
Large Language Models for
Verified Programs
Omkar Zade
Supervised by:
Prof. Dr. Peter Müller, Nicolas Klose, Jingxuan He

Motivation

2

def append(head: Node, val: int) -> None:
 """Append a new node with the given

value to the end of the list."""
 if head.next is None:
 n = Node(val)
 head.next = n
 else:
 append(head.next, val)

def append(head: Node, val: int) -> None:
 """Append a new node with the given

value to the end of the list."""
 Requires(is_list(head))
 Ensures(is_list(head))
 Unfold(is_list(head))
 if head.next is None:
 n = Node(val)
 Fold(is_list(n))
 head.next = n
 else:
 append(head.next, val)
 Fold(is_list(head))

Few-shot prompting

3

Example from:
https://ai.stanford.edu/blog/
understanding-incontext/

Ability of LLMs to adapt to a new task without gradient updates[1]

[1] Language models are few-shot learners (OpenAI, 2020)

Our few-shot prompt

• Each example is:

Input: Unverified program
 Verification error

Output: Verified program

4

Conditional statement might fail. There might be
insufficient permission to access head.next. at
line 3.7

def append(head: Node, val: int) -> None:
 """Append a new node with the given
value to the end of the list."""
 if head.next is None:
 n = Node(val)
 head.next = n
 else:
 append(head.next, val)

def append(head: Node, val: int) -> None:
 """Append a new node with the given value
to the end of the list."""
 Requires(is_list(head))
 Ensures(is_list(head))
 Unfold(is_list(head))
 if head.next is None:
 n = Node(val)
 Fold(is_list(n))
 head.next = n
 else:
 append(head.next, val)
 Fold(is_list(head))

append

Our few-shot prompt

insert

merge

append_unverified + verif_error

...

5

Few-shot examples

append_unverified + verif_error

TryVerify

LLM

append_verified_1

Nagini

verif_error_1

Few-shot examples

append_unverified + verif_error

def append(head: Node, val: int) -> None:
 """Append a new node with the given

value to the end of the list."""
 Requires(is_list(head))
 Ensures(is_list(head))
 Unfold(is_list(head))
 if head.next is None:
 n = Node(val)
 Fold(is_list(n))
 head.next = n
 else:
 append(head.next, val)
 Fold(is_list(head))

Fold might fail. There might be insufficient permission to
access is_list(head.next) on line 11.4

6

TryVerify

LLM

append_verified_1

Nagini

verif_error_1

Few-shot examples

append_unverified + verif_error

7
T = 1

TryVerify

8

LLM

append_verified_1

Nagini

verif_error_1

append_verified_1 + verif_error_1

LLM

Few-shot examples

append_unverified + verif_error

Few-shot examples

append_unverified + verif_error

append_verified_2

Nagini

verif_error_2

T = 1 T = 2

Experiment 1: Few-shot prompting

• Given examples of verified programs, can the model verify an unseen program?

dataset = [append, insert, prepend, …, merge]

• Few-shot examples include all but the example we are verifying

9

Experiment 1: Few-shot prompting

• Given examples of verified programs, can the model verify an unseen program?

dataset = [append, insert, prepend, …, merge]

• Few-shot examples include all but the example we are verifying

10

Few-shot examples

append_unverified + verif_error

TryVerify

 /

= [insert, prepend, …, merge]

Experiment 1: Few-shot prompting

• Given examples of verified programs, can the model verify an unseen program?

dataset = [append, insert, prepend, …, merge]

• Few-shot examples include all but the example we are verifying

11

Few-shot examples

insert_unverified + verif_error

TryVerify

 /

= [append, prepend, …, merge]

Experiment 2: Incremental verification

• Can we start from scratch and build up the set of verified
programs?

12

append_unverified + verif error

TryVerify

unverified = [append, insert, prepend, … , merge]
verified = []

Experiment 2: Incremental verification

• Can we start from scratch and build up the set of verified
programs?

13

insert_unverified + verif error

TryVerify

unverified = [append, insert, prepend, … , merge]
verified = []

Experiment 2: Incremental verification

• Can we start from scratch and build up the set of verified
programs?

14

prepend_unverified + verif error

TryVerify

unverified = [append, insert, prepend, … , merge]
verified = []

Experiment 2: Incremental verification

• Can we start from scratch and build up the set of verified
programs?

