
EXPLORING THE BENEFITS OF TASKING IN DACE

Aidyn Aluadin, Ziqiao Kong, Hugo Queinnec, Omkar Zade, Jingyi Zhu

Department of Computer Science
ETH Zürich

Zürich, Switzerland

ABSTRACT

DaCe is a data-centric programming environment that parses
Python code into an intermediate representation called State-
ful Dataflow multiGraph, optimizes it and generates parallel
C++ code using the OpenMP API. Originally, DaCe only
supports the OpenMP for construct. We extended DaCe
with the task construct1 and provided examples where code
generated using task outperforms that using for. We also
explored the possibility of code generation using task de-
pendencies.

1. INTRODUCTION

Rapid development of multicore systems is increasing the
complexity of writing performant code. While Python has
become the go-to programming language among domain
scientists, it has limitations in taking advantage of paral-
lelism due to its Global Interpreter Lock. Although pro-
grammers can enable parallelism in Python with modules
such as multiprocessing, it takes extra effort to modify the
original code. Many tools have emerged to offer an eas-
ier way to parallelize the program. DaCe is one of those
frameworks that introduce minimal change to the program.
Our project focuses on extending DaCe with the OpenMP
tasking backend.

Motivation. Currently, DaCe uses the for construct of
the OpenMP API as its backend. However, there is another
useful construct––task––which is not utilized in DaCe yet.
While for is more commonly used in the domains which
DaCe aims to support, there are cases where tasking per-
forms better. In the case of heterogeneous workload among
iterations of a for loop, tasking might yield a better perfor-
mance because it dynamically schedules the tasks and thus
can better utilize idle threads. Since DaCe uses a graph-
based intermediate representation of the program, we can
also apply tasking by analyzing the overall structure of the
graph and enclosing some subgraphs into tasks which are
then executed in parallel. Tasking can also natively support
recursive programs such as quick sort [1] or fibonacci num-

1Our code is accessible on GitHub.

bers [2], which is an advantage over for. But, we do not
consider such programs because DaCe is not designed to
support recursive functions.

Contributions.

• We added a tasking backend that can be used instead
of the default parallel for backend.

• We introduced tasking on a graph level where sub-
graphs, in addition to nodes and scopes, can be turned
into tasks.

• We evaluated our generated tasking code using NPBench
benchmarks.

• We attempted fine-grained tasking with data depen-
dencies but found limitations in the frameworks.

Related work. Legion [3] is a programming model
that uses “logical regions” to specify data dependencies be-
tween tasks. The tasks are scheduled by their custom par-
allel scheduling algorithm. The programmer needs to de-
fine data regions and access rights which are then used by
Legion to execute tasks in correct order. While the idea
of applying tasks is similar, our project does not identify
or build data dependencies. Dask [4] is a Python library
which offers a convenient way to parallelize the code and
scale it among multiple clusters. Similar to DaCe, it also
uses a graph-based representation to depict dependencies
between tasks and overall dataflow. Dask’s scheduler and
parallel data structures were mainly implemented in Python
using the concurrent.futures module. In contrast,
our project uses OpenMP compiler directives on top of the
translated C++ code.

2. BACKGROUND

In this section we briefly go over the concepts, frameworks
and tools that we use such as DaCe and OpenMP.

Dataflow. Dataflow refers to the movement of informa-
tion from one entity to the other in a given environment. For
example, information exchange between different clusters

https://github.com/hugoqnc/dace-tasking


in a data center can be considered as a dataflow. More of-
ten, dataflow is depicted as a directed acyclic graph (DAG)
where nodes are some kind of computation containers. The
computation containers take input and produce output which
are then passed to other containers.

DaCe. DaCe [5] is a parallel programming framework
that can translate code written in high-level language into
optimized machine instructions that can be run efficiently
in different hardware architectures. It uses a powerful inter-
mediate representation––the Stateful DataFlow multiGraph
(SDFG). The SDFG separates the concern between writing
scientific code and writing high-performance code tailored
to specific hardware. In SDFG, parallel regions of code are
represented as Map scopes that have entry and exit nodes
and that can contain any subgraphs in between. These sub-
graphs are self-contained in a way that the external data only
comes from the entry/exit nodes of the scope. Thus it is eas-
ier to reason about the data dependencies and overall struc-
ture of the graph.

