Large Language Models for
Verified Programs

Omkar Zade

Supervised by:
Prof. Dr. Peter Muller, Nicolas Klose, Jingxuan He

DINFK ETHzurich

Motivation

def append(head: Node, val: int) -> None:

"""Append a new node with the given
value tothe end of the list."""
if head.nextis None:
n = Node(val)
head.next=n
else:
append(head.next, val)

O,

?

def append(head: Node, val: int) -> None:
"""Append a new node with the given
value to the end of the list."""
Requires(is_Llist(head))
Ensures(is_list(head))
Unfold(is_Llist(head))
if head.next is None:
n = Node(val)
Fold(is_Llist(n))
head.next=n
else:
append(head.next, val)
Fold(is_list(head))

Few-shot prompting

Ability of LLMs to adapt to a new task without gradient updates!’]

Circulation revenue has increased by 5%
in Finland. // Positive

Panostaja did not disclose the purchase
price. // Neutral

Paying off the national debt will be
extremely painful. // Negative

The company anticipated its operating
profit to improve. //

Circulation revenue has increased by
5% in Finland. // Finance

They defeated ... in the NFC
Championship Game. // Sports

Apple ... development of in-house Example from:

chips. // Tech https://ai.stanford.edu/blog/

The company anticipated its operating |Nderstanding-incontext/

profit to improve. //

[1] Language models are few-shot learners (OpenAl, 2020) 3

Our few-shot prompt

defappend(head: Node, val: int)-> None:
"""Append anew node with the given
value to the end of the list."""
if head.nextis None:
n = Node(val)
head.next=n
else:

Input: Unverified program append(head.next, val)
Verification error

* Each exampleis:

Conditional statement might fail. There might be
insufficient permission to access head.next. at

Output: Verified program :
line 3.7
def append(head: Node, val: int)-> None:
a ppend """Append anew node withthe givenvalue
to the end of the list."""

Requires(is_list(head))
Ensures(is_list(head))
Unfold(is_list(head))
if head.nextis None:
n = Node(val)
Fold(is_Llist(n))
head.next=n
else:
append(head.next, val)
Fold(is_list(head))

Our few-shot prompt

=)

4 N\
merge
L J
4)
Qppend_unverified + verif_error
\ J/

e

Few-shot examples

=

append_unverified + verif_error

TryVerify

def append(head: Node, val: int) -> None:
ﬂ """Append a new node with the given
value to the end of the list."""
p Requires(is_list(head))
append_unverified + verif_error Ensures(is_list(head))

\ y Unfold(is_list(head))

i if head.nextis None:
n = Node(val)
Fotdtis—tisttm))
[append_verified_1 head.next=n

e

Few-shot examples

\.

\

J/

N

Fold(is_list(head))

else:

append(head.next, val)
[verif_error_1

Fold might fail. There might be insufficient permissionto
accessis_list(head.next)online 11.4

TryVerify

-

\.

Few-shot examples

(. . .
append_unverified + verif_error

=

L

[append_verified_1

—

[verif_error_1

TryVerify

1, A

Few-shot examples Few-shotexamples
append_unverified + verif_error append_unverified + verif_error
append_verified_1 + verif_error_1

LLM

append_verified_1 m

[append_verified_2]

verif_error_1 @

[verif_error_2]

Experiment 1: Few-shot prompting

* Given examples of verified programs, can the model verify an unseen program?

dataset =[append, insert, prepend, ..., merge]

* Few-shot examples include all but the example we are verifying

Experiment 1: Few-shot prompting

* Given examples of verified programs, can the model verify an unseen program?

dataset =[append, insert, prepend, ..., merge]

* Few-shot examples include all but the example we are verifying

7 —
Few-shot examples = [insert, prepend, ..., merge]
append_unverified + verif_error

- . /)

—

/X

Experiment 1: Few-shot prompting

* Given examples of verified programs, can the model verify an unseen program?

dataset =[append, insert, prepend, ..., merge]

* Few-shot examples include all but the example we are verifying

7 —
Few-shot examples = [append, prepend, ..., merge]
insert_unverified + verif_error

- . /)

—

/X

Experiment 2: Incremental verification

 Can we start from scratch and build up the set of verified
programs?

unverified = [append, insert, prepend, ..., merge]

([append_unverified + verif error J} verified =[]

X

12

Experiment 2: Incremental verification

 Can we start from scratch and build up the set of verified
programs?

unverified = [append, insert, prepend, ..., merge]

([insert_unverified + verif error J} verified =[]

X

13

Experiment 2: Incremental verification

 Can we start from scratch and build up the set of verified
programs?

unverified = [append, insert, prepend, ... , merge]

([prepend_unverified + verif error J} verified =[]

14

Experiment 2: Incremental verification

 Can we start from scratch and build up the set of verified
programs?

