
MAD Cheatsheet

Function fitting

Linear Least squares

Data: {ti, bi}Ni=1

Fitted function: f(t) =
∑M
k=1 xkΦk(t)

where Φk(t) are linear independent basisfunctions. The
functions can be non linear (ex: eβt) but the unknown
factor x must enter linearly.

Cost function

E2 =
∑N
i=1 e

2
i =

∑
(bi − f(ti))

2 ei: residuals
Matrix Formulation:
E2 = ETE = (b−Ax)T (b−Ax) = bT b−2xTAT b+xTATAx
Problem: Find xk to minimize Cost =⇒ derivate wrt. x
and solve for x
x = (ATA)−1AT b

Formulas for linear case

x1 + x2ti ≈ bi
x1 =

∑
t2i

∑
bi−

∑
ti

∑
tibi

N
∑
t2i−(

∑
ti)

2

x2 = N
∑
tibi−

∑
ti

∑
bi

N
∑
t2i−(

∑
ti)

2

b = X1 +X2(t− t̄)
X1 =

∑
bi
N

X2 =
∑

(ti−t̄)bi∑
(ti−t̄)2

Properties

• The vector E is orthogonal wrt. to A

• x can be seen as the projection of b onto A

• The conditionnumber
κ(A) = ‖A‖‖A−1‖ = σmax(A)

σmin(A)
tells us how stable a

fit is the smaller the number the better the result.

• By solving the normal equation the condition
number gets squared due to A beeing twice in the
inverse. A more stable solution would be to apply
a QR or SVD decomposition where the inverse
gets first normalized.

• A = QR =
[
Q1 Q2

] [
R1 0

]T
x = R−1QT b

• A = UΣV T x = V Σ+UT b

Solving non-linear equations
Bisection Newton’s Method Secant method

rate 1 2 1.618/1.839

cost cheap expensive middle

robust yes no no

Conditioning
If the function is very horizontal at the roots position, the
problem is ill conditioned. κ = |f ′(x∗)|−1

Bisection
Search for an interval with root. Then half the interval
and continue with the new interval. The midpoint will
converge towards the root.

Newton
xk+1 = xk − f(xk)

f ′(xk)

Derivation with Taylor series:
f(x∗)︸ ︷︷ ︸

0

= f(xk) + f ′(xk)(x∗ − xk)

Secant method
Approximate derivative numerically:
xk+1 = xk − f(xk) ∗ xk−xk−1

f(xk)−f(xk−1)
Newtons method gets

linear if the multiplicity of the root is m¿1. Also the if
the derivative tends to zero the method gets unstable.

Convergence rate

lim
k→∞

|Ek+1|
|Ek|r

= C Where r is the order of convercence and

C is the convergence error constant.

Set of Equations
xk+1 = xk − J−1(xk)F (xk) where J is the Jacobian We
don’t invert the Jacobian instead we solve for:
J(xk)y = −F (xk) xk+1 = xk + y Cond. num.:
κ = ‖J−1‖. Costs: build J: n2 solve: n3 Improvements: If
J isn’t changing rapidly keep it constant or adjust it with

the step Jn+1 = Jn + (∆F−J∆x)(∆x)T

(∆x)T (∆x)

Optimization

By finding roots of the derivative of the Cost/Error
function we can optimize multivariable equations. Where
F is replaced by ∇E(x) and J by ∇2E(x). To further
increase performance we can further choose a
combination between Gradient descent and Newtons
(Levenberg-Marquardt Method) ∇2E + λIy = −∇E
where we start with a large λ and decrease it at each
iteration if the error decreases and increase it if the error
increases.

LSQ

We can also use this method to fit non-linear functions to
a set of datapoints.

(
JTJ − L

)
y = JT (b− F)

Gradient descent: y = JT (b− F) xk+1 = xk + ηy

Interpolation
We want to have a function f that goes through our
datapoints.

∑
αkφk = yi

Lagrange interpolation
Approximate function with polynomials:f(x) =

∑
ykLk

Where Lk =
(x−x1)(x−x2)...(x−xk−1)(x−xk+1)...(x−xn)

(xk−x1)(xk−x2)...(xk−xk−1)(xk−xk+1)...(xk−xn)

The error is
|y(x)− f(x)| = | y

(n)(η)
n!

