
Large Language Models for Verified
Programs

Master’s Thesis

Omkar Zade

April 11, 2024

Advisors: Prof. Dr. Peter Müller, Jingxuan He, Nicolas Klose

Department of Computer Science, ETH Zürich

Abstract

Large Language Models (LLMs) are increasingly used to generate code.
However, due to their probabilistic nature, they provide no formal
guarantees on the correctness or safety of the generated code. The
use of automated program verification can achieve such guarantees,
but requires the programmer to manually provide specifications—an
expensive and difficult task. In this work, we leverage LLMs to automat-
ically infer these specifications, taking a step forward in reducing the
manual effort required for program verification and increasing trust in
LLM generated programs. We design prompting and fine-tuning based
solutions to infer memory safety specifications for Python programs.
Moreover, we contribute a dataset of verified programs that serves as a
benchmark, and evaluate our approaches on this dataset, demonstrating
their effectiveness and limitations.

i

Acknowledgements

First, I would like to thank my supervisors, Nicolas Klose and Jingxuan
He, for their invaluable guidance throughout the project. They were always
encouraging and supported me with any resources I needed along the way.

I express my sincere thanks to Prof. Dr. Peter Müller for giving me the
opportunity to work on this very interesting topic.

Finally, I would like to thank my mother and father for their constant support
throughout my studies and believing in me.

iii

Contents

Contents v

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Outline . 3

2 Background 5
2.1 Program Verification in Nagini 5

2.1.1 The specification language 5
2.1.2 Modular verification . 7

2.2 Large Language Models . 8
2.2.1 Inference . 8
2.2.2 Training . 8
2.2.3 Fine-tuning . 9

2.3 Related work . 9

3 Approach 11
3.1 Dataset design . 11
3.2 Problem statement . 12
3.3 Prompting . 15

3.3.1 Few-shot prompting . 15
3.3.2 Incremental verification 18

3.4 Supervised fine-tuning . 21
3.4.1 Training dataset . 21
3.4.2 Experiments . 23

4 Evaluation 25
4.1 Prompting . 25

4.1.1 Few-shot prompting . 25

v

Contents

4.1.2 Incremental verification 26
4.2 Our fine-tuned model . 27

5 Conclusion 31
5.1 Future work . 31

5.1.1 Properties beyond memory safety 31
5.1.2 Automating equivalence checks 32
5.1.3 Reinforcement learning 32

A Dataset 33
A.1 Root dataset . 33

A.1.1 List . 33
A.1.2 Tree . 34
A.1.3 List segment . 35

A.2 Training dataset . 36

B Prompts 37
B.1 System prompt . 37

B.1.1 System prompt 1 . 37
B.1.2 System prompt 2 . 37

Bibliography 39

vi

Chapter 1

Introduction

1.1 Motivation

Large language models (LLMs) are seeing widespread adoption in generating
software artifacts. While LLM powered code assistants like Copilot [2]
promise increased developer productivity, they provide no guarantees of
correctness or safety of the generated code.

Deductive program verification is a static analysis technique to prove that
a program satisfies a formal specification—this provides much stronger
guarantees than testing. Recent developments in the field have made it
possible to efficiently prove complex properties of real world programs
including functional correctness, memory safety and absence of data races.
However, these specifications need to be provided manually, and require
expertise and time on part of the programmer.

In this thesis, we leverage language modeling and code synthesis capabilities
of LLMs, combined with feedback from an automatic verifier to automatically
infer program specifications, thus easing the burden on the programmer.
Our solution, in combination with existing code LLMs, has the potential to
increase trust in generated programs.

Concretely, we target the problem of inferring specifications for Python
programs. Python is widely used for scripting, prototyping, data science but
also increasingly deployed in critical applications, making it a good target
for verification. Code LLMs are multilingual, however have been fine-tuned
and benchmarked more extensively on Python programs.

Nagini [3] is a state-of-the-art verifier for statically-typed Python programs,
based on the Viper [5] verification infrastructure. It has an expressive specifi-
cation language and performs modular verification, allowing verification to
scale to large projects. Hence, Nagini will serve as the specification language
and verification oracle.

1

1. Introduction

Specifically, we focus on inferring memory safety specifications, as proving
memory safety is a prerequisite to prove more advanced properties like
functional correctness. For example: to prove that a program sorts the linked
list, it must be first proved that the result is a valid linked list.

We approach the problem as follows. As there are not many existing verified
programs in Nagini, we implement a dataset of 50 methods across three
data structures and verify them for memory safety in Nagini. We equip
this dataset with a metric to create a benchmark to evaluate LLMs on the
verification task.

There are two primary ways to utilize LLMs for a downstream task: prompting
and fine-tuning. We explore both avenues for our task.

We develop a prompting-based solution to verify an unseen method given
examples of verified methods. Further, we develop an algorithm to incre-
mentally build the set of verified programs from scratch, demonstrating
real-world applicability of our solution. Our method is implemented as a
generic framework that can be easily extended to different models.

Next, we fine-tune an open-source code LLM for the verification task. We
shall see that the 50-method dataset is insufficient for fine-tuning, and pro-
pose a method to use it to generate a much larger training dataset.

Finally, we evaluate our approaches quantitatively and qualitatively, demon-
strating their effectiveness and shortcomings, and propose directions for
future work.

1.2 Contributions

The main contributions of the thesis are outlined below:

• We design a dataset of verified programs in Nagini which serves as a
benchmark for evaluation and root of training dataset generation for
fine-tuning.

• We develop the technique of prompting with errors and an algorithm to
incrementally build the set of verified programs from scratch.

• We fine-tune an open-source code LLM for the verification task, and
propose a method to generate a much larger training dataset.

• We conduct extensive evaluation of our approaches, demonstrating
their effectiveness and shortcomings.

2

1.3. Outline

1.3 Outline

The rest of the thesis is organized as follows. In Chapter 2, we present an
introduction to program verification in Nagini, a brief overview on LLMs,
and related work in the broader field of using machine learning techniques
in formal efforts.

Chapter 3 presents our approach to the problem, including the dataset design,
the prompting-based solution, and the fine-tuning approach.

In Chapter 4, we present our results and the insights revealed by qualitative
evaluation.

Finally, we conclude the thesis in Chapter 5, proposing directions for future
work.

3

Chapter 2

Background

This chapter gives an overview of program verification in Nagini, Large
Language Models (LLMs), and related work in the area of using learning-
based approaches for formal verification.

2.1 Program Verification in Nagini

Program Verification is a technique to prove that a program satisfies a formal
specification. Nagini is an automatic verifier for statically-typed Python
programs. Given a Python program with Nagini annotations, Nagini re-
turns verification success or a Python-level error message. Although the
verification itself is automatic, the user needs to provide the specifications
manually. These include pre- and post-conditions of methods, loop invariants,
and additional ghost statements. Nagini can verify functional correctness,
memory safety, termination and other properties. In order to specify and
verify memory safety Nagini supports permission based reasoning for heap
location, based on Implicit Dynamic Frames [10], a variant of Separation
Logic.

As the thesis focuses on inferring specifications to verify memory safety, we
present a brief overview of various constructs in the Nagini specification
language that are relevant to our work.

