
Collaborative Filtering: Picnic of Ensembled Matrix Factorization Models

Andreas Tsouloupas, Arad Mohammadi, Hsiu-Chi Cheng, Omkar Zade, Group: Picnic
Department of Computer Science, ETH Zurich, Switzerland

Abstract—Collaborative Filtering (CF) is a common tech-
nique widely used and adopted by recommender systems. In
this work, we approach CF by considering matrix factorization-
based techniques. Such methods were successfully deployed in
the past. First, we present two baseline methods, namely, Singu-
lar Value Decomposition and Alternating Least Squares. Then
we introduce improved methods compared to the baselines, and
finally, we combine them optimally with our 10-fold blending
algorithm into a powerful system for recommendations.

I. INTRODUCTION

Recommender systems are widely deployed on websites
such as Netflix and Amazon. Considering their user tastes,
those systems suggest specific items to specific users that
(hopefully) match their interests. Using such recommender
systems reportedly [1] has many benefits for a company,
such as higher revenue and user satisfaction.

There are two broad categories for recommender systems,
namely, Content-Based and Collaborative filtering. In the
former, the system aims to build feature-based profiles for
both users and items. These feature profiles are later used
for recommendations. The drawback of this method is that
finding the appropriate features is hard. In contrast, Collab-
orative filtering attempts to exploit the similarity between
users’ ratings to learn from the collective data provided by
them.

In this work, we consider several CF matrix factorization-
based techniques. We begin by presenting Singular Value
Decomposition and Alternating Least Squares as our base-
lines. Then, we introduce some alternative methods, and
finally, we combine them into a powerful system for rec-
ommendation by obtaining optimal blending weights.

II. PROBLEM SETTING

We are given a total of N = 1, 176, 952 ratings of
n = 10, 000 different users to m = 1, 000 different
movies/items. Let rui denote the rating assigned by user
u to item i. The ratings are integer numbers between 1 to
5, which shows how much a specific user likes a specific
item. Let I = {(u, i) | rui is observed} be the set of pairs
of user and item indices that are observed. We divide set
I into 10 disjoint folds. Then, we consider all

(
10
9

)
= 10

different arrangements of folds into two groups. We denote
by T (f) and V (f) the sets containing 9 folds and 1 fold,
respectively, for all arrangements f = 1, ..., 10. Now we
can define the following sets I(f)

train =
⋃

fold∈T (f)

fold and

I(f)
val = I \ I(f)

train. The former set (for all f = 1, ..., 10)
contains 90% of the observed entries indices pairs, while the
latter contains the remaining 10%. These sets will later be
used for cross-validation and for learning optimal blending
weights in Section IV.

Conventionally, the observed entries are represented as a
sparse matrix A ∈ Rn×m. Formally, ∀(u, i) ∈ I, aui = rui,
and ∀(u, i) /∈ I, aui = ?. Duo to the sparseness of matrix
A, predicting missing values becomes particularly difficult.
From the n ×m = 10, 000, 000 possible ratings, we know
only as few as N = 1, 176, 952, which is just 11.77% of
the whole matrix. Root mean squared error (RMSE) is used
as the evaluation criterion to assess the performance of our
models. RMSE calculates the root of the average distance
between each predicted rating and true rating. Let W be an
instance of observed entry pairs, then

RMSE =

√√√√(
1

|W|
)

∑
(u,i)∈W

(rui − r̂ui)2

where r̂ui is the predicted rating of user u for item i. The
notation r̂

(j)
ui will be used later to denote the prediction of

model j for the particular rating.
Our predictions are evaluated based on a public test set,

which we denote by Itest. The public test set contains 50%
of the test data on which our predictions will finally be
evaluated.

III. INDIVIDUAL MODELS AND METHODS

In our CF approaches, we focused on matrix factorization-
based models. In this section, we will present seven indi-
vidual algorithms we used for our recommender systems,
starting from the two baselines.

A. Overview

The idea behind matrix factorization-based models is that
preferences of user u for item i can be estimated by a few
hidden factors. Here we describe the association between
user u and its factors as pu ∈ Rk, while that between
item i and its factors as qi ∈ Rk. Under this structure, the
estimation of a rating r̂ui of user u for item i is modeled
by the dot product of the corresponding two vectors.

r̂ui = pT
uqi = Σk

t=1putqti (1)

Suppose there are n users and m items; we can assemble
all those user factors as a matrix P ∈ Rk×n and item factors

as Q ∈ Rk×m. The columns of P and Q correspond to
the user and item features, respectively. Once we calculate
the dot product of P and Q, we are able to estimate all
the user-item interactions by a matrix Â ∈ Rn×m, where
Â = P TQ.