Π(x− xk)| y(n): n-th derivative

Properties

• It is not recommended to use Lagrange
interpolation for extrapolation.

• Lagrange interpolation will cause huge oscilations
in the edge regions (Runge’s phenomenon).

• If points are changed the whole polynomial has to
be recomputed

• It is sensitive to noise

Cubic splines
We interpolate between two points with a third order
polynomial and require C1 and C0 continuity.

Derivation

f ′′(x) = f ′′i
xi+1−x

∆i
+ f ′′i+1

x−xi
∆i

f(x) = f ′′i
(xi+1−x)3

∆i
+ f ′′i+1

(x−xi)3
∆i

+Ci(x− xi) +Di Solve

for f ′′i ,f ′′i+1 ,Ci and Di by imposing boundry conditions:
∆i−1

6
f ′′i−1 +

(
∆i−1+∆i

3

)
f ′′i + ∆i

6
f ′′i+1 =

yi+1−yi
∆i

− yi−yi−1

∆i−1

For the boundries a lot of different conditions can be
chosen:

• Natural Spline: f ′′1 = f ′′N = 0

• Parabolic runout: Set f ′′1 = f ′′2 and f ′′N = f ′′N−1

• Clamping: f ′1 = f ′N = 0

Tridiagonal matrix

This equation can be written in matrix notation:

b1 c1 0
a2 b2 c1

a3 b3
. . .

. . .
. . . cN−1

0 aN bN




x1

x2

x3

...
xN

 =


d1

d2

d3

...
dN


By eliminating the lower diagonal we get the formula:

xi =

{
gN i = N

gi − wixi+1 i = N − 1, N − 2, . . . , 1

Where: wi =

{
c1
b1

i = 1
ci

bi−aiwi−1
i = 2, 3, . . . , N − 1

and

gi =

{
d1
b1

i = 1
di−aigi−1

bi−aiwi−1
i = 2, 3, . . . , N

Orthogonal basis

If we choose for φi orthogonal functions, we can easily
increase the degree of our polynomial, since the new
parameter αi will not affect the old ones since the new
function is orthogonal to the others. We get orthogonal
functions by using Gramm-Schmidt. The closed
expression for the coefficients is

αi = 〈y(x)φi(x)〉p =
∞∫
−∞

y(x)φi(x)p(x)dx Where if y(x) is

discrete p(x) = 1
N

N∑
n=1

δ(x− xn) and otherwise 1.

(αi = 1
N

N∑
n=1

ynφi(xn) for discrete sets)

B-Splines

B-splines are a more general form of cubicsplines where
the degree of continuity can be chosen freely.

Bi,0,t =

{
1 ifti ≤ x < ti+1

0 otherwise

Bi,d,t = x−ti
ti+d−ti

Bi,d−1,t +
ti+d+1−x

ti+d+1−ti+1
Bi+1,d−1,t

The given knot vector and its associated entries
tj = (j = 1, . . . ,M + d+ 1) define the form of the spline.
The entries have to be order, but can be repeated to
ensure that derivatives equal to zero (clamped: d+1,
f ′(tj) = 0: d). The resulting spline is described by:

Sd,t(x) =
M∑
i=1

αiBi,d,t(x) fortd+1 ≤ x < tM + 1

αi are free parameters that have to be determined with
LSQ in case of N ≥M or are yi in case of M = N . Also
the parameters are tied to each other. If we change
someting the whole spline has to be recomputed.

NURBS

Non-Uniform-Rational B-Splines are used to generalize
B-splines even further to interpolate curves instead of
functions.
−→p =

N∑
i=1

Ri,d,t(s)
−→p i Ri,d,t(s) =

Bi,d,t(s)wi∑N
j=1 Bj,d,t(s)wj

properties

• in case of wi = 1 the equation simplifies to
Ri,d,t = Bi,d,t

• Changing a point will only affect part of the whole
curve.