(-
prepend

unverified = [append, insert, ... , merge]
verified = [prepend]

(. . .
append_unverified + verif error

=

* Bootstrap verification with some simple methods, build up to
more complex methods

Dataset

* 50 methods across 3 predicates verified for memory safety in Nagini
list: insert, remove, reverse, merge, merge_sort... (N=18,N... =2)

tree: insert, contains, height... (N=11)

Iseg: list methods + iterative versions (N=21, N.... =9)

16

Few-shot prompting

Percentage of methods verified: GPT-4:

System prompt 1

list
tree
lseg

Average

94.4
90.9
76.2
84.0

System prompt 1

.

Ve

Few-shot examples

\.

r

append_unverified + verif_error

o

* Brief explanation of the verification task

* Available constructs: Fold(), Unfold(),
Invariant()

* The list predicate definition

17

Incremental Verification

Percentage of methods verified: GPT-4:

System prompt 1

list 24.0
tree 36.3
Average 28.7

T P

System prompt 1

_ J/
~

(. . .
append_unverified + verif error

L)

Without access to few-shotexamples, the model struggles to bootstrap

18

System prompt 2

Problem:

* The modeltries to infer functional specs,
makes syntax errors, uses @ContractOnly

* Struggles to infer the first iterative method

* Some methods easier to infer using
Unfolding rather than Unfold/ Fold

Add to the system prompt:

* Basic example for an unrelated predicate

e Semantics of the available constructsincl.
Invariant

* Example demonstrating equivalence of
Unfolding and Unfold/Fold

19

def reverse(head: Node) -> Optional[Node]: def reverse(head: Node) -> Optional[Node]:
"""Reversethe list and return the new head.""" """Reversethe list and return the new head."""
Requires(is_list(head)) Requires(is_list(head))
Ensures(Implies(Result() is not None, is_list(Result())))
Unfold(is_Llist(head))

If head.nextis None: if Unfolding(is_list(head), head.next)is None:
Fold(is_list(head)) return head
return head

missing Fold(is_list(head)) here

prev = None # type: Optional[Node]

Ensures(Ilmplies(Result() is not None, is_list(Result())))

prev = None # type: Optional[Node]

ptr = head # type: Optional[Node] ptr = head # type: Optional[Node]

while ptr != None: while ptr != None:
Invariant(Implies(ptris not None, is_list(ptr))) Invariant(Implies(ptris not None, is_list(ptr)))
)4 Loop invariant might not hold on entry. There might be Verification successful

insufficient permissionto accessis_list(ptr)

20

Incremental Verification

Percentage of methods verified: GPT-4:

System prompt 1

System prompt 2

list 24.0
tree 36.3
Average 28.7

93.3
87.8
90.6

21

Few-shot prompting

Percentage of methods verified: GPT-4:

System prompt 1

System prompt 2

list
tree
lseg

Average:

94.4
90.9
76.2
84.0

100.0
100.0
80.1
90.0

22

Difficulty of lseg

[seg(first, last) =
first!= last = acc(first.val)and acc(first.next) and [seg(first.next, last)

def remove_last(first: Optional[Node], last: Node) ->
Optional[Node]:
"""Remove the last node from the list and return the new last
Requires(lseg(first, last))
Ensures(lseg(first, Result()))

first last
Unfold(lseg(first, last))

if first.nextis last:
Fold(lseg(first, first))
return first
last =remove_last(first.next, last)

23

Fine-tuning

Dataset generation and fine-tuningan open-source LLM

24

Fine-tuning

* Use data to update the weights of a pre-trained model to improve
Its performance on our task

* Motivation:
* Explore the use of verifier to assistin fine-tuning
 Zero-shotinference (no few shotexamples needed)
* Token limit

* Pre-trained model: CodelLlama-7B!"]
Initialized from Llama-2-7B and fine-tuned on 500B code tokens

[1] Code Llama: Open Foundation Models for Code (Meta Al, 2023)

25

Dataset generation

* The root dataset is insufficient
 Containstoo few examples

* Contains no partially verified
examples

* Hence, generate a larger
dataset

* Remove all combinations of spec
statements

m specs => 2"M examples

def append(head: Node, val: int) -> None:
"""Append a new node with the given
value to the end of the list."""
Requires(is_Llist(head))
Ensures(is_list(head))
Unfold(is_list(head))
If head.nextis None:
n = Node(val)
[—r—
head.next=n
else:
append(head.next, val)
Fold(is_list(head))

Fold might fail. There might be insufficient permission
to accessis_list(head.next)online 11.4

26

Dataset generation cont’d

1. Remove combination of specs

def append(head: Node, val: int) -> None:
"""Append a new node with the given
value to the end of the list."""
Requires(is_list(head))
Ersurestrs—tist{tread)j
Unfold(is_list(head))
if head.next is None:
n = Node(val)
Fotdtis—tistiry
head.next=n
else:
append(head.next, val)
Fold(is_list(head))

2. Apply prompt format:

{System prompt 1}

Unverified program:
{unverified program}

Verification error:
{error}

Verified program:
{verified program}

27

Fine-tuned model

* Performance of pre-trained model vs. our fine-tuned model on the test set
* N_train =33 (4611)
N_test=17 (list=6, tree = 3, [seg = 8)

Pre-trained Fine-tuned 1
list 0.0 66.7
tree 0.0 33.3
lseg 0.0 25.0

Average (N =17) 0.0 41.2

Pitfalls

* All examples in the training data are of the form
fewer specs => more specs

So the model never deletes an extraneous spec statement

If Unfolding(lseg(ptr, last), ptr.val) ==val:
Fold(lseg(ptr, last))
join(first, ptr, last)

Fold might fail...

