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Richardson Extrapolation

® Richardson’s idea: combine and in a smart way G(h)=G|(0)+c, h+c,h?+ ---
G, lh)=2G(h/2)- G|h G(h/Z):G+%c1h+%c2h2+---
2(G(O)+c1h+c2h2+---)—(G+%c1h+%c2h2+---
1
G"'EC "+ Leading order term is now second order!
N~ -
® Can be repeated:
1 ; | Error: e(h/2)~G(h/2)—G h)
G, h|==(4G,|h/2)-G,|h||=G+0O|n*|
3 :
If 1s small () good!
— If Is too large keep subdividing
G, h = 1 (znGn_l(h/z)—Gn_l(h)):G+o(h””) | Good way to estimate the

2"—1 | error of a discretization



Problem

® Up until now the main way to increase accuracy is to have more function evaluations
® Today we will have a look at how to reduce the number of function evaluations with

* Adaptive quadrature to enhance the algorithm
* Gauss quadrature to improve the quadratures



Adaptive Quadrature

® On some functions it would be beneficial if we sample the function non uniformly
® Linear or constant intervals can be exactly approximated with a single interval of the
Trapezoidal rule
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Adaptive Quadrature

® Pseudocode for a recursive Implementation

Algorithm 1 Adaptive integration using recursion

function ADAPTIVESIMPSON(a, b)
apply Simpson’s rule in interval |a, b
subdivide the interval into [a,m| and |m,b] with m = (a + b)/2
apply Simpson’s rule in intervals |a, m| and |m, b
estimate error in |a, b] using Richardson’s extrapolation
if accuracy is worse than desired then

return ADAPTIVESIMPSON(a, m) + ADAPTIVESIMPSON(m, b)
else
return value of Simpson’s rule (the accurate one)

end if

end function




Gauss Quadrature

® Gauss Quadrature aims to improve where we are evaluating the function in the intervals:

_ 20 0 3 Ay
I—fao+alx+a2x +d, X dx~clf(x1)+czf(x2)

® By inspecting the coefficients we find 4 equations for the 4 unknown c_, c,, X, and x,

® The found quadrature is known as the 2-point Gauss quadrature and can approximate
cubic functions exactly
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Gauss Quadrature

® Here a demonstration of this new Quadrature

I:fx6+0.5x3+2x2+x+4dx

Approximation Error
Trapezoidal Rule 1157.25 800.196
Simpson’s Rule 431.906 74.852
2 point Gauss Quadrature 307.875 -49.179
3 point Gauss Quadrature 356.272 —(0.782

True Value 357.054 *



Exercise Sheet 8



Question 1

® Similar to the shown demonstration of the Gauss Quadrature
® Approximate the following integrals with

* Trapezoidal rule (two intervals)
* Newton Cotes (Simpson’s Rule)
* Gauss Quadrature

I=fx6—xzsin(2x)dx szl—

® Use a calculator for the evaluations
® Observe the behaviour when the function is not smooth

x—1

dx

1



Question 2

Question 2: Adaptive quadrature

Apply adaptive gquadrature by hand, using the Trapezoid Rule with relative tolerance
fol = (L.05 to approximate the integrals. Relative tolerance is related to the Richardson
extrapolation error as :

® Perform an Adaptive Quadrature on the
provided functions (h/2) <310l
® Use the glven Crlterlon |f the Current where hy is the size if the initial interval.

Find the approximation of the integrals and error compared to the exact solution for both

approximation Is good enough fincticeis below:

al flz)=x% ap=0,bg=1

b) flx) = cos(x), ag =0, by = /2

® Tips:
® Use a calculator
® The first example is short the second is more involved



Notebook 8.1

Here we switch to Jupyter Notebook to view the questions.
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Exercise set 7

Question 1: Finite differences with Richardson extrapolation

a) A finite difference approximation (i.e., a numerical approximation) of the first derivative
of a function f(z) at x =0 is

flx +h) - f(z)
h

fiz) = = Go(h),

and the n-th application of Richardson extrapolation is given by the formula

1

Galh) = 507

(2"Gp_1(h/2) — Gh_1(h)).
Let f(x) = x+¢€”. Set h = 0.4 and compute the Richardson extrapolation up to Gy (h).
Keep 5 decimal points throughout the calculations.

b) Since the exact value is known (f’(0) = 2), you can compute the error E,(h) =
|G (h) — 2| for each term in a). Is the accuracy improved over the iterations?

1. Three numerical derivatives have to be calculated and then

combined to improve accuracy
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The error does Indeed decrease over the
iterations
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Algorithm 1 Romberg integration

Input:
Question 2: Pseudocode for Romberg integration function f(z)
_ _ _ _ mterval boundaries a, b
Write a pseudocode for Romberg integration. Write your own code from scratch or use the b of terationg X
skeleton pseudocode below. Output:

I}. = integral[K, (] approximation to the integral Ifﬂ'l’ flz)dz

Steps:

maxNumIntervals « 2%

// Precompute and store function evaluations

1 hmin « (b — a)/maxNumIntervals
for 1 «— 0, ... maxNumIntervals do
fvalues|i| +— f(a + ¢ % hmin)
end for

// Compute level () integrals
2 forr < 0,...,K do // refinement
numIntervals + 27

step « 2% // step between two function evaluations for this refinement
result «+ ()

for 1 + step.2 % step,d = step, ..., maxNumIntervals — step do
result « result + fvalues|i|
end for

1. Precompute a” functlon Values // composite trapezoidal rule:

integral|(,r| «+ 0.5 o (fvalues|()] + fvalues/maxNumIntervals|

numIntervals

2. Calculate the initial integrals (composite trapezoidal rule) +2# result)

end for
3. Perform Romberg integration ) | -~ |
//Advance to higher precision according to Romberg
3 forl« 1...., K do //level
forr+0,..., K — [ do // rehnement
-litintegra]_.[{ 1,r I] i:|'r|:E-|g,TEL_1|II 1.r]

integral|l,r| +
end for
end for

4t =1



Exercise set 7

Question 3: Romberg Integration

The sine integral Si(z) = [ sin(t) ¢ can not be easily integrated.

t

0
Find an approximation of Si(7) with the use of Romberg integration. Start with an interval
size of ™ and approximate the integral using the trapezoidal rule up to 2"¢ order (I}). (Hint:

sin(0
mo( ) :1)

1. Analogue to the first Question

(1)22 11_8+T[
2 1 6
2 4+
b4 12— 124322431
=
_12+162437 36

14
0 24

I,

B 724256424217

270



Notebook 7.1

Here we switch to Jupyter Notebook to view the solutions.
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