• For computergraphic they often use cubic Bézier
curves that are patched together.

Multivariable Interpolation

Gridded data

z = f(x, y) =
∑
i

∑
j

ai,jφi(x)φ(y) We can either use

Lagrange polynomials:
f(xp, yq) =

∑
i

∑
j

Z(xi, yj)li(xp)lj(yq)

Or NURBS: −→p (u, v) =
∑
i

∑
j

Ri,du,tu(u)Rj,dv,tv (v)−→p i,j

Irregular Data

We can either use Shepard’s method which is based on we
choose the approximation function to be:

f(x, y) =
∑
k zkg(x−xk),y−yk)∑
k g(x−xk,y−yk)

Where g(x, y) is a radial symmetrical function with
decaying magnitude from the datapoint (Radial Basis
Function)as: g(x, y) = 1

(x2+y2)µ/2

Or we can use Coons patches where we linearly
interpolate twice between four corners.

Neural Networks
Neural networks function similar to braincells. A node
recieves a signal from the previous layer. In this node the
input gets summed up using weights for each input into
the node as well as a individual bias. The sum is then
evaluated with a activation function such as tanh,
Heavyside, ReLU or sigmoid. The output is then sent to
the next layer until the output layer is reached. Since we
know how our Output has been generated, we can adjust
the weights and biases, that the output of our network
matches our desired output. This is achieved with
trainingdata and the use of backprobagation where we
adjust the weights to our liking.
∆wkij = −η ∂E

∂wkij
E(w) = 1

2

∑
i=1

N(−→yi −NN(w,−→xi))2

Usual problems are that the learningrate η has to be
wisely choosen, such that the learning rate isn’t to slow
but still converges to a minimum. Also if the network
learns to long with the training data the result on other
data will diverge, since it will overfit to the trainingdata,
which can contain noise and errors. A method to avoid

overfitting is crossvalidation (k-fold). We split our data
into k-groups, where we use all but one groups to train
and the spare one to validate. Afterwards we change the
roles and continue for each group. ri = K

N

∑
(fi(x)− y)2

and R = 1
K

K∑
i=1

ri This way we get an estimated error

predition error.

Numerical Integration
We approximate integrals with sums.

Rectangle rule

• Quadrature:f(xi)∆i

• closed Expr:∆x

∑
I

Midpoint rule

• Quadrature:f
(
xi+xi+1

2

)
∆i

• closed Expr:∆x

∑
I

• Error: 1
24
f ′′(xi+1/2)∆3

i +O(∆5
i)

Trapezoidal rule

• Quadrature:
f(xi)+f(xi+1)

2
∆i

• closed Expr: ∆i
2

(
f(x0) + f(xN) + 2

N−1∑
i=1

f(xi)

)
• Error:− 1

12
f ′′(xi+1/2)∆3

i +O(∆5
i)

Simpson rule

• Quadrature:
f(xi)+4f((xi+xi+1)/2)+f(xi+1)

6
∆i

• closed

Expr: ∆x
3

(
f(x0) + f(xN) + 4

∑
i=odd

f(xi) + 2
∑

i=even

f(xi)

)
• Error:O(∆5

i)

Attention: Error is reduced by one order if it is evaluated
over a domain.

Newton-Cotes

Approximation of interpolant with Lagrange polynomial.

I ≈ ∆i

M∑
k=0

CMk f(xk) CMk = 1
∆i

xi+1∫
xi

lMk (x) dx

Properties

•
∑
CMk = 1

• CMk = CMM−k

Richardson extrapolation

The absolute value G is approximated with G ≈ G(h)
which is dependant on discretization h. We approximate
G(h) = G(0) + c1h+ c2h

2 + . . . With
G1(h) = 2G(h/2)−G(h) = G+ c′2h

2 + c′3h
3 + . . . we can

reduce the error by one degree.
We obtain:
Gn(h) = 1

2n−1
(2nGn−1(h/2)−Gn−1(h)) = G+O(hn+1)

Error estimation

ε(h/2) ≈ G(h/2)−G(h)

Romberg integration

Richardson applied to trapezoidal:

Ink =
4kI2nk−1−I

n
k−1

4k−1

Adaptive quadrature

We can use Rhomberg integration and error estimation to
evaluate locally if we want to evaluate the integral with
more precision at points with sudden changes.