OpenMP. OpenMP [6] is an API used for writing paral-
lel programs that are usually executed on a single machine
with shared memory architecture. It uses a fork-join model,
spawning a team of threads and joining them back through-
out the execution of the program. OpenMP provides a set
of compiler directives by which a programmer can specify
the parts of the code they want to parallelize. A common
construct is the for construct used to parallelize sequen-
tial for loops. It splits the loop iterations into equally sized
chunks, assigns them to the team of threads and implicitly
waits at the end of the loop until the execution is fully done.
There is another OpenMP construct called task: a sin-
gle thread generates tasks according to task regions. Tasks
are stored in a queue and executed as per availability of the
threads. Using tasks might be beneficial compared to for
in the case of heterogeneous workload. The for construct
can produce a schedule where one thread takes much longer
to finish its chunk of computation and subsequently halts
the others with a lighter workload. This is easily mitigated
using tasks as the big workload is distributed more evenly
among the threads depending on their availability. How-
ever, using tasks is not always better than parallel for loops
because there is an additional overhead due to task gener-
ation, storage and scheduling. Currently DaCe only uses
the for construct for executing the parallel regions of the
code. We would like to integrate OpenMP tasking to DaCe
and attempt to generate C++ code with higher performance.

3. TASKING IMPLEMENTATION

3.1. Straightforward approach to Tasking

Our initial approach to integrating tasking in DaCe was to
transform each iteration of a map into a task. Instead of as-
signing a range of iterations to each thread, tasking allows

each thread to choose a task (an iteration), execute it, and
return to the task pool for another task. However, we found
that this approach was too fine-grained and led to signifi-
cantly worse performance on almost all benchmarks. Fur-
ther analysis revealed that the slowdown was mainly caused
by the tasking overhead, but also to a lesser extent by false
sharing. We obtained better performance only when the iter-
ations are highly heterogeneous (as detailed in section 4.2).

3.2. Advanced Tasking through Manual Transformations

In DaCe, there are instances where multiple independent
scopes must be computed in order to generate a final re-
sult that depends on them. Each scope can already be paral-
lelized across all available cores, for example in cases where
the scope is a map operation. In the current implementation,
these scopes are computed one by one, sequentially, until
the final result can be calculated. The main idea behind the
optimization is to exploit the fact that these scopes are in-
dependent. Depending on the structure of the SDFG, some
scopes “at the same level” may be able to be computed in
any order, or even in parallel. This is where tasking comes
into play. It is intended for cases where we have indepen-
dent tasks that can be executed in any order.

This optimization is not expected to lead to groundbreak-
ing performance improvements as scopes are already inde-
pendently parallelized. However, there may be some cases
where using sequential scopes would be suboptimal, and the
use of tasking could lead to a slight performance gain.

Running example. To illustrate how tasking can lead
to performance improvements, we will consider a simple
SDFG called “multiple maps” (shown in figure 1). It con-

Fig. 1. SDFG of “multiple maps” for m = 4

sists of m independent maps at the same level, each with
slightly different ranges2, whose results are all used in an
operation at the end. For the purpose of this simple illus-
tration, we will use m = 4 maps. In the original imple-
mentation of DaCe, map 1 is computed (parallelized across
multiple threads with omp parallel for), followed by
maps 2, 3, and 4 (one map after the other), and finally the fi-
nal result is computed and outputted. With our custom task-
ing optimization, we will treat each map as a single threaded

2The slightly different ranges are included to make the m maps “not
trivially mergeable” into a single map. In practice, if there are several
independent maps at the same level in an SDFG, it is indeed because they
cannot be merged into a single one.



task. Therefore, if we are parallelizing across 4 threads,
each thread will take on one of the 4 tasks, which will all be
started at the same time and will execute in parallel.