2.1.1 The specification language

Nagini specifications are written as calls to special contract functions im-
ported from the nagini.contracts library. Calls to contract functions are
ignored (i.e. no-op) at runtime and are only used by the verifier. We shall
describe the relevant constructs in the Nagini specification language by the
means of a running example—a function to reverse a singly linked list as
shown in listing 2.2.

5

2. Background

Permissions Every heap location (field) is associated with a permission.
Permissions are created when the field is assigned to for the first time,
for example in the constructor. Methods may only access fields for which
they have the acquired permissions and write to fields for which they have
exclusive permissions. Permission assertions are expressed using the Acc

function.

Predicates Predicates allow us to parameterize and abstract over assertions,
and are used to define permissions for recursive heap data structures like
linked lists and trees. For example, The is_list predicate asserts exclusive
access to the entire list pointed to by its argument.

Listing 2.1: is list predicate

1 @Predicate

2 def is_list(head: Node) -> bool:

3 return (

4 Acc(head.val)

5 and Acc(head.next)

6 and Implies(head.next is not None , is_list(head

.next))

7)

Unfolding and Folding In order to use the permissions in a predicate, it needs
to be unfolded. Unfolding a predicate exchanges the predicate instance for
its body. Folding a predicate does the opposite—if the permissions specified
in the body are available in the current program state, they are taken away
and the predicate instance becomes available.

Pre- and post-conditions Preconditions specify an obligation on the caller
of the method whereas post-conditions specify the guarantees provided
by the method. For a verified method, if the method precondition holds
before the call (and if the method terminates), the assertions specified in the
post-condition will hold after the call.

Permission transfer also happens via pre- and post-conditions. Permissions
required in the pre-condition are lost by the caller and made available to the
callee. Permissions specified in the post-condition are transferred back to the
caller when the callee returns.

Pre- and post-conditions are specified using the Requires and Ensures an-
notations respectively. In our example, the pre-condition of method reverse

requires exclusive access to the entire list pointed to by head, as denoted
by the is_list predicate. The post-condition guarantees that the returned
list satisfies the is_list predicate and returns these permissions back to the

6

2.1. Program Verification in Nagini

caller. Note that after the call, permission to is_list(head) are lost in the
caller.

Loop Invariants A loop invariant is an assertion that is true before and after
every iteration of the loop. Moreover, it specifies the permissions transferred
(1) from the enclosing context to the first loop iteration, (2) from one loop
iteration to the next, and (3) from the last loop iteration back to the enclosing
context. Inside a loop body, heap locations may only be accessed if the
required permissions have been explicitly transferred from the surrounding
context to the loop body via the loop invariant. It is specified using the
Invariant contract function.

In our example, at every iteration of the loop, prev points to the reversed
list so far, and ptr points to the remaining list. As we traverse the list,
is_list(ptr) is unfolded, making ptr.next accessible. The next pointer
is updated to point to the reversed list prev. Finally, prev is advanced and
is_list(prev) is folded, thus preserving the invariant.

Listing 2.2: Reverse a linked list

1 def reverse(head: Optional[Node]) -> Optional[Node]:

2 """ Reverses the list and returns the new head."""

3 Requires(Implies(head is not None , is_list(head)))

4 Ensures(Implies(Result () is not None , is_list(

Result ())))

5 prev = None # type: Optional[Node]

6 ptr = head # type: Optional[Node]

7 while ptr is not None:

8 Invariant(Implies(ptr is not None , is_list(ptr)

))

9 Invariant(Implies(prev is not None , is_list(

prev)))

10 Unfold(is_list(ptr))

11 tmp = ptr.next

12 ptr.next = prev

13 prev = ptr

14 Fold(is_list(prev))

15 ptr = tmp

16 return prev

2.1.2 Modular verification

Nagini performs modular verification i.e. every method is verified in isolation
assuming the dependent methods are verified. Only the specifications of the
dependent methods are considered rather than the implementation, while
verifying the method in question.

7

2. Background

As we shall see, this allows us to perform modular inference when a method
has dependencies and allows for our Incremental Verification approach to
scale to real-world programs.

2.2 Large Language Models

Large Language Models (LLMs) are deep learning models that are trained
on large amounts of textual data with the objective of understanding and
generating natural language. State-of-the-art LLMs are based on the Trans-
former architecture [11]. The heart of the Transformer is the self-attention
mechanism, that enables the model to capture long-range dependencies in
training data. LLMs have been shown to perform well on a variety of natural
language processing tasks such as text summarization, translation, and ques-
tion answering but also code-related tasks such as code completion and code
generation from natural language prompts.

2.2.1 Inference

LLMs are trained to predict the next token (a numerical representation of a
word / word fragment) given a sequence of tokens. That is, they predict
the probability distribution over the token vocabulary P(xt|x1, . . . , xt−1). For
open-ended generation, xt is fed back in to the model to predict xt+1 and so
on. In practice, the model can attend to a fixed number of tokens, called the
context window or token limit. Hence, the predicted probability distribution is
in fact P(xt|xt−∆, . . . , xt−1).

Decoding strategies and temperature The process of choosing the next to-
ken from the predicted distribution is called decoding. The simplest decoding
strategy is greedy decoding, where the token with the highest probability is
chosen. However, sampling based-approaches [12] are often used to generate
diverse outputs. Among other parameters, the sampling temperature controls
the randomness of the sampling process—a higher temperature means more
random or ‘creative’ outputs while a temperature of zero is equivalent to
greedy decoding.

2.2.2 Training

Training LLMs is typically done in two stages: pre-training and instruction-
tuning. Pre-training is done on Internet scale text corpus and gives the LLM
broad understanding of language. Then, LLMs are fine-tuned on task-specific
tokens.

8

2.3. Related work

Pre-trained LM Pre-training is done with the next-token prediction (so-
called Causal LM) objective:

L = −
T

∑
t=1

log P(xt|xt−∆:t−1) (2.1)

This is usually the most time and resource intensive process.

Few-shot prompting / In-context learning GPT-3 [1] demonstrated an emergent
property of model scale: the ability to solve a new task without gradient
updates. This is called in-context learning or few-shot prompting. The LLM
is provided with input-output pairs that demonstrate a task. At the end of the
prompt, a new input is given, and the LLM is asked to make a prediction by
conditioning on the prompt. In-context learning has shown to be competitive
on several NLP benchmarks with models specifically trained on labeled data
for the task.

2.2.3 Fine-tuning

A fundamental limitation of prompting is the context-window that the LLM
can use during inference. Hence, LLMs are also fine-tuned on domain-
specific data to specialize them for a downstream task. This is achieved by
initializing from the weights of the pre-trained model and continuing the
training on task-specific tokens using the Causal LM objective in equation 2.1.

LLMs for code Although training data for pre-trained LLMs (e.g. GPT,
Llama2) also consists of code, state-of-the-art code LLMs are further fine-
tuned on code tokens (e.g. Codex, CodeLlama).

Benchmarks Performance of code LLMs is commonly reported on e.g. Hu-
manEval benchmark [2]. The benchmark consists of problem description and
few unit-tests. The metric reported is pass@k. Output is sampled from the
model k times, and if any of the samples passes the test cases, the problem is
considered solved. pass@k is the fraction of correctly solved problems in this
manner.