Gauss quadrature

I =
∫ b
a
f(x) dx ≈

∑
i cif(xi) We choose ci and xi to

minimize the error:
For two points we require the equation to exactly
integrate a fourth order polynomial. We get:

c1 = b−a
2

= c2 x1,2 =
(
b−a

2

) (
± 1√

3

)
+ b+a

2

Hermite Interpolation

For the n-point rule we interpolate its values, aswell as its
derivatives. f(x) =

∑n
k=1 Uk(x)yk +

∑n
k=1 Vk(x)y′k

Uk(x) = [1− 2L′k(xk)(x− xk)]L2
k(x) Vk(x) =

(x− xk)L2
k(x)

n-point Gauss rule

We integrate move our general integration domain a,b to
-1,1.

∫ 1

−1
f(x) dx =∑n

k=1 yk
∫ 1

−1
Uk(x) dx+

∑n
k=1 y

′
k

∫ 1

−1
Vk(x) dx We want

that vk = 0 to match our previous rules. We factor
Lk(x) = CkF (x)/(x− xk) where Ck is the denominator
and F (x)/(x− xk) the nominator of Lk. Since Ck is

nonzero, we can require: 0 =
1∫
−1

F (x)Lk(x) dx.

Polynomials F (x) with this property are the Legendre
polynomials. The roots of the n-th Legendre polynomial
are therefore xk and uk = 2

(1−x2
k

)(P ′n(xk))2

The error with n abscissas is ε = 22n+1(n!)4

(2n+1)(2n!)3
f (2n)(η)

Multidimensional Integrals

We can express multidimensional integrals as nested
integrals:

I ≈
n∑

i1=1
...
id=1

wi1,...,idf(xi1 , . . . , xid) However the error of these

integrals scales with:I − IS = O(M−1/d. (for Simpson
O−4/d) where M are the function evaluations and d the
dimension.

Monte-Carlo Integration

With Monte-Carlo Integration we sample random points
from our integration domain Ω and evaluate f at these
points. Our Integral becomes I = |Ω|〈f〉 Where
〈f〉 = 1

|Ω|

∫
Ω
f(x)dx. Now we approximate 〈f〉 with M

uniform random function evaluations

〈f〉 ≈ 〈f〉M = 1
M

M∑
i=1

f(xi). For sufficient enough

evaluations the estimation will tend towards the exact
value. The error of this Method is εM = O(M−1/2) which
is independant of d. Therefore Monte Carlo is more
efficient for d > 8.

Sampling
Usually we can sample in some form from an uniform
distribution. But sometimes we want to sample from
non-uniform distributions.

Inverse Transform Sampling

We want to transform a uniform distribution u to a
non-uniform distribution x. Where px(x) is the
probability density function and Fx(x) is the
commulative density function. It holds that

Fu(u) =
u∫
0

pu(s) ds = u As for any cdf the value will

continually grow which allows us to write Fx = u Which
allows us to write x = F−1

x (u) This can be used for
distributions where its density can be calculated easily.
But for example for a normal distribution where the cdf
can not be calculated analytically we can sometimes use
approximations such as Box-Muller:
x1 =

√
−2 ln(u1) cos(2πu2) x2 =

√
−2 ln(u1) sin(2πu2)

Rejection Sampling

We have a simple distribution with pdf h(x) from which
we can sample and which bounds our desired distribution
p(x): p(x) < λh(x). If this hold we can evaluate:

u < p(x)
λh(x)

where u is sampled from a uniform distribution.
If it holds we accept x and otherwise we reject it.

Importance Sampling
For some distributions we have to reject a lot of samples
which will result in a lot of wasted effort. To circumvent
this we draw samples x that are distributed as probability
w(x). To compensate for the bias we normalize p(x) with
the same function w(x):

〈f〉p = 1
b−a

M∑
i=1

f(xi)
p(xi)
w(xi)

Probability

Basics
• There is an random variable X that has an

associated probability p(x)

•
∑
i

P (xi) = 1

• The cumulative distribution function (CDF) Fx(x)
is the probability P that a value chosen from the
variables distribution is less or equal than some
threshold.