Performance gains. One theoretical performance im-
provement in the tasking optimization is what we call “over-
head gain”. In the original DaCe, as each map is paral-
lelized across all threads, the range of iterations must be
divided between threads for each map (shown in figure 2).
This overhead time increases linearly with the number of
maps: O(m). With the tasking optimization, the first thread
creates all tasks corresponding to all maps. No matter the
number of maps, this step is done only once and takes O(1)
time3. Then, each available thread takes a task from the
pool of remaining tasks until all tasks are finished4 (shown
in figure 3). Overall, this implementation difference jus-

Fig. 2. Simplified execution of “multiple maps” with origi-
nal DaCe (omp parallel for backend), and m = 4

Fig. 3. Simplified execution of “multiple maps” with task-
ing optimization (each map is a task), and m = 4

tifies the expectation of some “overhead gain” in the task-
ing implementation, which will increase with the number
of maps. It is possible for the tasking implementation to
have some underutilization at the end due to a single thread
executing the last map alone. In the worst case, this will
last for the duration of one map computation (O(1) in the
number of maps). This loss is relatively smaller the more
maps there are, and can also disappear when the number of
maps is divisible by the number of threads. Additionally, the

3It takes slightly longer to create an increasing number of tasks, but
this is negligible compared to the original implementation for a number of
maps that is much smaller than the number of iterations of each map.

4It is intuitively supposed that the overhead time for a thread to take a
task is much smaller than the time to divide a range of iterations, and is
therefore negligible (this assumption is experimentally verified in 4.1).

smaller the map, the relatively larger the overhead for omp
parallel for becomes, so the tasking implementation
should be comparatively faster.

A second theoretical performance improvement in the
tasking optimization is the “barrier gain”. In the previous
example, we have implicitly assumed that the maps are ho-
mogeneous5. However, in practice, maps can be heteroge-
neous, meaning that the computation time depends on the
iteration (shown in figure 4). As omp parallel for

Fig. 4. Simplified execution of an heterogeneous version of
“multiple maps” with original DaCe, and m = 4

implies an implicit barrier at the end of the map, all threads
will have to wait for the longest thread to finish, leading
to low utilization. This does not occur with the tasking
implementation because each map runs on a single thread.
Therefore, we expect some “barrier gain” in the tasking im-
plementation, which will increase with the heterogeneity
of the maps. In cases of heterogeneity, it is possible for
the omp parallel for implementation to actually get
faster with an increasing number of threads, even with more
threads than CPU cores6. Therefore, the barrier gain de-
creases with the number of threads.

Decision making. Potential “overhead” and “barrier”
gains depend on various parameters, such as the number of
tasks, number of threads, size of maps, and heterogeneity of
maps. It is then up to a performance expert to decide if our
optimizations are worth using . Our experimental results (in
4.1) will demonstrate cases where the tasking implementa-
tion actually improves performance.

3.3. Code Generation

To transform some functions to high performance compu-
tation code, DaCe follows a similar design as LLVM, by
splitting the codebase into the frontend, intermediate repre-
sentation, optimization pass, and code generation backend.
This also largely simplifies our work because we only need
to deal with the SDFG, the intermediate representation, and
then it will work for all frontends. In particular, we focus

5Meaning that all iterations have the same computation time, which
benefits the omp parallel for implementation by leading to almost
full utilization of threads.

6Because adding more threads divides the work more, so the case where
a single thread has longer iterations than all others becomes less likely.



on the Map nodes of an SDFG, which represents the actual
computation.

Straightforward approach. By default, DaCe gener-
ates code using OpenMP parallel for, as listing 1 shows.

1 #pragma omp parallel for
2 for (i = 0;i < n;i ++) {
3 // Actual computation
4 }

Listing 1. Parallel for

This allows OpenMP to choose the proper number of
threads to split the loop and therefore, a very straightfor-
ward approach is to generate 1 task per iteration and syn-
chronize the state until all tasks have stopped, as given in
listing 2.

1 #pragma omp parallel
2 {
3 #pragma omp single nowait
4 {
5 for (i = 0;i < n;i ++) {
6 #pragma omp task
7 {
8 // Actual computation
9 }

10 }
11 }
12 #pragma omp taskwait
13 }

Listing 2. Naive approach

Manual transformation. DaCe also offers the ability
to transform the SDFG in any way users prefer, because the
default code generation backend only guarantees the cor-
rectness of the original semantics instead of the best per-
formance. Regarding the OpenMP tasking, we expect the
heterogeneous workloads to be more efficient, therefore we
also implement a few interfaces to enable users to specify
the task boundaries and combine any amount of computa-
tion into a single task. Listing 3 gives an example of the
generated code from manual SDFG transformation.

