MAD Exercise Session – Tuesday, 21.04.2020

Pascal Auf der Maur

Computational Science and Engineering Lab ETH Zürich

Lecture Recap

Numerical Quadrature

Rectangle Rule:

\n
$$
I \approx \Delta_x \sum_{i=0}^{N-1} f(x_i),
$$
\nMidpoint Rule:

\n
$$
I \approx \Delta_x \sum_{i=0}^{N-1} f\left(\frac{x_i + x_{i+1}}{2}\right),
$$
\nTrapezoidal Rule:

\n
$$
I \approx \frac{\Delta_x}{2} \left(f(x_0) + 2 \sum_{i=1}^{N-1} f(x_i) + f(x_N) \right),
$$

Simpson's Rule:
$$
I \approx \frac{\Delta_x}{3} \left(f(x_0) + 4 \sum_{\substack{i=1 \ i \equiv odd}}^{N-1} f(x_i) + 2 \sum_{\substack{i=2 \ i \equiv \text{even}}}^{N-2} f(x_i) + f(x_N) \right).
$$

$$
h = \frac{a - b}{N} \qquad x_0 = a, x_{N-1} = b
$$

Richardson Extrapolation

• Richardson's idea: combine and in a smart way

$$
G_1(h) = 2G(h/2) - G(h)
$$

2 $(G(0) + c_1 h + c_2 h^2 + \cdots) - (G + \frac{1}{2} c_1 h + \frac{1}{4} c_2 h^2 + \cdots)$
 $G + \frac{1}{2} c_2 (h^2) + \cdots$ *Leading order term is now second order!*

• Can be repeated:

$$
G_2(h) = \frac{1}{3} (4 G_1(h/2) - G_1(h)) = G + O(h^3)
$$

$$
G_n(h) = \frac{1}{2^n - 1} \left(2^n G_{n-1}(h/2) - G_{n-1}(h) \right) = 0
$$

 $G(h) = G(0) + c_1 h + c_2 h^2 + \cdots$ $G(h/2) = G +$ 1 2 $c_1 h +$ 1 4 $c_2 h^2 + \cdots$

Error: $\epsilon(h/2) \approx G(h/2) - G(h)$

If is small () good!

If is too large keep subdividing

Good way to estimate the error of a discretization

Problem

- Up until now the main way to increase accuracy is to have more function evaluations
	- Adaptive quadrature to enhance the algorithm
	- Gauss quadrature to improve the quadratures

• Today we will have a look at how to reduce the number of function evaluations with

Adaptive Quadrature

• On some functions it would be beneficial if we sample the function non uniformly • Linear or constant intervals can be exactly approximated with a single interval of the Trapezoidal rule

Adaptive Quadrature

• Pseudocode for a recursive Implementation

Algorithm 1 Adaptive integration using recursion

function ADAPTIVESIMPSON (a, b)

apply Simpson's rule in interval $[a, b]$ subdivide the interval into $[a, m]$ and apply Simpson's rule in intervals $[a,$ estimate error in $[a, b]$ using Richard if accuracy is worse than desired the **return** ADAPTIVESIMPSON (a, m) + ADAPTIVESIMPSON (m, b)

else

return value of Simpson's rule (the accurate one) end if

end function

b]
d [m, b] with
$$
m = (a + b)/2
$$

, m] and [m, b]
dson's extrapolation
nen

Gauss Quadrature

$$
I = \int a_0 + a_1 x + a_2 x^2 + a_3 x^3 dx \approx c_1 f(x_1) + c_2 f(x_2)
$$

 $\bullet\,$ By inspecting the coefficients we find 4 equations for the 4 unknown ${\mathsf c}_1^{}$, ${\mathsf c}_2^{}$, ${\mathsf x}_1^{}$ and ${\mathsf x}_2^{}$ • The found quadrature is known as the 2-point Gauss quadrature and can approximate cubic functions exactly

$$
\int f(x)dx \approx \frac{b-a}{2}f\left[\left(\frac{b-a}{2}\right)\left(\frac{-1}{\sqrt{3}}\right)+\frac{a+b}{2}\right]+\frac{b-a}{2}f\left[\left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right)+\frac{a+b}{2}\right]
$$

• Gauss Quadrature aims to improve where we are evaluating the function in the intervals:

Gauss Quadrature

$$
I = \int a_0 + a_1 x + a_2 x^2 + a_3 x^3 dx \approx c_1 f(x_1) + c_2 f(x_2)
$$

 $\bullet\,$ By inspecting the coefficients we find 4 equations for the 4 unknown ${\mathsf c}_1^{}$, ${\mathsf c}_2^{}$, ${\mathsf x}_1^{}$ and ${\mathsf x}_2^{}$ • The found quadrature is known as the 2-point Gauss quadrature and can approximate cubic functions exactly

$$
\int f(x)dx \approx \frac{b-a}{2}f\left[\left(\frac{b-a}{2}\right)\left(\frac{-1}{\sqrt{3}}\right)+\frac{a+b}{2}\right]+\frac{b-a}{2}f\left[\left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right)+\frac{a+b}{2}\right]
$$