Our goal of matrix factorization-based methods is to figure
out the matrices P and Q from limited observed ratings and
make estimations of unknown ratings.

B. Missing Values and Normalization

In our case and numerous other real-life applications, the
vast majority of ratings are missing. In order to model our
recommender systems, one issue is to deal with missing
values, denoted by ? in the sparse matrix A. Some methods,
such as SVD, cannot operate on sparse matrices directly;
therefore, imputation is an unfortunate necessity. Here, we
made use of the following method:

• Zero imputations: Let W be an instance of observed
entry pairs, then ∀(u, i) /∈ W , aui = 0.

Moreover, sometimes it is beneficial to normalize data
before applying the methods. Thus, we consider the famous
normalization method, namely item-item z-scores

aui =
aui − āi

σ(ai)

where ai ∈ Rn is the i-th column of matrix A. āi and σ(ai)
are the mean and standard deviation, respectively, which take
into consideration only the observed entries of each column.
It is important to mention that whenever normalization is
used the prediction is obtained by reverting it, i.e., r̂ui =
(r̂ui + āi)× σ(ai).

C. Singular Value Decomposition (SVD)

SVD [2] is a popular method in linear algebra for matrix
factorization. SVD factorizes a given matrix A ∈ Rn×m

into two orthogonal matrices U ∈ Rn×n and V ∈ Rm×m,
and a rectangular diagonal matrix Σ ∈ Rn×m, such that

A = UΣV T , Σ = diag(σ1, ..., σmin{n,m})

where σi ≥ σi+1 ≥ 0. The normalization described in
Section III-B is applied to A before SVD. Our goal is to find
a low-rank approximation Â such that rank(Â) ≤ k, with
the hope that it can perform well on missing values. Eckart-
Young Theorem [3] shows that pruning the first k singular
values in the SVD representation results in the optimal rank
k approximation of a matrix. We thus only utilize the largest
k values in Σ and the first k columns of U and V . We can
then rewrite our estimation matrix into

Â = UT
kΣkV k

where Σk = diag(σ1, ..., σk) ∈ Rk×k, Uk = (u1, ...,uk) ∈
Rn×k, ui is the i-th row in U ; V k = (v1, ...,vk) ∈ Rm×k,
vj is the j-th row in V .

D. Alternating Least Squares (ALS)

One of the common approaches to CF is ALS [4]. ALS
iteratively optimizes the objective function

1

2

∑
(u,i)∈W

(rui − pT
uqi)

2 +
λ

2
(||P ||2F + ||Q||2F) (2)

Here || · ||F is the Frobenius norm, and W is an instance
of observed entry pairs. ALS monotonically improves the
objective in an alternating manner. It converges to a fix-
point; however, there is no guarantee that it will converge to
the global optimal. An essential factor that drastically affects
the final result is the initialization of P and Q, which in
our approach is done by SVD. The same normalization as
in SVD is applied before SVD and ALS. The algorithmic
procedure is illustrated in Algorithm 5 in the Appendices.

Algorithm 1 Global Bias
Input: A ∈ Rn×m, λ, µ ∈ R+, Bu ∈ Rn, Bi ∈ Rm and
W
Output: Optimal Bu and Bi

1: while not convergent do
2: for u in 1...n do
3:

bu = (λ+
∑

i:(u,i)∈W

1)−1
∑

i:(u,i)∈W

(aui − µ− bi)

4: end for
5: for i in 1...m do
6:

bi = (λ+
∑

u:(u,i)∈W

1)−1
∑

u:(u,i)∈W

(aui − µ− bu)

7: end for
8: end while

E. Global Bias (GBias)

Alternating least squares is a common method used to
minimize an objective. In this method, we attempted to
utilize the power of ALS in order to minimize a different
objective function given by

1

2

∑
(u,i)∈W

(rui − (µ+ bu + bi))
2 +

λ

2
(||Bu||2 + ||Bi||2)

where W is an instance of observed entry pairs. In contrast
with all other methods, the prediction of a rating given by
user u to item i is given by r̂ui = µ + bu + bi, where µ
is the global rating mean, bu is the bias of user u towards
its ratings compared to other users, and bi is the bias of
ratings given to item i compared to other items. We can
then assemble all those user biases as a vector Bu ∈ Rn

and item biases as Bi ∈ Rm. This method is illustrated in
Algorithm 1.