2.3 Related work

In this section, we survey learning-based approaches to formal verification,
including but not limited to LLMs.

Code2Inv [9] addresses the problem of inferring loop invariants using a
reinforcement learning approach. The solution creates a structured represen-
tation of the loop invariant (as a tree of disjunctions), and infers it in multiple
steps using feedback from the verifier.

9

2. Background

In Lemur [14], the authors use LLMs as an oracle to successively propose
and repair program invariants, based on interaction with a program verifier.
The authors have formalized this interaction as a set of deduction rules to
obtain some theoretical results about soundness of the framework. Lemur
instantiated for GPT-4 outperforms Code2Inv on a C loop invariant inference
benchmark.

LeanDojo [15] is a work in the area of interactive theorem proving that tackles
the problem of inferring applicable tactics/premises. The authors propose
an LLM based to suggest the next tactic based on the current proof state and
premises retrieved from a math library.

10

Chapter 3

Approach

This chapter details our approach. First, we introduce the root dataset which
serves as a basis for both prompting and fine-tuning. This is followed by
a semi-formal description of the problem statement. Then the rest of the
chapter covers our prompting and fine-tuning based approaches.

3.1 Dataset design

The (root) dataset consists of 50 examples of verified programs across 3
data-structures / predicates: list, tree, and lseg:

1. list. Null-terminated singly linked list with 18 methods e.g. insert,
remove, reverse, merge sort, etc. (complete list in Appendix A.1.1)

2. tree. Binary search tree with 11 methods including insert, contains,
height, etc. All methods assume the sortedness property. (complete list
in Appendix A.1.2)

3. lseg. Linked list segment with the lseg predicate and 21 methods which
include most methods from the list predicate and additional methods
as described below. (complete list in Appendix A.1.3)

The methods are the ones commonly found in standard library implemen-
tations of these data structures, verified for memory safety. We made sure
to have a good mix of recursive and iterative methods. To facilitate qualita-
tive evaluation, we classified the methods into three difficulty levels: easy,
medium, and hard. The predicate definitions and the classification can be
found in Appendix A.

Most methods for the list predicate are recursive. The lseg predicate allows
us to write iterative counterparts of these methods. For example, count_iter
shown in listing 3.1. The join method, with the specification shown in
listing 3.2 combines two list segments into one:

11

3. Approach

Listing 3.1: count iter method that preserves the lseg predicate.

1 def count_iter(head: Optional[Node]) -> int:

2 """ Counts the number of nodes in the list."""

3 Requires(lseg(head , None))

4 Ensures(lseg(head , None))

5 cnt = 0

6 ptr = head # type: Optional[Node]

7 Fold(lseg(head , ptr))

8 while ptr is not None:

9 Invariant(lseg(head , ptr))

10 Invariant(lseg(ptr , None))

11 ...

12 # Increment count

13 # Unfold and advance ptr

14 # Extend the lseg(head , ptr) predicate using ‘

join’

15 join(head , ptr , None)

16 return cnt

Listing 3.2: join: combines two list segments.

1 def join(a: Optional[Node], b: Optional[Node], c:

Optional[Node]) -> None:

2 """ Join two list segments."""

3 Requires(lseg(a, b) and lseg(b, c))

4 Ensures(lseg(a, c))

5 ...

Each element of the dataset is a tuple of the form

D = {(Pi
u, ei, Pi

v)}
N
i=1

Where Pi
u is the unverified program, ei is the verification error, and Pi

v is the
verified program. An example is shown in Figure 3.3.

3.2 Problem statement

We introduce some notation that we will use in this and following sections
and define the problem statement as follows: given an unverified program
in Python Pu (with a docstring comment describing the method’s intended
behavior) infer the verified program P′v that:

1. Asserts pre- and post-condition for memory safety that match the
ground truth specifications in Pv.

12

3.2. Problem statement

1 def join_lists(head1: Optional[Node], head2: Optional[

Node])

2 -> Optional[Node]:

3 if head1 is None:

4 return head2

5 if head2 is None:

6 return head1

7 head1.next = join_lists(head1.next , head2)

8 return head1

Figure 3.1: Pu: An unverified program

1 Verification failed: Method call might fail. There

might be insufficient permission to access head1.

next. at line 7.17

Figure 3.2: e: Verification error from Nagini for Pu

1 def join_lists(head1: Optional[Node], head2: Optional[

Node])

2 -> Optional[Node]:

3 Requires(Implies(head1 is not None , is_list(head1))

)

4 Requires(Implies(head2 is not None , is_list(head2))

)

5 Ensures(Implies(Result () is not None , is_list(

Result ())))

6 if head1 is None:

7 return head2

8 if head2 is None:

9 return head1

10 Unfold(is_list(head1))

11 head1.next = join_lists(head1.next , head2)

12 Fold(is_list(head1))

13 return head1

Figure 3.3: Pv: The ground truth verified program

13

3. Approach

2. Contains the necessary Nagini annotations i.e. Fold, Unfold, Invariant,
etc. required to verify the program.

3. Is otherwise unchanged from Pu.

We provide a brief justification of the above constraints. Constraints 1 and 2
collectively ensure that the inferred specifications by the model are correct.
That is, we are okay with P′v being not necessarily identical to Pv, as long as
the pre- and post-conditions are the same. This is because there might be
several ways to verify the same program. For example Unfolding might be
used in a conditional statement instead of a combination of Unfold and Fold.
Similarly, if a and b are aliases at a program point, it does not matter, for
example, whether Fold(is_list(a)) or Fold(is_list(b)) is used.

Constraint 3 ensures the program itself is unchanged. However, we need to
allow for a simple transformation. Consider the unverified program:

1 def height(node: Optional[TreeNode]) -> int:

2 """ Returns the height of the tree rooted at node """

3 if node is None:

4 return 0

5 return max(height(node.left), height(node.right))

The verified program must introduce an additional variable:

1 ...

2 Unfold(tree(node))

3 h = 1 + max(height(node.left), height(node.right))

4 Fold(tree(node))

5 return h

In our experiments, the model successfully performs such transformations.
We observed in our experiments that the modifications made by the model to
the original program are none to minimal. However, we propose automating
this aspect (by defining rules on which kind of transformations are admissible)
as a future work item.

The docstring comment gives the model a better chance of inferring the
correct pre- and post-conditions. Indeed, it happens that constraints 2 and 3
are met however the pre- or post-condition is not the one intended. As an
example, the model may produce the following program that verifies:

Listing 3.3: A false positive verification

1 def subtree(root: Optional[TreeNode], key: int) ->

Optional[TreeNode]:

2 """ Returns the subtree rooted at node with the

given key if it exists , None otherwise

3 Permissions to the rest of the tree are leaked """

4 Requires(Implies(root is not None , tree(root)))

14

3.3. Prompting

5 Ensures(Implies(root is not None , tree(root)))

6 # method body and Nagini annotations omitted

7 ...

In this case the result of the method is unusable (after the method returns, the
callee does not get permissions to the subtree rooted at key). The intended
post-condition (i.e. the one in the ground truth verified program) is:

1 Ensures(Implies(Result () is not None , tree(Result ())))

Again, we discard such successful verifications as false positives.