• Gauss Quadrature aims to improve where we are evaluating the function in the intervals:

Gauss Quadrature

• Here a demonstration of this new Quadrature

$$
I = \int x^6 + 0.5x^3 + 2x^2 + x + 4 dx
$$

Exercise Sheet 8

Question 1

- Similar to the shown demonstration of the Gauss Quadrature
- Approximate the following integrals with
	- Trapezoidal rule (two intervals)
	- Newton Cotes (Simpson's Rule)
	- Gauss Quadrature

- Use a calculator for the evaluations
- Observe the behaviour when the function is not smooth

$I = \int 1 - |x - 1| dx = 1$

$$
I=\int x^6-x^2\sin(2x)dx
$$

Question 2

- Perform an Adaptive Quadrature on the provided functions
- Use the given criterion if the current approximation is good enough

- Tips:
- Use a calculator
- The first example is short the second is more involved

Question 2: Adaptive quadrature

Apply adaptive quadrature by hand, using the Trapezoid Rule with relative tolerance $tol = 0.05$ to approximate the integrals. Relative tolerance is related to the Richardson extrapolation error as :

$$
\epsilon(h/2) < 3 \cdot tol \cdot \frac{h}{h_0}
$$

where h_0 is the size if the initial interval.

Find the approximation of the integrals and error compared to the exact solution for both functions below.

a)
$$
f(x) = x^2, a_0 = 0, b_0 = 1
$$

b)
$$
f(x) = \cos(x), a_0 = 0, b_0 = \pi/2
$$

Notebook 8.1

Here we switch to Jupyter Notebook to view the questions.

Exercise Sheet 7 Review

Exercise set 7

Question 1: Finite differences with Richardson extrapolation

a) A finite difference approximation (i.e., a numerical approximation) of the first derivative of a function $f(x)$ at $x = 0$ is

$$
f'(x) \approx \frac{f(x+h) - f(x)}{h} = G_0(h),
$$

and the n -th application of Richardson extrapolation is given by the formula

$$
G_n(h) = \frac{1}{2^n - 1} (2^n G_{n-1}(h/2) - G_{n-1}(h)).
$$

Let $f(x) = x + e^x$. Set $h = 0.4$ and compute the Richardson extrapolation up to $G_2(h)$. Keep 5 decimal points throughout the calculations.

- b) Since the exact value is known $(f'(0) = 2)$, you can compute the error $E_n(h) =$ $|G_n(h) - 2|$ for each term in a). Is the accuracy improved over the iterations?
- 1. Three numerical derivatives have to be calculated and then combined to improve accuracy

1. 2. The error does indeed decrease over the iterations

Exercise set 7

Question 2: Pseudocode for Romberg integration

Write a pseudocode for Romberg integration. Write your own code from scratch or use the skeleton pseudocode below.

- 1. Precompute all function values
- 2. Calculate the initial integrals (composite trapezoidal rule)
- 3. Perform Romberg integration

Algorithm 1 Romberg integration Input: function $f(x)$ interval boundaries a, b number of iterations K Output: I_K^1 = integral[K, 0] approximation to the integral $\int_a^b f(x) dx$ Steps: $\texttt{maxNumIntervals} \gets 2^K$ $//$ Precompute and store function evaluations $O(h^6)$ 1 $hmin \leftarrow (b-a)/maxNumIntervals$ for $i \leftarrow 0, \ldots, \text{maxNumIntervals do}$ fvalues $[i] \leftarrow f(a + i * \text{hmin})$ end for I_2^1 $//$ Compute level 0 integrals for $r \leftarrow 0, \ldots, K$ do // refinement 2 $numIntervals \leftarrow 2^r$ step $\leftarrow 2^{K-r}$ // step between two function evaluations for this refinement result $\leftarrow 0$ for $i \leftarrow$ step, 2 * step, 3 * step, ..., maxNumIntervals - step do $result \leftarrow result + fvalues[i]$ end for $//$ composite trapezoidal rule: $\mathtt{integral}[0,r] \gets 0.5 \tfrac{b-a}{\mathtt{numIntervals}}(\mathtt{fvalues}[0] + \mathtt{fvalues}[\mathtt{maxNumIntervals}])$ $+2*result)$ end for //Advance to higher precision according to Romberg 3 for $l \leftarrow 1, \ldots, K$ do //level for $r \leftarrow 0, \ldots, K - l$ do // refinement $\texttt{integral}[l, r] \gets \tfrac{4^{l_\texttt{%integral}[l-1, r+1] - \texttt{integral}[l-1, r]}}{4^{l} - 1}$ end for end for

Exercise set 7

Question 3: Romberg Integration

The sine integral Si(x) = $\int_{0}^{x} \frac{\sin(t)}{t} dt$ can not be easily integrated. Find an approximation of $\mathrm{Si}(\pi)$ with the use of Romberg integration. Start with an interval size of π and approximate the integral using the trapezoidal rule up to 2^{nd} order (I_2^1) . (Hint: $\frac{\sin(0)}{0} = 1$

1. Analogue to the first Question

Notebook 7.1

Here we switch to Jupyter Notebook to view the solutions.