As in every application of ALS, the initialization affects
the final result, i.e., the fix-point to which it will eventually
converge. Vectors Bu and Bi are initialized as shown in
Eq. (4) and (5) in the Appendices.

F. Singular Value Projection (SVP)

SVP [5] is a projected gradient descent method. For
a given matrix A, SVP iteratively makes an orthogonal
projection onto a set of k-rank matrices given by

A0 = 0, At+1 = [At + ηt+1ΠW(A−At)]k, η
0 > 0

where the projection []k to rank k matrices is done via SVD.
The learning rate for each epoch is given by ηt+1 = η0

√
t+1

which was suggested in [5]. Before SVP, we normalize our
data as in the previous methods. The prediction r̂ui is equal
to the entry aLui, of the last projection matrix Â = AL.

G. Singualar Value Thresholding (SVT)

SVT [6] has been successfully used in many low-rank
optimization problems. SVT is illustrated in Algorithm 2.
Data normalization, as in the previous methods, is applied
before SVT. The algorithm is based on the shrinkage op-
erator, which iteratively shrinks the singular values of Â
towards 0. The nuclear norm is the convex envelope of the
rank function on matrices; hence, we hope that the result
will be a low-rank approximation of A.

Algorithm 2 SVT
Input: A ∈ Rn×m, τ ∈ R+, Ep ∈ N and W
Output: Â = shrinkτ (A

Ep)

1: A0 = 0
2: for t in 0, ..., Ep− 1 do
3: At = UΣV T

4: Ã = shrinkτ (A
t) = Udiag(max(0, σk − τ))V T

5: for all (u, i) ∈ W do
6: at+1

ui = atui + η(aui − ãui)
7: end for
8: end for

H. Improved Regularized SVD (IRSVD)

Improved regularized SVD was introduced in [7], and it
leverages the power of Stochastic Gradient Descent (SGD)
in order to minimize the following objective

1

2

∑
(u,i)∈W

(rui−(µ+ bu + bi + pT
uqi))

2 +
λ1

2
(||P ||2F

+ ||Q||2F) +
λ2

2
(||Bu||2 + ||Bi||2)

The improvement of this method compared to its pre-
decessor Regularized SVD (RSVD), suggested by Simon
Funk [8], is the introduction of user-specific and item-
specific biases. Each user u has a corresponding bias term
denoted by bu ∈ R and each item i a bias term denoted

by bi ∈ R. These bias terms model the effects associated
with specific users or items. Consequently, we increase the
modeling power; hence, the predictions will be closer to
reality. The prediction of the rating given by user u to item
i is now defined as r̂ui = µ + bu + bi + pT

uqi (µ is the
global rating mean), which is an improvement of Eq. (1).
Moreover, the regularization terms are introduced in order to
avoid overfitting by controlling the magnitude of the vectors.

Algorithm 3 illustrates the update rules for IRSVD. It is
worth mentioning that the set of observed entries is shuffled
after each epoch. This enables better training since shuffling
imposes different orders for indices pairs per epoch. Fur-
thermore, we decided to initialize the bias terms according
to Eq. (4) and (5) in the Appendices.

Algorithm 3 Improved Regularized SVD
Input: A ∈ Rn×m, λ1, λ2, η, µ ∈ R+, k,Ep ∈ N, Bu ∈
Rn, Bi ∈ Rm and W
Output: Optimal P , Q, Bu and Bi

1: Initialize P ∈ Rk×n and Q ∈ Rk×m by drawing
numbers from a normal distribution with µ = 0 and
σ = 1

k
2: for t in 1...Ep do
3: Randomly shuffle W
4: for all (u, i) ∈ W do
5: e = aui − µ− bu − bi − pT

uqi

6: bu = bu + η(e− λ2bu)
7: bi = bi + η(e− λ2bi)
8: pu = pu + η(eqi − λ1pu)
9: qi = qi + η(epu − λ1qi)

10: end for
11: end for

IV. ENSEMBLE OF METHODS

So far, we have presented various individual models. A
natural question to ask is whether we can combine the
predictive power of these methods. Ensembling is a simple
technique to achieve this. We used a variant of ensembling,
commonly referred to as Blending, to combine our models
(baselines included). Assuming we have x models and the
reconstructed matrix by the j-th model is denoted by Â

(j)
.