9

unverified = [append, insert, … , merge]
verified = [prepend]prepend

append_unverified + verif error

• Bootstrap verification with some simple methods, build up to
more complex methods

Dataset

• 50 methods across 3 predicates verified for memory safety in Nagini

list: insert, remove, reverse, merge, merge_sort … (N = 18, Niter = 2)

tree: insert, contains, height … (N = 11)

lseg: list methods + iterative versions (N=21, Niter = 9)

16

Few-shot prompting

System prompt 1

list 94.4

tree 90.9

lseg 76.2

Average 84.0

17

Few-shot examples

append_unverified + verif_error

System prompt 1
• Brief explanation of the verification task
• Available constructs: Fold(), Unfold(),

Invariant()
• The list predicate definition

Percentage of methods verified: GPT-4:

Incremental Verification

System prompt 1

list 24.0

tree 36.3

Average 28.7

18

append_unverified + verif error

System prompt 1

Without access to few-shot examples, the model struggles to bootstrap

Percentage of methods verified: GPT-4:

System prompt 2

Problem:

• The model tries to infer functional specs,
makes syntax errors, uses @ContractOnly

• Struggles to infer the first iterative method

• Some methods easier to infer using
Unfolding rather than Unfold / Fold

19

• Basic example for an unrelated predicate

• Semantics of the available constructs incl.
Invariant

• Example demonstrating equivalence of
Unfolding and Unfold/Fold

Add to the system prompt:

20

 Loop invariant might not hold on entry. There might be
insufficient permission to access is_list(ptr)

def reverse(head: Node) -> Optional[Node]:
 """Reverse the list and return the new head."""
 Requires(is_list(head))
 Ensures(Implies(Result() is not None, is_list(Result())))
 Unfold(is_list(head))
 if head.next is None:
 Fold(is_list(head))
 return head

 prev = None # type: Optional[Node]
 ptr = head # type: Optional[Node]
 while ptr != None:
 Invariant(Implies(ptr is not None, is_list(ptr)))
 ...

 ## missing Fold(is_list(head)) here

def reverse(head: Node) -> Optional[Node]:

 """Reverse the list and return the new head."""
 Requires(is_list(head))
 Ensures(Implies(Result() is not None, is_list(Result())))

 if Unfolding(is_list(head), head.next) is None:
 return head

 prev = None # type: Optional[Node]
 ptr = head # type: Optional[Node]
 while ptr != None:

 Invariant(Implies(ptr is not None, is_list(ptr)))
 ...

 Verification successful

Incremental Verification

System prompt 1 System prompt 2

list 24.0 93.3

tree 36.3 87.8

Average 28.7 90.6

21

Percentage of methods verified: GPT-4:

Few-shot prompting

System prompt 1 System prompt 2

list 94.4 100.0

tree 90.9 100.0

lseg 76.2 80.1

Average: 84.0 90.0

22

Percentage of methods verified: GPT-4:

Difficulty of lseg

23

def remove_last(first: Optional[Node], last: Node) ->
Optional[Node]:

"""Remove the last node from the list and return the new last"""
Requires(lseg(first, last))
Ensures(lseg(first, Result()))
...
Unfold(lseg(first, last))
if first.next is last:

Fold(lseg(first, first))
return first

last = remove_last(first.next, last)
...

lseg(first, last) =
first != last ⇒ acc(first.val) and acc(first.next) and lseg(first.next, last)

first last

Fine-tuning
Dataset generation and fine-tuning an open-source LLM

24

Fine-tuning

• Use data to update the weights of a pre-trained model to improve
its performance on our task

• Motivation:
• Explore the use of verifier to assist in fine-tuning
• Zero-shot inference (no few shot examples needed)
• Token limit

• Pre-trained model: CodeLlama-7B[1]

Initialized from Llama-2-7B and fine-tuned on 500B code tokens

25[1] Code Llama: Open Foundation Models for Code (Meta AI, 2023)

Dataset generation

• The root dataset is insufficient
• Contains too few examples
• Contains no partially verified

examples

• Hence, generate a larger
dataset
• Remove all combinations of spec

statements

m specs => 2m examples

26

def append(head: Node, val: int) -> None:
 """Append a new node with the given

value to the end of the list."""
 Requires(is_list(head))
 Ensures(is_list(head))
 Unfold(is_list(head))
 if head.next is None:
 n = Node(val)
 Fold(is_list(n))
 head.next = n
 else:
 append(head.next, val)
 Fold(is_list(head))

Fold might fail. There might be insufficient permission
to access is_list(head.next) on line 11.4

