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Location-Based Services (LBS) provide more useful, intelligent assistance to
users by adapting to their geographic context. For some services that con-
text goes beyond a location and includes further spatial parameters, such as
the user’s orientation or field of view. Here, we introduce Gaze-Informed LBS
(GAIN-LBS), a novel type of LBS that takes into account the user’s viewing
direction. Such a system could, for instance, provide audio information about
the specific building a tourist is looking at from a vantage point. To determine
the viewing direction relative to the environment, we record the gaze direction
relative to the user’s head with a mobile eye tracker. Image data from the
tracker’s forward-looking camera serve as input to determine the orientation
of the head w.r.t. the surrounding scene, using computer vision methods that
allow one to estimate the relative transformation between the camera and a
known view of the scene in real-time and without the need for artificial markers
or additional sensors. We focus on how to map the Point of Regard of a user
to a reference system, for which the objects of interest are known in advance.
In an experimental validation on three real city panoramas, we confirm that
the approach can cope with head movements of varying speed, including fast
rotations up to 63 deg/s. We further demonstrate the feasibility of GAIN-LBS
for tourist assistance with a proof-of-concept experiment in which a tourist
explores a city panorama, where the approach achieved a recall that reaches
over 99%. Finally, a GAIN-LBS can provide objective and qualitative ways of
examining the gaze of a user based on what the user is currently looking at.
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1. Introduction

Over the last decades, Geographic Information Systems (GIS) have evolved from simple
systems that store and analyze geospatial data to complex systems that can identify
and satisfy their users’ needs. An example of such a system is the current generation of
Location-Based Services (LBS). GIS and LBS are two terms that are closely related, since
LBS can be regarded as a special kind of geographic information services that provide
geospatial data to their users, based on their location (Jiang and Yao 2007).

LBS have transformed from simple services that take into account only the current
location of the user to highly personalized and adaptive services, based on many sensor
readings, location data analyses (e.g., Zook et al. 2015, Sia-Nowicka et al. 2016), detailed
context models, and sophisticated inference of higher-level context. For instance, LBS
may infer the user’s needs from the trajectory (Kiefer et al. 2010, Huang and Gartner
2014), or from her the user’s activities (Bao et al. 2012, Ying et al. 2011). Such inference of
higher-level context often remains ambiguous: a particular spatio-temporal behavior, e.g.
slowing down abruptly, may be caused by different user intentions that require different
adaptations of the service.

Visual search behavior arguably provides a more direct cue about a person’s perceptual
and cognitive processes than the trajectory (c.f. the eye-mind hypothesis in Just and
Carpenter 1976).

For instance, a wayfinder who is reading signs while slowing down abruptly is probably
wondering which direction to take. Visual attention is measured with eye trackers (Just
and Carpenter 1976), which can also be mounted to a person’s head and allow for free
movement in space (see Figure 1 top left). The gaze data can be accessed in real-time,
which makes it possible to use gaze as an input modality for mobile geographic human-
computer interaction (GeoHCI) (Giannopoulos et al. 2013).

Eye tracking is a common way to evaluate desktop (Çöltekin et al. 2010) and mobile
interfaces (Paletta et al. 2014, Ludwig et al. 2014) for GeoHCI. As a mode of interaction
its use has so far been largely limited to map interfaces on desktops (Duchowski and
Çöltekin 2007, Kiefer and Giannopoulos 2012, Kiefer et al. 2013) or mobile devices (Gi-
annopoulos et al. 2012). Attempts exist to interact with small objects in indoor spaces
via the user’s gaze (Toyama et al. 2012), but we are not aware of any work that exploits
gaze for spatial interaction in large-scale environments (e.g., cities).