Then the final prediction is the weighted linear combination

Â = w0 +

x∑
j=1

wjÂ
(j)

(3)

where Â
(j)

are fixed, and we learn the parameters wj

for j = 0, 1, ..., x. This reduces to solving a least-squares
problem. However, if we use the training data on which Â

(j)

are trained, the ensemble is prone to overfitting. Hence, the
following strategy is employed:

1) Split the dataset into training and a holdout set.

2) Train j-th model on the training set for all j = 1, ..., x,
learn wj on the holdout set for all j = 0, ..., x.

In order to further improve the performance with more
accurate weights, a 10-fold cross-validation style process
is employed. The ensemble algorithm is then modified to
an averaging of obtained weights of 10 repetitions of the
original blending procedure. Algorithm 4 illustrates in detail
all steps of our new 10-fold ensembling function.

Algorithm 4 10-fold Ensemble

Input: model(1), ...,model(x) and I
Output: Obtain Â as in Eq. (3) for models trained on I
(entire dataset) with computed averaged weights w0, ..., wx

1: Obtain I(f)
train and I(f)

val for all f = 1, ..., 10 as in Sec II
2: for f in 1...10 do
3: for j in 1...x do
4: Train model(j) on I(f)

train to obtain Â
(j)

5: Let r̂(j)ui be the predictions of Â
(j)

6: end for
7: Solve the linear system of equations

rui = w
(f)
0 +

x∑
j=1

w
(f)
j r̂

(j)
ui

for all (u, i) ∈ I(f)
val , with unknowns w

(f)
0 , ..., w

(f)
x

8: end for
9: Compute wj =

∑10
f=1 w

(f)
j /10 for all j = 0, ..., x

V. EXPERIMENTAL RESULTS

As explained in Section II, we split the set of observed
entries I into 10 disjoint folds. Each model is trained on
set I(f)

train. The other set I(f)
val is held to estimate the score

of the model. The same process is repeated 10 times for all
f = 1, ..., 10 in order to obtain the 10-fold cross-validation
score for each model, i.e., the mean RMSE and its standard
deviation. The same technique (with set I) is used to identify
the optimal hyperparameters by performing 10-fold cross-
validation for different sets of parameters. In Appendix A we
present the experimental results of this process. The optimal
hyperparameters for each model are summarized in Table I.

Table I
EXPERIMENTAL OPTIMAL HYPERPARAMETERS FOR EACH METHOD

Method Optimal Parameters
SVD k = 8

ALS k = 3, λ = 0.1, Ep = 3

GBias λ = 0.001, Ep = 5

SVP k = 3, η = 5, Ep = 10

SVT η = 1.2, τ = 800, Ep = 12

RSVD k = 325, η = 0.01, λ = 0.02, Ep = 15

IRSVD k = 325, η = 0.01, λ1 = 0.02, λ2 = 0.05, Ep = 15

Finally, we re-train each model on the entire set of
observed entries I in order to leverage the power of the
entire dataset. The obtained predictions r̂(j)ui for all (u, i) ∈ I
and j = 1, ..., 7 are also provided to the blending algorithm.
The blending algorithm will combine the predictions as
discussed in detail in Section IV and Algorithm 4. The
RMSE we received for each model on both cross-validation
and public test set is illustrated in Table II. The public test
score on Itest is obtained after submitting to Kaggle the
predictions for the models trained on the entire set I.

Table II
RMSE FOR DIFFERENT MODELS

Model Cross-Validation Public Score
Mean Std

Baseline Models
SVD 1.00799 0.00178 1.00511
ALS 0.98866 0.00195 0.98609

New Models
GBias 0.99959 0.00217 0.99823
SVP 0.99244 0.00199 0.99088
SVT 0.98979 0.00179 0.98688
RSVD 0.98996 0.00196 0.98686
IRSVD 0.98111 0.00198 0.97772
Ensemble - - 0.97417

VI. EVALUATION

As shown in Table II, the blending algorithm had the best
score by significantly outperforming both baseline and the
best individual methods. It is worth mentioning that although
only IRSVD was an improvement of both baselines, while
the rest outperformed only SVD (baseline), blending their
results contributed to a more powerful model. This reinforces
the belief that different models can contribute their own
merit to the final solution. Moreover, comparing the cross-
validation and public scores, we conclude that all methods
generalize well on previously unavailable entries, i.e., on
Itest. Additionally, we noticed an improvement in the score
on the public set compared to cross-validation, which we
attribute to the fact that models were trained on the entire
set of observed entries I, while cross-validation always had
a holdout fold.

