the last 2p+ 1 elements are that
of vr, where the +1 th element is the −k from the
equation:

l1l2...lk = σ(l1 + l2 + · · ·+ lk − k + 1)

F4 also applies saturation σ to the computed val-
ues.

Now, we look at the map F3 : Q(s+1)22p → Qs

which computes the new states x+i by perform-
ing linear combination with cr’s. This map has
the shape Qs×(s+1)22p . Each row i is simply the
coeffecient vectors ci stacked horizontally (for
j = 1...(s+ 1)).

We omit the computation of next stack contents
q+ from the implementation, but observe that the
matrices corresponding to maps F4, . . . ,F1 can be
appended with more rows and columns to include
other “neurons” of the universal network.

6 Conclusion

Given a description of a Turing machine, we have
implemented an algorithm to construct a RNN
which simulates it in linear time overhead. This
shows that a RNN with only ratioinal weights, are
capable of accurately modeling any decidable func-
tion. We have not explored several other interesting
directions. It would be interesting to see, for exam-
ple, how effective learning algorithms e.g. back-
propogation are to learn these parameters, given a
subset of input/output pairs of the partial recursive
function, and to analyse the identifiability of the
parameters learned by the network.

[The code is submitted as a tar archive and will
be published to Github post evaluation]

References
John E. Hopcroft and Jeff D. Ullman. 1979. Introduc-

tion to Automata Theory, Languages, and Computa-
tion. Addison-Wesley Publishing Company.

H.T. Siegelmann and E.D. Sontag. 1995. On the compu-
tational power of neural nets. Journal of Computer
and System Sciences, 50(1):132–150.

https://doi.org/https://doi.org/10.1006/jcss.1995.1013
https://doi.org/https://doi.org/10.1006/jcss.1995.1013

