

Thermodynamikübungsstunde 3

Polytrope Zustandsänderung

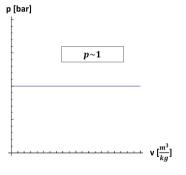
Folien von Dominic Landolf, angepasst durch Pascal Hodel und Auf der Maur

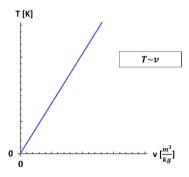
Pascal Auf der Maur

Recap

- Erster Hauptsatz: $\Delta E = \Delta KE + \Delta PE + \Delta U = Q W$
- Ideale Gasgleichung: $pV = n\overline{R}T$ oder pv = RT oder pV = mRT
- Prozesse (Wärme und Arbeit)

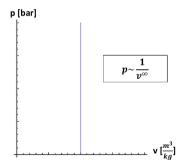
Polytrope Zustandsänderung

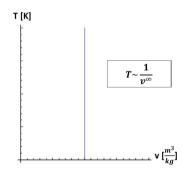

- Meist gebraucht als Ansatz f
 ür Arbeit
- Allgemein: $pv^n = \text{konst}$ oder $pV^n = \text{konst}$
- Polytropenkoeffizient gegeben für Prozess
- Integral f
 ür Arbeit mit polytropen Ansatz auf LTNT-Formelsammlung


$$W_{12} = \int_{1}^{2} p(V) \, dV$$

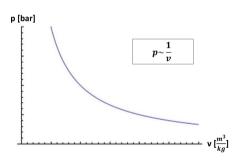
Der Polytropenkoeffizient kann beliebige Werte zwischen $-\infty$ und ∞ annehmen

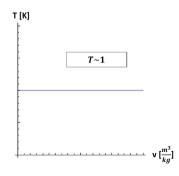
Polytrope Zustandsänderung - isobar


• $p = \text{konst} \land pV^n = \text{konst} \Rightarrow n = 0$

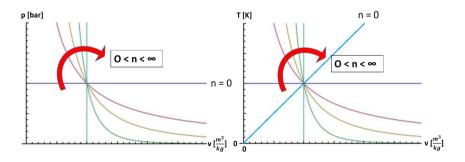


Polytrope Zustandsänderung - isochor


• $V = \text{konst} \land pV^n = \text{konst} \Rightarrow n = \infty$



Polytrope Zustandsänderung - isotherm / ideale Gase


- $pv^n = \text{konst} \land pv = RT \Rightarrow n = 1$
- Zusammenhang gilt nur für ideale Gase

Polytrope Zustandsänderung - Zusammenfassend

• Je grösser n desto steiler abfallend werden die Kurven