Here, we propose to use gaze-based interaction in large outdoor environments for a
novel type of LBS, which we call Gaze-Informed LBS (GAIN-LBS). While such services
may in principle use both, gaze on the assistance system and on objects in the envi-
ronment, we focus on the latter. Our exemplary use case is that of a tourist viewing a
city panorama from a vantage point (refer to Figure 1). A future gaze-informed tourist
guide could provide information on the building looked at, guide the user through the
panorama interactively, or provide recommendations that match the user’s interests. A
system like that will be important not only for the LBS community but also in a larger
GIScience context since it will allow to store and analyze the users’ visual attention in
outdoor environments.

The contributions of this article are:

• We introduce the concept of Gaze-Informed LBS (GAIN-LBS), a novel type of LBS
that takes into account the user’s Point of Regard (POR), based on the user’s gaze,
and propose an architecture for this novel type of LBS.

• We propose a computer vision approach for mapping the gazes from a mobile eye
tracking system to a georeferenced view, in order to detect the object of regard (OOR)
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Figure 1. A user standing at a vantage point with an eye tracker (top left). The head-mounted
eye tracker records the gaze in the field video (bottom left). The gaze is being mapped to a
reference image, with the blue point representing his current gaze and green points indicating his
gaze history. Potential touristic Areas of Interest are marked as yellow polygons (right).

in real-time.

• In an experimental validation, we compare several state-of-the-art algorithms for im-
age feature extraction, using experimental data from three different vantage points,
recorded with different velocities of head movement. The main focus of the study is
to find suitable visual feature extractors from the computer vision literature, that will
help us calculate the POR of a user and implement a GAIN-LBS (see sections 3 and
4 for more details).

• We demonstrate the feasibility of GAIN-LBS for tourist assistance with a proof-of-
concept experiment in which a tourist explores a city panorama.

We structure the paper as follows: Section 2 gives an overview of the relevant work,
Section 3 introduces the GAIN-LBS architecture and describes how we solve the POR
estimation and in Section 4 our system is evaluated. Finally, a discussion on the results
is given (see Section 5) and the paper concludes with an outlook section (see Section 6).

2. Related work

2.1. From LBS to context-aware services

The original idea of LBS as services that adapt to location (Raubal 2011) has been ex-
tended to a discussion on context-aware services. A number of papers has focused on
definitions and taxonomies (Raubal and Panov 2009) for context, as well as on architec-
tures for context-aware systems (see Poslad 2009 for an overview). In essence, context can
be classified into at least three types – user, environmental, and system context – and is
typically seen as a multilevel concept, with sensor readings considered as more low-level
(‘primary’) context, and other context inferred from these as higher-level (‘secondary’)
context (Abowd et al. 1999).

The term ‘LBS’ is nowadays used in the literature for referring to services that use
location as the main, but not the only type of context (Raper et al. 2007). One example
of such service is a pedestrian wayfinding system that not only calculates the shortest
path but takes into considerations also other factors, such as the ease of using the system
(Mackaness et al. 2014) or the users’ preferences (Huang et al. 2014) before calculating the
optimal route. Furthermore, current LBS architectures are being extended and new ones
are being developed to include new technologies and to answer new research questions
(see Tiwari et al. 2011 for a review of the LBS architectures and the recent trends in
LBS community).
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Our GAIN-LBS are based on two types of primary user context: user location and gaze
position (i.e., two types of spatial information). Extensions of GAIN-LBS will combine
these with other types of context (e.g., ‘temporal aspect of tourist exploration’, ‘content
on cultural objects’) and infer higher-level context from them (e.g., ‘touristic interest’).

For example, one challenge in the current research in LBS consists in how the temporal
aspect of tourist exploration influences the tourist exploration behavior. Kremer and
Schlieder 2014 have proposed four general design criteria for geo-recommendation services
that counterbalance the temporal restrictions. By including gaze as a primary context,
a location based recommender can improve the visiting experience in touristic places,
by taking into account not only the available time allocated for the visit, but also the
interest on specific objects the user has shown in previous locations.