3.3 Prompting

The primary way to interact with an LLM is through a prompt. Hence, our
goal is to effectively encode the verification task in the prompt and guide
the model to generate the verified program, possibly in several steps and
attempts.

First, we start with an easier problem: given examples of verified programs
{(Pu, e, Pv)}, can the model generate the verified program for an unseen
unverified program?

Next, we move on to the more challenging problem of building up the set of
verified programs from scratch.

Note that in both cases, we treat each predicate separately (when trying
to infer a program for list we only consider other examples from list

predicate for inclusion in few-shot prompt). This is in contrast with fine-
tuning, where the model is trained on examples from all predicates.

3.3.1 Few-shot prompting

Let (Pu, e) ∈ D be the unverified program of interest. Let Efs ⊂ D \ (Pu, e)
be the set of examples to be included in the few-shot prompt. The initial
input to the model is then constructed from Efs, (Pu, e) and additionally a
system prompt. The exact format varies from model to model, but the general
structure is shown in Listing 3.4.

The system prompt sets the overall behavior of the model. By default, it’s
something along the lines of You are a helpful assistant. But we can get
much better performance out of the model by including instructions relevant
to the task in the system prompt [6]. Before diving into the algorithm, we
describe our design of the system prompt.

15

3. Approach

Listing 3.4: General structure of the few-shot prompt.

System prompt

Input: P0
u , e0

Output: P0
v

...

Input: PN−1
u , eN−1

Output: PN−1
v

Input: Pu, e

System prompt

Our system prompt is composed of several fixed and variable (i.e. predicate
dependent) components:

Task description and formatting instructions With the default system prompt,
the model usually generates an explanation of the error and a proposed
fix, usually with some Markdown wrapping. Hence, we specify in the
system prompt to only return the verified program without any expla-
nation or wrapping, so we can directly extract the program snippet
from the response.

Available Nagini constructs We provide a list of available Nagini constructs
that the model can use, each with an example demonstrating their
syntax informally. The examples are predicate dependent.

Predicate definition This is also a variable part of the system prompt. Based
on the data structure we are verifying, we plug in the corresponding
predicate definition.

These three components constitute System Prompt 1. The complete prompt
can be found in Appendix B.

Algorithm

We present the algorithm in Algorithm 1 and explain it’s high level execution.
The model is prompted with prompt initialized as described above. The
model generates a verification attempt P′v which is then verified with Nagini.
If the verification succeeds, P′v is returned. If the verification fails, the
generated program P′v and the verification error e′ is added back to the
prompt the model is prompted again. This process is repeated for n levels of
error messages. We call n the error depth.

16

3.3. Prompting

The prompt is reinitialized and the above process is repeated for k attempts,
increasing the temperature according to a schedule in each attempt.

Algorithm 1 TryVerifyk,n: Prompting with errors
Input: System prompt S, unverified program Pu, verification error e, few-shot
examples Efs
Output: Verified program P′v or None

1: for i = 1 to k do
2: prompt← construct prompt(S, (Pu, e), Efs)
3: for j = 1 to n do
4: P′v ← model(prompt, temperaturek)
5: e′ ← verify(P′v)
6: if e′ is None then
7: return P′v
8: end if
9: prompt← extend prompt(prompt, P′v, e′)

10: end for
11: end for

We describe how the algorithm generalizes to different models and provide
some implementation details.

As described earlier, models have different prompt formats: some are chat
based (e.g. GPT-4, GPT-3.5) whereas some are completion based (e.g. CodeL-
lama, GPT-Instruct) The construct_prompt function constructs the prompt
specific to the model’s prompt format. Similarly, the extend_prompt function
takes care of extending the prompt with the verification attempt and the error
message. (We have instantiated the algorithm for several models: GPT-3.5,
GPT-4, GPT-Instruct, open source models hosted on Together AI, pre-trained
models and finally also our fine-tuned model.)

The call to the model on line 4 abstracts away the details of the model’s API
and the parameters (e.g. temperature) it takes.

The verify function on line 5 checks the verification attempt with Nagini.
In order to do so, it combines the verification attempt with the top level
declarations i.e. the data structure and predicate definition, and the (verified)
dependencies of P′v and returns the verification error.

Finally, the algorithm naturally introduces the metric that we use for evalua-
tion:

Definition 3.1 (verify@(k, n)) verify@(k, n) is the fraction of examples in the
evaluation set under consideration for which TryVerifyk,n succeeds.

17

3. Approach

3.3.2 Incremental verification

The few-shot prompting approach in the previous section assumes access
to a dataset of verified programs for the given predicate. In practice, this is
might not be the case. Here, we are interested in starting from scratch and
incrementally building the set of verified programs. The idea is to get some
easy examples right, thus bootstrapping the verification process and use them
as few-shot examples to successively verify more complex examples.

This approach could be used to verify a large codebase from scratch. As
Nagini performs modular verification, incremental verification would start by
inferring specifications for simple methods successively verifying dependent
methods leading up to the complete program.

However, without access to few-shot examples, the model struggles to verify
even the simplest programs. To remediate this, we add further details about
the verification task to the system prompt. The next paragraph describes
these additions, based on our experimentation with GPT-4.

Inadequacy of System Prompt 1 With the System Prompt 1 described
in subsection 3.3.1, the model struggles to bootstrap: it tries to infer func-
tional specifications rather than for memory safety. It makes numerous
syntax errors. To address this, we add to the system prompt basic examples
demonstrating the verification task for an unrelated predicate.

We observe that it starts getting ‘easy’ to ‘medium’ examples right, but still
struggles with iterative examples. We alleviate this by adding semantics of
the Nagini constructs and detailed explanation of Invariant to the system
prompt.

Finally, some methods become easier to verify using Unfolding rather than
Unfold/Fold. As an example, consider the program snippet in Listing 3.5:
a slightly convoluted version of the program reverse from Listing 2.2. In
this version, we check whether the argument head is a singleton list as a base
case, before entering the loop. After the return statement on line 5, the model
often fails to fold the is_list(head) predicate. Even though the model may
infer the loop invariant on line 10 correctly, the missing Fold causes it to not
hold on entry. Moreover, the model does not seem to respond to the resulting
verification error.

If the model verifies the base case using Unfolding instead,

1 if Unfolding(is_list(head), head.next) is None:

2 return head

3 ...

these kinds of errors are avoided. Hence, we add a minimal example demon-
strating the equivalence of the two constructs.

18

3.3. Prompting

Listing 3.5: reverse method with an additional check.

1 ...

2 Unfold(is_list(head))

3 if head.next is None:

4 Fold(is_list(head))

5 return head

6 ### missing Fold(is_list(head)) here

7 prev = None # type: Optional[Node]

8 ptr = head # type: Optional[Node]

9 while ptr is not None:

10 Invariant(Implies(ptr is not None , is_list(ptr)))

11 ...

We summarize the additions necessary to make incremental verification work
below:

System Prompt 2

System Prompt 2, in addition to System Prompt 1, includes:

Semantics of Nagini constructs We briefly explain the meaning of unfold-
ing and folding a predicate, loop invariant and permission transfer
from outer context to loop body via the invariant.