1 #pragma omp parallel
2 {
3 #pragma omp single nowait
4 {
5 #pragma omp task // Task boundary
6 {
7 for (i = 0;i < n;i ++) {
8 // Some computation
9 }

10 // No sync because no data dependency
11 for (j = 0;j < m;j ++ {
12 // Some other computation
13 }
14 } // Task boundary
15 }
16 #pragma omp taskwait
17 }

Listing 3. Manual transformation

Integration. In order to ensure smooth integration with
the existing DaCe codebase, we seamlessly integrated our
implementation, rather than relying on a hacky approach.
For example, since the naive implementation conflicts with
the default parallel for backend, we provide a config
option openmp tasking to control the behavior. Moreover,
we implemented a Transformation which matches subgraph
structures which can be potentially transformed to tasks,
and let the user apply it with a single click via the Visual
Studio Code SDFG extension.

3.4. OMP Task Depend

So far, we have been synchronizing tasks at the end of each
parallel Map scope to ensure correctness. Data dependen-
cies between tasks is another intuitive way to express paral-
lelism in dataflow graphs. OpenMP version 4.0 and above
provide a depend clause for the task construct to track
data dependencies between tasks. In this section, we ex-
plore the possibility and limitations of DaCe code genera-
tion using OpenMP task depend.

Theoretical benefits of data dependency tracking. In
the dataflow model, it is theoretically feasible to express
parallelism without explicit barriers. In a task-based dataflow
model, each task can specify its input and output data. The
granularity of parallelism can be adjusted by the size of the
tasks. Whenever the data dependencies of a task are ful-
filled, the task is ready to be executed. Correct data de-
pendency resolution ensures the correctness of program ex-
ecution. Since explicit blocking synchronization is not re-
quired, threads can be dynamically scheduled in a work-
conserving way.

Generate task depend code in DaCe. Each state in
an SDFG is a DAG of scopes and tasklets (altogether re-
ferred to as code blocks). The in and out edges of each
code block represent the input and output data which the
code block depends on. In OpenMP, programmers can spec-
ify the input and output data dependencies of each task by
adding depend (dependence-type : locators)
after #pragma omp task. The locators are a list of non-
overlapping memory locations. Here, we focus only on Map
scopes, in other words, for loops. In an SDFG, the input
and output variable names are usually stored in the edge ob-
jects. In a simple case, after the SDFG is fully transformed,
we can traverse the SDFG to retrieve the input and output
variables of the Map scopes and store them in the MapEn-
try nodes as in- and out-locators. During code generation,
we can directly add depend (in : in-locators) and
depend (out : out-locators) to the tasks.

However, limited support for task-based data dependency
in OpenMP and DaCe imposes too many constraints on code
generation, making it hard to gain the theoretical benefits in
practice.



Limited support in OpenMP. 1) OpenMP runtime only
tracks data dependencies between sibling tasks or loop iter-
ations. For example, to specify that the inputs of task C de-
pend on the outputs of two independent tasks A and B, tasks
A and B should be nested in a parent task AB. This task AB
should be adjacent to task C, and should have in- and out-
dependencies of both task A and task B. That restricts task
dependencies to following program order. 2) depend can
not take struct members as locators. Although we can use
global arrays or variables instead of structs in DaCe gener-
ated code, the lack of support for struct members limits the
flexibility of code generation.

Limited support in DaCe SDFG. 1) Variable names
are decided during DaCe code generation. After the code
of a MapEntry containing omp task depend is generated
and written, variable names at the corresponding MapExit
can still change under multiple conditions. It is currently
complicated to modify that part of the DaCe infrastructure.
2) SDFG does not differentiate to-be-nested tasks (e.g., task
A and task B described above) from other tasks. It is com-
plicated to track all the to-be-nested tasks during code gen-
eration. We could introduce an new graph component dur-
ing SDFG generation to wrap to-be-nested subgraphs. How-
ever, since OpenMP is not the ideal API for the task-based
dataflow model, we leave the modification to future work.

4. EXPERIMENTAL RESULTS

4.1. Performance results of Multiple Maps 7

Experimental setup. We used a 2020 MacBook Pro with
an Intel Core i5-1038NG7 at 2 GHz, with 4 cores and hyper-
threading enabled, 16 GB memory, running macOS 13.1,
Python 3.8.5 and Numpy 1.23.5. Measures were taken using
the “profiler” tool included in DaCe.