* Inserts Invariant(...) in recursive methods

def insert(node: TreeNode, key: int) -> None:
"""Insert a node with given key into a binary tree."™"

if key < node.key:
Invariant(tree(node))

Adding spurious specs

def append(head: Node, val: int) -> None:
"""Append a new node with the given
value tothe end of the list."""
Requires(is_list(head))
Ensures(is_list(head))
Unfold(is_Llist(head)) Fold(is_Llist(head))
if head.nextis None: -
n =Node(val)
Fold(is_Llist(n))
head.next=n
else:
append(head.next, val)
Fold(is_list(head))

* After adding spurious specs to some examples, and running dataset generation, we fine-
tuned a second model

30

Fine-tuned model

* Performance of pre-trained model vs. our fine-tuned models on the test set
* N_train =33
N_test=17 (list=6, tree = 3, [seg = 8)

N=4,611 N=11,415
~ ~
Pre-trained Fine-tuned 1 < Fine-tuned 2 <
list 0.0 66.7 66.7
tree 0.0 33.3 100.0
lseg 0.0 25.0 62.5
Average 0.0 41.2 70.5

* Both fine-tuned models perform 100% on training data
* Fine-tuned 2 learnsto delete specs, but not in all cases

31

Data imbalance

Fold(is_list(head))

while ptris not None:
Invariant(is_list(head))
Invariant(is_Llist(ptr))

join(head, tmp, ptr)

Code produced by fine-tuned model for
list::drop_iter

ptr

head

b

Invariant(lmplies(ptr is not None, is_Llist(ptr)))

Fold(lseg(head, ptr))

while ptris not None:
Invariant(lseg(head, ptr))
Invariant(lseg(ptr, None))

join(head, tmp, ptr)

Invariant and structure common to
many iterative lseg methods

Training data: iterative methods
list: 1
lseg: 6

32

Generalization

while ptris not None: while ptris not None:
Invariant(lseg(prev, None)) Invariant(lseg(head, ptr))
Invariant(lseg(ptr, None)) Invariant(lseg(ptr, None))
Code produced by fine-tuned model for Invariant common to most lseg
lseg:.reverse methods

tr ptr
P head

33

Dataset

* 50 methods across 3 predicates verified for memory safety in Nagini

list: insert, remove, reverse, merge, merge_sort ... (N=18, Ny, =2)

tree: insert, contains, height ... (N=11)

lseg: list methods + iterative versions (N=21, Ny, = 9)

Few-shot prompting

Percentage of methods verified: GPT-4:

System prompt 1

System prompt 2

list
tree
lseg

Average:

94.4
90.9
76.2
84.0

100.0
100.0
80.1
90.0

22

Incremental Verification

Percentage of methods verified: GPT-4:

System prompt 1

System prompt 2

list 24.0
tree 36.3
Average 28.7

93.3
87.8
90.6

Fine-tuned model

* Performance of pre-trained model vs. our fine-tuned models on the test set

* N_train=33

N_test=17 (list =6, tree = 3, lseg = 8)

N=4,611 N=11,415
Pre-trained Fine-tuned 1 <~ Fine-tuned2 «~
list 0.0 66.7 66.7
tree 0.0 33.3 100.0
lseg 0.0 25.0 62.5
Average 0.0 41.2 70.5

* Both fine-tuned models perform 100% on training data

	Slide 1: Large Language Models for Verified Programs
	Slide 2: Motivation
	Slide 3: Few-shot prompting
	Slide 4: Our few-shot prompt
	Slide 5: Our few-shot prompt
	Slide 6: TryVerify
	Slide 7: TryVerify
	Slide 8: TryVerify
	Slide 9: Experiment 1: Few-shot prompting
	Slide 10: Experiment 1: Few-shot prompting
	Slide 11: Experiment 1: Few-shot prompting
	Slide 12: Experiment 2: Incremental verification
	Slide 13: Experiment 2: Incremental verification
	Slide 14: Experiment 2: Incremental verification
	Slide 15: Experiment 2: Incremental verification
	Slide 16: Dataset
	Slide 17: Few-shot prompting
	Slide 18: Incremental Verification
	Slide 19: System prompt 2
	Slide 20
	Slide 21: Incremental Verification
	Slide 22: Few-shot prompting
	Slide 23: Difficulty of lseg
	Slide 24: Fine-tuning
	Slide 25: Fine-tuning
	Slide 26: Dataset generation
	Slide 27: Dataset generation cont’d
	Slide 28: Fine-tuned model
	Slide 29: Pitfalls
	Slide 30: Adding spurious specs
	Slide 31: Fine-tuned model
	Slide 32: Data imbalance
	Slide 33: Generalization
	Slide 34