As mentioned at the beginning, the sparseness of an
observed matrix imposes a monumental challenge for recon-
struction. Our final observation indicates that denser matrices
enhance the usefulness of our models.

VII. SUMMARY

In summarizing this work, we approached the recom-
mender system problem using various matrix factorization
methods. Our best individual method outperformed both
baseline methods, while the power of the blending algorithm
managed to further boost the effectiveness of our system.

REFERENCES

[1] B. Smith and G. Linden, “Two decades of recommender
systems at amazon.com,” IEEE Internet Computing, vol. 21,
pp. 12–18, 05 2017.

[2] V. Kelma and A. Laub, “The singular value decomposition:
Its computation and some applications,” IEEE Transactions on
Automatic Control, vol. 25, no. 2, pp. 164–176, 1980.

[3] C. Eckar and G. Young, “The approximation of one matrix by
another of low rank,” Psychometrika, vol. 1, no. 3, pp. 211–
218, 1936.

[4] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” Computer, vol. 42,
no. 8, pp. 30–37, 2009.

[5] P. Jain, R. Meka, and I. Dhillon, “Guaranteed rank mini-
mization via singular value projection,” Advances in Neural
Information Processing Systems, vol. 23, 2010.

[6] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value
thresholding algorithm for matrix completion,” SIAM Journal
on optimization, vol. 20, no. 4, pp. 1956–1982, 2010.

[7] A. Paterek, “Improving regularized singular value decomposi-
tion for collaborative filtering,” Proceedings of KDD Cup and
Workshop, 01 2007.

[8] “Netflix update: Try this at home,” https://sifter.org/simon/
journal/20061211.html, (Accessed on 07/22/2022).

APPENDIX A.
HYPERPARAMETER TUNING

An important aspect of building a powerful system is to
find its best hyperparameters. This section presents some
of our experimental results that led to selecting specific
parameters for each model. The results are based on the
technique of 10-fold cross-validation on the entire set I.

A. Singular Value Decomposition (SVD)

We found that performing SVD on normalized A as
described in Section III-B and then reverting normalization
yields better results than the unnormalized version. Figure
1 shows the cross-validation score for different selection of
k (number of singular values to keep). It was found that the
optimal value for k is 8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of singular values

1.008

1.010

1.012

1.014

1.016

Av
g.

 R
M

SE

Figure 1. Hyperparameter k tuning for SVD.

B. Alternating Least Squares (ALS)

We fixed the proposed baseline parameters k and λ, i.e.,
k = 3 and λ = 0.1. The experiment illustrated in Figure 2
was contacted in order to find the number of epochs required
until the algorithm converges. It was found that Ep = 3
is sufficient, while for more than three epochs, the RMSE
error increases (overfitting phenomenon). The algorithmic
procedure of ALS to minimize its objective (Eq. (2)) is
shown in Algorithm 5.

1 2 3 4 5
Epoch

0.98875

0.98900

0.98925

0.98950

0.98975

0.99000

0.99025

RM
SE

Figure 2. Hyperparameter Ep tuning for ALS.

Algorithm 5 ALS
Input: A ∈ Rn×m, k ∈ N, P ∈ Rk×n, Q ∈ Rk×m and W
Output: Optimal P and Q

1: while not convergent do
2: for u in 1...n do
3:

pu = (
∑

i:(u,i)∈W

qiq
T
i + λIk)

−1
∑

i:(u,i)∈W

auiqi

4: end for
5: for i in 1...m do
6:

qi = (
∑

u:(u,i)∈W

pup
T
u + λIk)

−1
∑

u:(u,i)∈W

auipu

7: end for
8: end while

C. Global Bias (GBias)

The GBias method that is inspired by ALS to minimize
its objective can be considered as the least powerful method
that we introduced. Even when matrix A is fully observed,
this method may not be able to achieve exact reconstruction
since it attempts to reconstruct an entry based only on the
information of the biases of the user and the item. Further-
more, experiments have shown that keeping the regulariza-
tion factor as small as possible improves its performance.
The improvement was negligible for regularization factor
λ ≤ 0.001; therefore, we decided to select 0.001 as its value.