Examples of verified programs for an unrelated predicate This example helps
demonstrate various constructs (e.g. Implies) that are already required
to verify even ‘easy’ methods. Moreover, we show with help of an
example the equivalence of Unfolding and Unfold/Fold.

Both the above additions are fixed components of the system prompt. The
complete System Prompt 2 can be found in Appendix B.1.2.

Methods with dependencies

There are two ways to handle methods with dependencies. We can either
evaluate the method in isolation, assuming all dependencies are correctly
verified (i.e. use the ground truth verified methods). Or, we can choose to
only verify the dependent method once all its dependencies are verified, and
use the model-verified versions of the dependencies. We adopt the latter
approach. Below we present the algorithm for incremental verification.

Algorithm

Let V be the set of verified programs, initially empty. Let U be the set of
unverified programs, initially all examples in the dataset D (for a given
predicate). The algorithm is shown in Algorithm 2.

19

3. Approach

Algorithm 2 Incremental verification
Input: System prompt S, unverified programs U, parameters k, n
Output: Verified programs V

1: V ← ∅
2: while U ̸= ∅ and V was updated do
3: for all Pu, e ∈ U do
4: if not all dependencies of Pu are in V then
5: continue
6: end if
7: Pv ← TryVerifyk,n(S, Pu, V)
8: if Pv is not None then
9: V ← V ∪ {Pv}

10: U ← U \ {Pu}
11: end if
12: end for
13: end while

Note that because the algorithm tries to be exhaustive, it is not cheap: if
U contains N examples, the algorithm makes O(N2) calls to TryVerifyk,n
(which itself makes up to k× n calls to the model) in the worst case. That is,
every time a new method is verified, all other methods in U are tried again
with the updated few-shot examples V.

Sensitivity to the order of methods in U

Although the algorithm tries to be exhaustive, it is not exhaustive enough.
Its performance also depends on the order of examples in U. Let V be
the currently accumulated verified programs at an execution point. Let
{u1, u2} ⊂ U be the unverified methods, that the model can verify using V
as few-shot examples. That is, TryVerify(S, u, V) would succeed for both u1
and u2. Assume also that given V, the model would produce a Unfolding

based verification for u1 and Unfold/Fold based verification v2 for u2.

Now, if the algorithm picks u2 before u1, we have added another method
with Unfold/Fold based verification to V. As V grows, the effect of few-shot
examples starts dominating the system prompt. Hence, it may happen that
after V ← V ∪ {v2}, the model also generates a Unfold/Fold based solution
for u1, further reinforcing this tendency. However, when the model would
encounter the method shown in Listing 3.5, it would fail to verify as described
earlier.

Hence, the order in which the methods are picked from U also affects
performance. (That is, the set operations on line 3 and 10 in Algorithm 2 are
in fact list operations) Therefore, in the evaluation, we report the average

20

3.4. Supervised fine-tuning

performance over three random orderings of U.

3.4 Supervised fine-tuning

In this section, we turn our attention to fine-tuning an open-source LLM
on the program verification task. Unlike in case of prompting, our goal
here is to obtain the verified program ‘zero-shot’, given the unverified pro-
gram and verification error. We still allow error depth and a fixed number
of attempts. That is, the inference algorithm for the fine-tuned model is
TryVerifyk,n(S, (Pu, e), ∅).

We chose the open source model CodeLlama-7B [8] (the base model from the
CodeLlama family) as the pre-trained model.

3.4.1 Training dataset

The dataset D described in the previous section would fall short as a training
dataset for this purpose. Firstly, fine-tuning requires a large number of
examples due to the large parameter size of the pre-trained model to be
effective. More importantly, D does not contain intermediate (partially)
unverified programs.

To address both issues, we propose an algorithm that exponentially increases
the number of examples and contains partially unverified programs.

We use D as the starting point for training dataset generation. The idea is to
start with the verified program, and remove all combination of specifications
and ghost statements to get the unverified programs and the corresponding
verification error. Hence, if the program has m lines of specifications, we get
2m unverified programs. The algorithm is thus Algorithm 3.

Note that some partial programs P′u obtained on line 6 might still verify
(e.g. a combination of post-condition and Fold omitted). We exclude such
examples from the training dataset.

Moreover, the number of specs in Pv range anywhere from 3 to 15. So as to
not overrepresent a particular example, we limit the number of specs to be
considered for removal to 10. This means a maximum of 1024 examples per
method.

Finally, we apply the prompt template shown in Listing 3.6 to every example
in Dexp. At inference time, the model is prompted with the prompt template
applied to (Pu, e) until ### Verified program:.

Introducing Dexp
ext

All examples in Dexp go from an unverified program with fewer specs
(annotations, used interchangeably) to a verified program. We observed

21

3. Approach

Algorithm 3 Training dataset generation
Input: Root dataset D
Output: Training dataset Dexp

1: Dexp ← ∅
2: for all Pv ∈ D do
3: specs← get specs(Pv)
4: for all subset ∈ powerset(specs) do
5: P′u ← remove specs(Pv, subset)
6: e′ ← verify(P′u)
7: if e′ is not None then
8: continue
9: end if

10: Dexp ← Dexp ∪ {(P′u, e′, Pv)}
11: end for
12: end for
13: return Dexp

Listing 3.6: Prompt template for fine-tuning.

{System prompt 1}

Unverified program:

{Pu}

Verification error:

{e}
Verified program:

{Pv}

during evaluation that the model never really ‘deletes’ an unnecessary spec.
Hence, we also want to have examples where the verified program has fewer
specs than the unverified program. To this end, we manually augmented
some examples (i.e. verified programs) in the root dataset D with spurious
annotations. That is, we inserted Fold, Unfold, Invariant, etc. statements at
random program points. The examples chosen for this augmentation were
ones that have fewer specs to begin with.

Let this extended root dataset be Dext. We then use Dext as the input to the
algorithm 3. We call the resulting training dataset Dexp

ext .

Parameter efficient fine-tuning

For fine-tuning, we use the widely adopted LoRA approach [4] to efficiently
utilize GPU resources. We also use 8-bit quantization to load the model
so that the model and optimizer state fits in the GPU memory. We set

22

3.4. Supervised fine-tuning

up the training using the HuggingFace Transformers library [13]. We use
the AdamW optimizer with a learning rate of 2e-4 and a batch size of 32
(simulated with 8 gradient accumulation steps). We ran the training on
Amazon SageMaker with a ml.g5.2xlarge instance which has 8 vCPUs, 32
GiB memory, and 1 NVIDIA A10G GPU with 24 GiB memory.

3.4.2 Experiments

With the aforementioned setup, we fine-tuned two models: the first on
Dexp for 4 epochs and the second on Dexp

ext for 3 epochs and evaluated their
performance. The training and evaluation split is described in Appendix A.2.

23

Chapter 4

Evaluation

In this chapter, we detail the experiments we conducted to evaluate our ap-
proach and the insights we gained from them. First, we start with prompting
and show the influence of varying the system prompt. Next, we show the
performance of our fine-tuned model and compare it with the pre-trained
model zero-shot and few-shot.

4.1 Prompting

4.1.1 Few-shot prompting

The few-shot examples consist of all other methods for the predicate, except
the one being verified. The results shown are veri f y@(k = 3, n = 3) as
percentages (i.e. the fraction of methods that verify for the predicate over
total number of methods for the predicate).