• The probability density function (PDF) p is the
derivative of the CDF. And integrates to one over
the domain.

• P (a ≤ X ≤ b) =
b∫
a

p(x) dx

Common distributions

Uniform distribution

pU (x) = 1
b−a

Binomial distribution

p(k) =

(
n
k

)
pk(1− p)n−k

Normal distribution

pN (x) = 1√
2πσ2

exp(− (x−µ)2

2σ2)

Expected value
E[X] = 〈X〉 =

∫
Ω
xp(x) dx

In discrete settings (mean): E(x) =
∑
i

xiP (xi)

Variance
Var[X] = σ2[X] = E

[
(X − E[X])2

]
= E[X2]− E[X]2

Bayesian inference

Bayes’ theorem

P (Aj |B) =
P (B|Aj)P (Aj)
n∑
i=1

P (B|Ai)P (Ai)

Parameter estimation

P (θ|D, I)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P (D|θ, I)

prior︷ ︸︸ ︷
P (θ|I)

P (D|I)︸ ︷︷ ︸
evidence

P (I|D) =

∫
P (D|θ, I)P (θ|I) dθ

• I: Information

• D: Data

• M: Model explaining data (I)

We look for parameters θ0 that minimize the error of the
model.

Laplace Approximation
Looking for maximum:

∂P
∂θ
|θ0 = 0 ∂2P

∂θ2
|θ0 < 0

We can define L as L(θ) = log(P (θ)) which conserves the
location of the maximum. Then we approximate L(θ)
with a Taylor expansion and substitute P (θ) back:

P (θ|D, I) ≈ A exp

(
1

2

∂2L

∂θ2
|θ0(θ − θ0)2

)
We replace the second derivative with −σ−2 which gets
us a normal distribution around θ0.

Coin example

P = (H)R(1−H)N−R

• H: Probability for
Head

• N: Coin tosses

• R: # Heads in N

L(H) = C +R log(H) + (N −R) log(1−H)

∂L

∂H
= ∂RN − ∂N −R1−H ∂2L

∂H2
= − R

H2
− N −R

(1−H)2

This implies H0 = R
N

and σ =
√

H0(1−H0)
N

Model selection
We can use Bayes to compare models:

P (M1|D
P (M2|D)

=
P (D|M1)P (M1|I)

P (D|M2)P (M2|I)

We assumeP (Mi|I) are uniform distributions:

P (M1|D
P (M2|D)

=
P (D|M1)(mmax

2 −mmin
2)

P (D|M2)(mmax
1 −mmin

1)

	Function fitting
	Linear Least squares
	Cost function
	Formulas for linear case
	Properties

	Solving non-linear equations
	Conditioning
	Bisection
	Newton
	Secant method
	Convergence rate
	Set of Equations
	Optimization
	LSQ

	Interpolation
	Lagrange interpolation
	Properties

	Cubic splines
	Derivation
	Tridiagonal matrix
	Orthogonal basis

	B-Splines
	NURBS
	properties

	Multivariable Interpolation
	Gridded data
	Irregular Data

	Neural Networks
	Numerical Integration
	Rectangle rule
	Midpoint rule
	Trapezoidal rule
	Simpson rule
	Newton-Cotes
	Properties

	Richardson extrapolation
	Error estimation
	Romberg integration

	Adaptive quadrature
	Gauss quadrature
	Hermite Interpolation
	n-point Gauss rule

	Multidimensional Integrals
	Monte-Carlo Integration

	Sampling
	Inverse Transform Sampling
	Rejection Sampling
	Importance Sampling

	Probability
	Basics
	Common distributions
	Uniform distribution
	Binomial distribution
	Normal distribution

	Expected value
	Variance

	Bayesian inference
	Bayes' theorem
	Parameter estimation
	Laplace Approximation
	Coin example

	Model selection