Parameters. We chose a map of size 1 million, because
when the map was too small, the computation was faster
on a single core due to the lack of parallelization overhead
and cache invalidation. On a 4-core machine, we expect to
have the best performance with 4 threads. However, we also
explored a range of 1 to 12 threads to see the effect of hyper-
threading. We used 16 maps because it is evenly divisible
by 4, and 1000 runs for each measure to reduce the standard
deviation.

Results8. In the homogeneous experiment (figure 5),
we found that for most optimizations, the runtime got faster
when increasing the number of threads from 1 to 3-4, which

7Experiments conducted on “multiple maps” example from section 3.2.
The result graphs show averaged measurements over 1000 runs with er-
ror bars indicating standard deviation. Dotted lines connect measurement
points only for improved readability.

8The most relevant metric that showcases our contribution is the com-
parison of the fastest runtime of the auto-optimized SDFG versus the run-
time of the SDFG where we first applied our tasking transformation and
then the auto-optimizer.

shows that our example benefits from parallelization. The
execution time was relatively constant above 4 threads, in-
dicating that hyper-threading did not provide any advantage
in this case. We notice that our tasking optimization made
the execution faster for any number of threads compared to
the original DaCe. The same order of improvement was
also seen after applying the (powerful) auto-optimizer. Ul-
timately, our fastest runtime (tasking + auto-optimized on 4
threads) was 6.7% faster than the best result possible before
(auto-optimized on 12 threads). This comparison demon-
strates the “overhead gain” that we expected.

Fig. 5. Execution time of “multiple maps” (homogeneous)
for an array size of 1M, depending on the number of threads
and optimizations

For the second experiment, we introduced heterogeneity
into maps, as described in listing 4.

1 for i in dace.map[1:N - 1]:
2 tmp[i] = np.exp(np.sqrt(np.log((A[i - 1] - 1

* A[i] + A[i + 1])**3))) if i < N/4 else 0

Listing 4. Code for a heterogeneous map where the first
quarter of iterations takes longer than the following ones

We found (in figure 6) that our tasking optimization was
much more powerful and even beat the auto-optimizer from
1 to 5 threads. The original DaCe and auto-optimized ver-
sion continued to get faster with a higher number of threads,
despite the expected hyper-threading overhead. This was
because using more threads divided the work more, giv-
ing us several threads doing the “slow batch” of iterations
instead of just one (which happened with 1 to 4 threads).
Ultimately, our fastest runtime (tasking + auto-optimized
on 3 threads) was 21.5% faster than the best result possi-
ble before (auto-optimized on 12 threads). This comparison
demonstrates the “barrier gain” that we expected.



Fig. 6. Execution time of “multiple maps” (heterogeneous)
for an array size of 1M, depending on the number of threads
and optimizations

4.2. Performance results with NPBench

To get a holistic view of performance of the straightforward
tasking implementation, we configured NPBench[7] and ran
it with our DaCe tasking implementation. Fig. 7 compares
the speedup for various benchmarks on paper dataset 9.

Experimental setup. Euler HPC cluster, Intel® Xeon®
Gold 5118, 16 cores, 32 GB memory, hyper-threading dis-
abled, Python 3.10, NumPy 1.24, NPBench @f18e3c7, In-
tel MKL 2020 as the BLAS implementation.

Results. We are able to reproduce the speedup of DaCe
as described in the paper. For tasking, some of the bench-
marks timed out after 200s, so we ask the reader to not inter-
pret the overall speedup (4.2) shown in the heatmap, but ob-
serve general trends. We attribute the subpar performance
of tasking to two reasons: first, the overhead of task cre-
ation and assignment (note that this does not contradict the
“overhead gain” in 3.2: as in the straigtforward approach
we assign iterations of a map to tasks, while in our novel
approach, we assign entire maps to tasks). This also ex-
plains the poor scaling of tasking implementation with num-
ber of threads. And second, the auto-optimizer in DaCe is
designed to work with the parallel for implementa-
tion, hence the optimizations don’t necessarily translate to
the tasking implementation.

However, some benchmarks, e.g. syrk, perform con-
sistently better with tasking (as described in listing 5).