Table 4.1: Performance of few-shot prompting on different system prompts.

GPT-4
sys 1 sys 2

list 94.4 100.0
tree 90.9 100.0
lseg 76.2 80.1

84.0 90.0

The detailed system prompt sys_2 always outperforms sys_1. Specifically,
for list and tree, the model is able to verify an additional ‘hard’ method
(reverse_iter resp. insert).

Moreover for lseg, the model is able to verify an additional challenging
method (remove_last) with the detailed system prompt:

25

4. Evaluation

Listing 4.1: Method remove last for the lseg predicate.

1 def remove_last(first: Optional[Node], last: Node) ->

Optional[Node]:

2 """ Remove the last node from the list and returns

the new last """

3 Requires(lseg(first , last))

4 Ensures(lseg(first , Result ()))

5 ...

6 Unfold(lseg(first , last))

7 if first.next is last:

8 Fold(lseg(first , first))

9 return first

10 ...

With sys_1, the model either infers the incorrect post-condition Ensures(lseg(Result(),
first)), or does not infer the Fold(lseg(first, first)) on line 8 required for the
post-condition to hold in the base case. This shows that even in the presence
of few-shot examples, the model benefits from the detailed explanation in
the system prompt.

4.1.2 Incremental verification

We only show results for the most capable model: GPT-4 (gpt-4-1106). The
tree predicate was ran on the latest gpt4-turbo-preview, which performs
worse than gpt-4-1106, also few-shot. Due to time and resource constraints,
the lseg predicate was omitted. Results are percentage of successful verifi-
cations after running Algorithm 2 with U initialized to all examples for the
predicate at k = 4, n = 5.

Table 4.2: Performance of incremental verification on different system prompts. Averaged across
3 randomized runs.

sys 1 sys 2
list 24.0 93.3
tree 36.3 87.8

28.7 90.6

The effect of system prompt is more pronounced in incremental verification.
The average performance over 3 random orderings of U is shown for reasons
explained in detail in subsection 3.3.2.

With sys_1 for the list predicate, only one ordering of U results in any suc-
cessful verifications. The other orderings resulted in 0 successful verifications
(all false positives with @ContractOnly annotation).

26

4.2. Our fine-tuned model

4.2 Our fine-tuned model

We contrast the zero-shot performance of our fine-tuned models with the
zero-shot and few-shot performance of the pre-trained model. For the pre-
trained model, we report two metrics: (1) on all examples (N=50) and (2) on
evaluation set used for our fine-tuned models (N=17).

For the fine-tuned model, we consider two versions, one trained on Dexp, and
the other trained on Dexp

ext and report zero-shot performance on the evaluation
set. Both fine-tuned models perform close to 100% on the training set.

All results are percentages veri f y@(k = 4, n = 3).

Table 4.3: Performance of our fine-tuned models compared to the pre-trained model.

zero-shot few-shot Dexp Dexp
ext

all all eval
list 0.0 22.2 16.7 66.7 66.7
tree 0.0 72.7 66.7 33.3 100.0
lseg 0.0 44.4 50.0 25.0 62.5

0.0 50.0 41.2 41.2 70.5

An explanation of the results follows. When prompted zero-shot, the pre-
trained model simply reproduces the unverified program for all attempts k.
1 Needless to say, increasing the error depth n has no effect, as the model
keeps cycling between the same unverified program and error message.

Few-shot, the pre-trained model does perform better. We give a breakdown
of the difficulty of methods that pre-trained model is able to tackle. For list
and tree, the model is only able to verify some easy methods.

For lseg, impressively the model is able to verify all iterative methods of
medium difficulty (contains_iter, count_iter, index_of_iter). All these
methods walk the list segment and maintain the lseg invariant for the prefix
and the suffix of the list segment. Recall the loop invariant from count_iter

method presented in Listing 3.1:

Listing 4.2: Loop invariant common to count iter, contains iter, index of iter methods.

1 while ptr is not None:

2 Invariant(lseg(head , ptr))

3 Invariant(lseg(ptr , None))

1Both zero-shot and few-shot, the pre-trained model does not respect the prompt format
and generates extraneous output until max new tokens=320 is reached—hence we have imple-
mented logic to extract the program snippet of interest. On the other hand, the fine-tuned
model correctly produces an EOS token when it believes the verified program is complete.

27

4. Evaluation

Moreover they are quite similar in structure, which explains the pre-trained
model’s success in the few-shot setting.

Our best fine-tuned model outperforms the pre-trained model in all scenarios
(by 29.2% on the evaluation set). Specifically for the list predicate, we attribute
the better performance to the fact that the fine-tuned model has seen similar
examples, albeit for a different predicate in the training data. The pre-trained
model fails to infer the correct pre- or post-condition for count and insert

methods for the list predicate. The fine-tuned model, on the other hand,
is able to generalize from similar examples seen over different predicates
in the training data (i.e. tree::count and lseg::insert). Next, we show a
more challenging case where the fine-tuned model seems to generalize from
a different predicate.

Case study: lseg::reverse iter Both the pre-trained and fine-tuned mod-
els fail to verify reverse_iter for the lseg predicate. Nevertheless, it is
interesting to see how their outputs differ.

We saw that the pre-trained model is able to verify some iterative methods,
and attributed this success to having similar invariants in the few-shot exam-
ple. However, revers_iter is unique in that it requires maintaining the in-
variant in opposite directions: the currently reversed prefix lseg(prev, None)

and the rest of the list lseg(ptr, None):

Listing 4.3: The correct invariant for lseg::reverse iter method.

1 while ptr is not None:

2 Invariant(lseg(ptr , None))

3 Invariant(lseg(prev , None))

The pre-trained model still incorrectly produces the invariant shown in
Listing 4.2. The fine-tuned model, on the other hand, produces the correct
invariant. This is perhaps due to the list::reverse_iter method being
in the training data, which maintains a similar invariant for the is_list

predicate:

Listing 4.4: Loop invariant for list::reverse iter method.

1 while ptr is not None:

2 Invariant(Implies(ptr is not None , is_list(ptr)))

3 Invariant(Implies(prev is not None , is_list(prev)))

Pitfall: list::drop iter In the previous paragraph, we saw an advantage
of the fine-tuned model generalizing from similar examples for a differ-
ent predicate in the training data. However, the model also makes false
generalizations as described next.

28

4.2. Our fine-tuned model

Both the pre-trained and fine-tuned models fail to verify drop_iter for the
list predicate. The pre-trained model does not generate the loop invariant
at all, but infers all other specifications correctly. The fine-tuned model
generates a Fold(is_list(head)) before the loop, or an extra join in the
loop:

Listing 4.5: Code produced by the fine-tuned model for list::drop iter

1 Fold(is_list(head))

2 while ptr is not None:

3 Invariant(is_list(head))

4 Invariant(is_list(ptr))

5 ...

6 join(head , tmp , ptr)

This verification strategy is common for iterative methods in for the lseg

predicate (e.g. count_iter in Listing 3.1), but the model incorrectly applies it
here. Note that the list predicate does not contain the join method at all. We
attribute this behavior to data imbalance: The (root) training data for list
contains only 1 iterative method, compared 6 for the lseg predicate. This
number is further amplified by Algorithm 3.