The vectors Bu ∈ Rn and Bi ∈ Rm in GBias are
initialized as follows. Let W be an instance of observed
entries, then

µ =

∑
(u,i)∈W aui

|W|

µ(u,.) =

∑
i:(u,i)∈W aui

|Wi:(u,i)|

µ(.,i) =

∑
u:(u,i)∈W aui

|Wu:(u,i)|

bu = µ(u,.) −
∑n

t=1 µ(t,.)

n
, for u = 1, ...n (4)

bi = µ(.,i) −
∑m

t=1 µ(.,t)

m
, for i = 1, ...,m (5)

where µ is the global rating mean, µ(u,.) is user’s u rating
mean, µ(.,i) is item’s i rating mean, bu is user’s u rating
bias and bi is item’s i rating bias.

D. Singular Value Projection (SVP)

As in the case of SVD, we found that using normalized
A yields better results. Figure 3 depicts the cross-validation
score for different selection of k (the projection rank). In
contrast with SVD, the best value for k was found to be 3,
and after 20 epochs, the algorithm converges. Furthermore,
note that the value of learning rate η was fixed to 5 as
suggested in [5]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Projection rank

0.995

1.000

1.005

1.010

1.015

1.020

1.025

Av
g.

 R
M

SE

Figure 3. Hyperparameter k tuning for SVP.

E. Singular Value Thresholding (SVT)

For this method, we had to tune the parameter τ of the
shrinkage operator. As in the methods mentioned above, we
found that using normalized A yields better results. Figure
4 shows the cross-validation score for different selection of
τ (the shrinkage value). We found that if we fix the learning
rate η to 1.2 as suggested in [6], the best value for τ is 800,
and it converges after 12 epochs.

200 400 600 800 1000 1200 1400
Threshold

0.990

0.991

0.992

0.993

0.994

0.995

0.996

Av
g.

 R
M

SE

Figure 4. Hyperparameter τ tuning for SVT.

F. Regularized SVD (RSVD)

Figure 5 presents the cross-validation score for different
selection of k. The model with 325 features had the best
score. For this experiment, we fixed the learning rate η and
regularization factor λ to 0.01 and 0.02, respectively. The
regularization factor value was suggested in [7]. Moreover,

the number of epochs required to converge was found to be
15.

Algorithm 6 illustrates the update rules for RSVD, which
are very similar to IRSVD presented in Algorithm 3.

75 125 175 225 275 325 375 425
Number of features

0.990

0.991

0.992

0.993

0.994

0.995

Av
g.

 R
M

SE

Figure 5. Hyperparameter k tuning for RSVD.

Algorithm 6 Regularized SVD
Input: A ∈ Rn×m, λ, η ∈ R+, k,Ep ∈ N and W
Output: Optimal P and Q

1: Initialize P ∈ Rk×n and Q ∈ Rk×m by drawing
numbers from a normal distribution with µ = 0 and
σ = 1

k
2: for t in 1...Ep do
3: Randomly shuffle W
4: for all (u, i) ∈ W do
5: e = aui − pT

uqi

6: pu = pu + η(eqi − λpu)
7: qi = qi + η(epu − λqi)
8: end for
9: end for

G. Improved Regularized SVD (IRSVD)

In this method, we made an unorthodox decision regard-
ing the selection of the hyperparameter k, which represents
the features of users and items. Figure 6 depicts the cross-
validation score for different selection of k. While we
observed that having more features gives a small boost to
the model’s performance, we decided to stop at 325 features.
With this number of features and onwards, the RMSE starts
stabilizing. Since the goal is also the training speed of our
model and the number of features is getting rapidly closer
to m = 1000, (the number of items) the decision was to
stop at k = 325. For this experiment, we fixed the learning
rate η, the first regularization factor λ1 and the second
regularization factor λ2 to 0.01, 0.02 and 0.05, respectively.
Both regularization factor values were suggested in [7].
Finally, the number of epochs required to converge was
found to be 15, as is shown in Figure 7.

75 125 175 225 275 325 375 425
Number of features

0.981

0.982

0.983

0.984

0.985

Av
g.

 R
M

SE

Figure 6. Hyperparameter k tuning for IRSVD.

Moreover, we decided to present the overfitting phe-
nomenon on the training data for this method. Overfitting
occurs when a model learns how to reproduce training data
very well at the cost of missing the ability to generalize
on unknown entries. Figure 7 illustrates overfitting during
training of IRSVD with the parameters suggested above. It
is clear that after epoch 15, the test RMSE increases while
the train RMSE rapidly decreases.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Epoch

0.75

0.80

0.85

0.90

0.95

1.00

RM
SE

train
test

Figure 7. Overfitting phenomenon on IRSVD when k = 325.