Dataset generation cont’d

27

{System prompt 1}

Unverified program:
{unverified program}

Verification error:
{error}

Verified program:
{verified program}

def append(head: Node, val: int) -> None:
 """Append a new node with the given

value to the end of the list."""
 Requires(is_list(head))
 Ensures(is_list(head))
 Unfold(is_list(head))
 if head.next is None:
 n = Node(val)
 Fold(is_list(n))
 head.next = n
 else:
 append(head.next, val)
 Fold(is_list(head))

1. Remove combination of specs 2. Apply prompt format:

Fine-tuned model

28

Pre-trained Fine-tuned 1

list 0.0 66.7

tree 0.0 33.3

lseg 0.0 25.0

Average (N = 17) 0.0 41.2

• Performance of pre-trained model vs. our fine-tuned model on the test set
• N_train = 33 (4611)

N_test = 17 (list = 6, tree = 3, lseg = 8)

Pitfalls

• All examples in the training data are of the form
fewer specs => more specs
So the model never deletes an extraneous spec statement

29

if Unfolding(lseg(ptr, last), ptr.val) == val:
Fold(lseg(ptr, last))
join(first, ptr, last)

• Inserts Invariant(…) in recursive methods

Fold might fail…

def insert(node: TreeNode, key: int) -> None:
"""Insert a node with given key into a binary tree."""
...
if key < node.key:

Invariant(tree(node))
...

Adding spurious specs

30

def append(head: Node, val: int) -> None:
 """Append a new node with the given

value to the end of the list."""
 Requires(is_list(head))
 Ensures(is_list(head))
 Unfold(is_list(head))
 if head.next is None:
 n = Node(val)
 Fold(is_list(n))
 head.next = n
 else:
 append(head.next, val)
 Fold(is_list(head))

Fold(is_list(head))

• After adding spurious specs to some examples, and running dataset generation, we fine-
tuned a second model

Fine-tuned model

31

• Both fine-tuned models perform 100% on training data
• Fine-tuned 2 learns to delete specs, but not in all cases

Pre-trained Fine-tuned 1 Fine-tuned 2

list 0.0 66.7 66.7

tree 0.0 33.3 100.0

lseg 0.0 25.0 62.5

Average 0.0 41.2 70.5

• Performance of pre-trained model vs. our fine-tuned models on the test set
• N_train = 33

N_test = 17 (list = 6, tree = 3, lseg = 8)

N = 11,415N = 4,611

Data imbalance

32

Code produced by fine-tuned model for
list::drop_iter

Fold(lseg(head, ptr))
while ptr is not None:

Invariant(lseg(head, ptr))
Invariant(lseg(ptr, None))
...
join(head, tmp, ptr)

Fold(is_list(head))
while ptr is not None:

Invariant(is_list(head))
Invariant(is_list(ptr))
...
join(head, tmp, ptr)

head
ptr

Invariant(Implies(ptr is not None, is_list(ptr)))

Invariant and structure common to
many iterative lseg methods

Training data: iterative methods
list: 1
lseg: 6

Generalization

33

Code produced by fine-tuned model for
lseg::reverse

while ptr is not None:
Invariant(lseg(head, ptr))
Invariant(lseg(ptr, None))

while ptr is not None:
Invariant(lseg(prev, None))
Invariant(lseg(ptr, None))

head
ptr

Invariant common to most lseg
methods

prev ptr

34

	Slide 1: Large Language Models for Verified Programs
	Slide 2: Motivation
	Slide 3: Few-shot prompting
	Slide 4: Our few-shot prompt
	Slide 5: Our few-shot prompt
	Slide 6: TryVerify
	Slide 7: TryVerify
	Slide 8: TryVerify
	Slide 9: Experiment 1: Few-shot prompting
	Slide 10: Experiment 1: Few-shot prompting
	Slide 11: Experiment 1: Few-shot prompting
	Slide 12: Experiment 2: Incremental verification
	Slide 13: Experiment 2: Incremental verification
	Slide 14: Experiment 2: Incremental verification
	Slide 15: Experiment 2: Incremental verification
	Slide 16: Dataset
	Slide 17: Few-shot prompting
	Slide 18: Incremental Verification
	Slide 19: System prompt 2
	Slide 20
	Slide 21: Incremental Verification
	Slide 22: Few-shot prompting
	Slide 23: Difficulty of lseg
	Slide 24: Fine-tuning
	Slide 25: Fine-tuning
	Slide 26: Dataset generation
	Slide 27: Dataset generation cont’d
	Slide 28: Fine-tuned model
	Slide 29: Pitfalls
	Slide 30: Adding spurious specs
	Slide 31: Fine-tuned model
	Slide 32: Data imbalance
	Slide 33: Generalization
	Slide 34