Dexp vs. Dexp
ext Recall that the rationale behind adding spurious spec state-

ments to generate Dexp
ext was that the model might learn to ‘delete’ specs.

However, after fine-tuning we find that the model does not consistently do
so. The model fine-tuned on Dexp always inserts an extra Fold shown on line
3 for lseg::index_of_iter and does not respond to the error message ‘Fold
might fail . . . ’.

Listing 4.6: Code produced by the Dexp-fine-tuned model for lseg::index of iter

1 ...

2 if Unfolding(lseg(ptr , last), ptr.val) == val:

3 Fold(lseg(ptr , last))

4 join(first , ptr , last)

5 return index

6 ...

The model fine-tuned on Dexp
ext inserts this extra fold initially (error depth

n = 1), but promptly removes it at n = 2.

However, for merge_sort for both list and lseg predicates, both the fine-tuned
models insert an extra Unfold before the call to split and do not respond to
the resulting error message ‘Pre-condition of split might not hold . . . ’.

Listing 4.7: Code produced by the fine-tuned models for merge sort

1 def merge_sort(head: Optional[Node]) -> Optional[Node]:

2 ...

29

4. Evaluation

3 mid = count(head) // 2

4 Unfold(lseg(head , None))

5 rest = split(head , mid)

6 ...

Discussion: token limit The pre-trained CodeLlama model has a token limit
of 16k tokens. Already with the lseg predicate (N=23), we start approaching
the limit in the few-shot setting (22 examples constituting around 9k tokens).
Although increasing the token limit is an active area of research, with the
latest GPT models supporting 128k tokens, the token requirement (and hence
the cost per inference) scales linearly with the number of examples in the
few-shot prompt. As the fine-tuned model performs zero-shot inference,
it has a constant dependence on the token requirement, consuming only
around 1k tokens per inference. We highlight this as an additional advantage
of the fine-tuned model.

30

Chapter 5

Conclusion

We conclude by summarizing the key contributions and results of this thesis
and discuss directions for future work.

This thesis tackles the problem of using LLMs to automatically infer memory
safety specifications for Python programs. First, we created a dataset of
verified programs that serves as the basis of our work and a benchmark for
evaluation.

We developed the strategy of prompting with errors and instantiated it for
GPT-4. We showed that it performs quite well (i.e. 90% on our benchmark)
in the few-shot setting. To reflect the real-world setting, we developed an
algorithm for incremental verification, highlighting the role of system prompt
to get better performance. This algorithm could be used to verify entire
standard library implementations from scratch. Our method is implemented
as a generic framework and can be easily extended to different models.

We fine-tuned an open-source pre-trained LLM (CodeLlama-7B) for the
verification task, proposing a method to generate a much larger training
dataset using our root dataset. We showed that fine-tuning improves the
performance of the pre-trained model (by 29.2% on our benchmark). We
explained the results qualitatively, highlighting the generalization capabilities
of our fine-tuning approach as a strength and data imbalance in the training
data as a weakness.

5.1 Future work

5.1.1 Properties beyond memory safety

With verified programs for memory safety, our dataset lays the groundwork
for verifying more complex properties e.g. functional correctness. For exam-

31

5. Conclusion

ple, methods in the tree predicate can be verified for the BST property. The
dataset can be extended with new data structures and predicates.

Both our few-shot prompting and incremental verification approach can be
applied with minimal modifications on this new dataset.

We believe the qualitative insights gained by restricting to the class of memory
safety specifications could inform the extension of both our approaches to
more complex properties.

5.1.2 Automating equivalence checks

As discussed in the problem statement (Section 3.2), constraints 1 and 3
require some form of equivalence checking. We propose automating these
aspects of our approach so that it can scale to larger datasets (i.e. automate
the evaluation of the benchmark) and improve usability for the end user.

• We saw that the model output may contain slight modifications of the
original program. Currently, the user has to manually check that the
inferred program is equivalent to the unverified program. We propose
defining a set of admissible transformations on programs that can be
automatically checked for equivalence (e.g. using AST analysis). Model
outputs that fail this check can then be discarded as false positives,
reducing the noise for the end-user and automating this aspect in the
evaluation of our benchmark.

• As the dataset grows and includes more complex properties, manually
checking the equivalence of pre- and post-conditions with ground truth
specification becomes infeasible. This check could be discharged to a
theorem prover (e.g. Z3) to further reduce false positives.

• In absence of ground truth specifications, we could add a sanity check
to ensure that the pre-condition does not contain a contradiction. We
propose adding Ensures(False) post-condition to the inferred specifi-
cations and checking that the resulting not program does not verify.

5.1.3 Reinforcement learning

Fine-tuning LLMs with reinforcement learning has been shown to be effective
in aligning the model to human feedback [7]. The idea applies even when the
reward function is not based on human feedback, but a scalar reward from
an oracle. Hence, a reward function parametrized by the Nagini verification
error would need to be constructed.

Note that a supervised fine-tuned model is a prerequisite for this approach,
in order to ensure the model produces outputs that are ‘in-distribution’. Our
thesis has already achieved this first step.

32

Appendix A

Dataset

The (root) dataset consists of 50 examples of verified programs across 3
predicates: list, tree, and lseg. Moreover, we have classified the methods
into 3 difficulty levels: easy, medium, and hard. The classification is rather
informal, but roughly proportional to number of spec statements required
to verify the method. Iterative methods and methods with dependencies
are considered more challenging. lseg(a,b) predicate is considered more
challenging than list(a) as it’s parametrized by two arguments, both of
which must be inferred. Additionally, in many cases the model needs to
infer specs of the form Fold(lseg(ptr, ptr)) or Fold(lseg(None, None))

as the base case of the proof.

As convention, all iterative methods have an _iter suffix. All other meth-
ods are recursive, except prepend and remove_first in list and lseg and
val_head in tree.

Table A.1: Distribution of methods by difficulty.

easy medium hard
list 5 10 3
tree 8 2 1
lseg 5 11 5

18 23 9

A.1 Root dataset

A.1.1 List

The list predicate is defined as:

1 @Predicate

2 def list(head: Node) -> bool:

3 return (

33

A. Dataset

4 and Acc(head.val)

5 and Acc(head.next)

6 and Implies(head.next is not None , list(head.

next))

7)

The list methods are shown in Table A.2.

Table A.2: List methods: N = 18, Niter = 2, Nrec = 14
Method Depends on Difficulty
prepend easy
append medium

remove first easy
remove last medium

join lists easy
contains easy

insert prepend medium
remove medium
index of medium

drop medium
drop iter hard

reverse iter hard
insert sorted medium
insertion sort insert sorted medium

count easy
split hard

merge medium
merge sort count, split, merge medium

A.1.2 Tree

The tree predicate is defined as:

1 @Predicate

2 def tree(n: TreeNode) -> bool:

3 return (

4 Acc(n.key)

5 and Acc(n.left)

6 and Acc(n.right)

7 and Implies(n.left is not None , tree(n.left))

8 and Implies(n.right is not None , tree(n.right))

9)

The tree methods are shown in Table A.3. The depends on column is omitted
as no methods have dependencies.