1 def kernel(alpha, beta, C, A):
2 for i in range(A.shape[0]):
3 C[i, :i + 1] *= beta
4 for k in range(A.shape[1]):
5 C[i, :i + 1] += alpha * A[i, k] * A[:

9Only a selected subset is plotted in interest of space.

i + 1, k]

Listing 5. Symmetric rank-k update

This is due to heterogeneous iterations: the amount of work
done in the ith outer iteration is proportional to i. As each it-
eration of outer for-loop is mapped to a task, we get an over-
all better schedule compared to parallel for. Hence,
we concluded that naively replacing parallel for with
tasking isn’t promising - which motivated us to implement
tasking on the higher i.e. subgraph level.

Total 11.0 4.2

parallel
for

tasking numpy

3mm
adist
bicg

cholesky
conv2d
doitgen

floydwar
gemm

hdiff
jacobi2d

lenet
ludcmp

syr2k
syrk

trmm
vadv

Be
nc

hm
ar

ks

7.8(2) 6.8(4) 6.96 s
19.2(5) 27.1(4) 1.41 s
1.8(17) 1.8(47) 0.28 s
15.2(1) 12.5(18) 7.22 s
13.9 13.5 18.84 s
6.3 5.3(12) 0.52 s
7.6 2.0(14) 96.2 s

6.4(10) 3.5(30) 0.53 s
13.1(2) 6.4(17) 0.4 s
15.7(12) 3.2(12) 136.68 s
1.4(10) 1.6(30) 3.09 s

6.0 5.0(7) 13.56 s
66.7 184(1) 18.36 s

82.2(8) 127(17) 6.18 s
72.8(1) 5.1(6) 4.22 s
3.6(9) 6.7(16) 1.41 s

Fig. 7. Speedup of original DaCe with parallel for
backend vs DaCe with tasking backend vs NumPy (base-
line)

5. CONCLUSIONS

In this project, we implemented a tasking backend for DaCe,
providing an additional option of generating high perfor-
mance code with OpenMP task. We found patterns in
both the code and the SDFG where tasking performs bet-
ter than parallel for. Particularly for heterogeneous
workloads, code generated by our tasking backend can po-
tentially lead to a double-digit improvement in performance.
A performance expert can easily use our optimizations that
are cleanly integrated into DaCe, and can use them from the
Python code, or in some cases directly from the Visual Stu-
dio Code extension. Additionally, we found that the task
depend feature in OpenMP is not expressive enough and
that code generation using task dependencies would require
extensive modification to the DaCe framework.



6. REFERENCES

[1] Ruud van der Pas, Eric Stotzer, Eric Stotzer, and Chris-
tian Terboven, Using OpenMP – The Next Step: Affin-
ity, Accelerators, Tasking, and SIMD, chapter 3 Task-
ing, pp. 103–149, 2017.

[2] Sun Microsystems, OpenMP API User’s Guide, chapter
5.4 Tasking Example, 2009.

[3] Michael Bauer, Sean Treichler, Elliott Slaughter, and
Alex Aiken, “Legion: Expressing locality and indepen-
dence with logical regions,” in Proceedings of the Inter-
national Conference on High Performance Computing,
Networking, Storage and Analysis, 2012, SC ’12, pp.
1–11.

[4] Dask, “Dask documentation,” https://docs.dask.org/.

[5] Tal Ben-Nun, Johannes de Fine Licht, Alexan-
dros Nikolaos Ziogas, Timo Schneider, and Torsten
Hoefler, “Stateful dataflow multigraphs: A data-centric
model for performance portability on heterogeneous ar-
chitectures,” in Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, 2019, SC ’19.

[6] OpenMP, “Api specification,” https://openmp.org/.

[7] Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo
Schneider, and Torsten Hoefler, “Npbench: A bench-
marking suite for high-performance numpy,” in Pro-
ceedings of the ACM International Conference on Su-
percomputing, New York, NY, USA, 2021, ICS ’21,
Association for Computing Machinery.


	 Introduction
	 Background
	 Tasking Implementation
	 Straightforward approach to Tasking
	 Advanced Tasking through Manual Transformations
	 Code Generation
	 OMP Task Depend

	 Experimental Results
	 Performance results of Multiple Maps Experiments conducted on “multiple maps” example from section 3.2. The result graphs show averaged measurements over 1000 runs with error bars indicating standard deviation. Dotted lines connect measurement points only for improved readability.
	 Performance results with NPBench

	 Conclusions
	 References