34

A.1. Root dataset

Table A.3: Tree methods: N = 11, Niter = 0, Nrec = 10
Method Difficulty
val head easy

height easy
count easy
sum easy

insert hard
contains easy
inorder easy

min easy
mirror easy
subtree medium

min depth medium

A.1.3 List segment

The lseg predicate is defined as:

1 @Predicate

2 def lseg(first: Optional[Node], last: Optional[Node])

-> bool:

3 return Implies(

4 first is not last ,

5 Acc(first.val)

6 and Acc(first.next)

7 and lseg(first.next , last)

8)

The lseg methods are shown in Table A.4.

35

A. Dataset

Table A.4: List segment methods: N = 21, Niter = 9, Nrec = 10
Method Depends on Difficulty

join medium
prepend easy

remove first easy
remove last medium

contains easy
contains iter join medium

insert prepend easy
insert iter prepend, join hard
append medium

append iter join hard
index of iter join medium
reverse iter hard

insert sorted medium
insertion sort insert sorted medium

insertion sort iter insert sorted hard
merge medium
count easy

count iter join medium
split medium

split iter join hard
merge sort count, split, merge medium

A.2 Training dataset

Examples held out for fine-tuning (N=17):

list: insert, remove_last, drop_iter, count, split, merge_sort (N=6)

tree: insert, height, min_depth (N=3)

lseg: remove_last, count_iter, index_of, reverse, count, split,

merge, merge_sort (N=8)

After removing the hold-out examples from D and running Algorithm 3, we
obtain the training dataset Dexp with N = 4611 examples.

The extended dataset: Dexp
ext is obtained by running Algorithm 3 on the

dataset Dext extended with spurious specifications for a total of N = 11415
examples.

36

Appendix B

Prompts

B.1 System prompt

B.1.1 System prompt 1

You are an assistant that given a python program, annotates it with appropriate Nagini

annotations so that verification succeeds. Nagini is a static verifier for Python.

Our aim is to given a statically typed Python program, to come up with appropriate

preconditions (e.g. Requires(is_list(head)), Requires(Implies(n is not None, predicate(n)))),

postcondition (e.g. Ensures(is_list(Result()))), loop invariants (Invariant(assertion)),

predicate fold/unfolds (e.g. Fold(is_list(head)) / Unfold(is_list(head))) so that the program

verifies correctly.

Unfolding(e1, e2) evaluates e2 in the context where predicate e1 is temporarily unfolded.

The user will provide Python code and the verification errors.

You must add, remove or change the specifications so that the resulting code verifies correctly.

Return only the code without any explanation or wrapping.

The is_list predicate is defined recursively as:

@Predicate

def is_list(head: Node) -> bool:

return (

head is not None

and Acc(head.val)

and Acc(head.next)

and Implies(head.next is not None, is_list(head.next))

)

B.1.2 System prompt 2

System prompt 2 is System prompt 1 plus:

Unfolding a predicate exchanges the predicate instance for it’s body.

Folding a predicate does the opposite - i.e. permissions specified by in the body, if available

in the current program state, are taken away and the predicate instance becomes available again.

A fold operation failing means the permissions specified in the predicate body are not available

37

B. Prompts

in the program state. An unfold operation failing means the predicate instance is not available

in the program state. This might mean it is already unfolded and that the permissions in the body

are available in the program state instead. Inside a loop, Invariant() specifies which assertion

holds before the entry of the loop, during each iteration and after the loop exits. This means,

the invariant must be true on entry, that is before the first iteration of the loop.

Then it should be preserved from one iteration to the next. And finally, it must be true after

the loop exits. Permissions from/to outer contexts are not transferred to the loop,

unless specified in the invariant.

An example {unverified program + verification error, verified program} for

an unrelated ‘is_positive‘ predicate is shown below:

@Predicate

def is_positive(c: Cell) -> bool:

return Acc(c.value) and c.value > 0

{ommited example: increment}

def compare(c1: Cell, c2: Cell) -> bool:

"""Returns True if the value in c1 is greater than value in c2"""

if c1.value > c2.value:

return True

return False

Conditional statement might fail. There might be insufficient permission to access c1.value.

at line 3.7

def compare(c1: Cell, c2: Cell) -> bool:

"""Returns True if the value in c1 is greater than value in c2"""

Requires(is_positive(c1) and is_positive(c2))

Ensures(is_positive(c1) and is_positive(c2))

if Unfolding(is_positive(c1), c1.value) > Unfolding(is_positive(c2), c2.value):

return True

return False

Equivalently, we can use Unfold and Fold instead of Unfolding, but need to make sure

to Fold the predicate in both cases so that the post condition is satisfied in both cases:

def compare(c1: Cell, c2: Cell) -> bool:

"""Returns True if the value in c1 is greater than value in c2"""

Requires(is_positive(c1) and is_positive(c2))

Ensures(is_positive(c1) and is_positive(c2))

Unfold(is_positive(c1))

Unfold(is_positive(c2))

if c1.value > c2.value:

Fold(is_positive(c1))

Fold(is_positive(c2))

return True

Fold(is_positive(c1))

Fold(is_positive(c2))

return False

38

Bibliography

[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser,
Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski
Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu
Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew
Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

[3] Marco Eilers and Peter Müller. Nagini: A static verifier for python. In
International Conference on Computer Aided Verification, 2018.

[4] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation
of large language models, 2021.

[5] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-

39

Bibliography

pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016.

[6] OpenAI. Prompt engineering. https://platform.openai.com/docs/

guides/prompt-engineering, Accessed: 2024-04-01.

[7] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie
Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with
human feedback, 2022.

[8] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Re-
mez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis
Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code
llama: Open foundation models for code, 2024.

[9] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song.
Learning loop invariants for program verification. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

[10] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames.
ACM Trans. Program. Lang. Syst., 34(1), may 2012.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30, 2017.

[12] Patrick von Platen. How to generate. https://huggingface.co/blog/
how-to-generate, Accessed: 2024-04-01.

[13] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Hugging-
face’s transformers: State-of-the-art natural language processing, 2020.

[14] Haoze Wu, Clark Barrett, and Nina Narodytska. Lemur: Integrating
large language models in automated program verification, 2024.

40

https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate

Bibliography

[15] Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang
Song, Shixing Yu, Saad Godil, Ryan Prenger, and Anima Anandkumar.
Leandojo: Theorem proving with retrieval-augmented language models,
2023.

41

	Contents
	Introduction
	Motivation
	Contributions
	Outline

	Background
	Program Verification in Nagini
	The specification language
	Modular verification

	Large Language Models
	Inference
	Training
	Fine-tuning

	Related work

	Approach
	Dataset design
	Problem statement
	Prompting
	Few-shot prompting
	Incremental verification

	Supervised fine-tuning
	Training dataset
	Experiments

	Evaluation
	Prompting
	Few-shot prompting
	Incremental verification

	Our fine-tuned model

	Conclusion
	Future work
	Properties beyond memory safety
	Automating equivalence checks
	Reinforcement learning

	Dataset
	Root dataset
	List
	Tree
	List segment

	Training dataset

	Prompts
	System prompt
	System prompt 1
	System prompt 2

	Bibliography