Furthermore, a second challenge is how to access information on cultural objects and
their content. Chianese et al. 2015 investigate the interactions with cultural objects and
locations, by adopting the Internet of Things (IoT) paradigm. They proposed a system
that would simplify the access to the cultural objects and their content to the end
users. Our GAIN-LBS could further simplify the interactions between the visitors and
cultural environments, since the user will only have to look at the object of interest for
an interaction to begin.

Finally, a further challenge consists in creating a better user context for recommenda-
tions (e.g., Aoidh et al. (2009)). Gaze can be a helpful mean for resolving this challenge,
since it can provide an insight to the users interest. However, since none of the previously
suggested LBS have taken the user’s gaze into account, it is yet unclear how the interac-
tion with these touristic places can be improved by providing information on what the
users are currently looking at.

2.2. Eye tracking in GIScience and cartography

A person consciously or unconsciously focuses only on a fraction of the surrounding
world. This is done by shifting the visual attention through eye and head movements
from one place of the visual field to another. In other words, we move our eyes to bring
a particular portion of the visible field of view into high resolution so that we may see
in the fine detail whatever is at the central direction of gaze (Duchowski 2007).

However, there are situations when the gaze direction and the visual attention are
disassociated. As Duchowski (2007, p. 12) points out: “we assume that attention is linked
to gaze direction, but we acknowledge that it may not always be so”. This assumption (i.e.,
that the gaze direction is linked to the visual attention) is called the eye-mind hypothesis
(Just and Carpenter 1980, 1976). Thus, if we can track someone’s eye movements, we
can also follow the user’s attention (Duchowski 2007, Goldberg and Kotval 1999).

Eye tracking, a.k.a. gaze tracking or point of regard (POR) estimation, is the recording
of the orientation of the eyes in space (where a person is looking at) (Duchowski 2007).
Based on the eye-mind hypothesis, it provides objective and quantitative evidence to-
wards the examination of visual attention and a way to examine processes related to
visual search, visual perception, and cognition which occurs during the observation of a
stimulus or natural behavior (Richardson and Spivey 2004).

Although early work using eye tracking in cartography goes back to the 1970s (e.g.,
Jenks 1973, Steinke 1987), there has been a strong rise in interest for investigating re-
search questions related to GIScience and Cartography recently (refer to Kiefer et al. 2017
for an overview). Eye tracking allows for the investigation of cognitive processes during
map reading, and as a result design guidelines for maps or other spatial representations
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can be derived (e.g., Fabrikant et al. 2010).
The eye movements are recorded by devices known as eye trackers. In general, there

are two types of eye movements monitoring techniques. The first type measures the eye
movements remotely and is usually used in desktop computing. In this case, the eye
tracker outputs the 2D coordinates of the user’s gaze on the screen. They are usually
analyzed by extracting information about the density of the users’ gazes in specific areas
(Salvucci and Goldberg 2000). This step is required because visual perception only takes
place when the eye remains relatively still for a certain duration (which is then called
a fixation, where saccades denote the transition between fixations). The duration of a
fixation and the number of times a user is fixating at specific position is an indication of
the visual attention of the user.

Ooms et al. (2012), for example, used remote eye tracking to measure the reaction time
of expert and novice map users while performing visual tasks to investigate the influence
of expertise on map viewing. Similarly, Çöltekin et al. (2010) identified patterns of visual
exploration and strategies during the use of highly interactive geographic interfaces.

While this technique works quite well on static stimuli, the evaluation of eye tracking
data collected on dynamic stimuli, such as animated maps, can be more challenging (e.g.,
Andrienko et al. 2010).

The second technique for recording the eye movements is using head-mounted video-
based (mobile) eye trackers. In contrast to the remote eye trackers, mobile eye trackers
have a field-of-view (FOV) camera that records and outputs the scene and the user’s
gaze as 2D coordinates. With a mobile eye tracker, the user is free to look and move
around in the environment. This allows for the analysis of the visual attention in mobile
situations, such as wayfinding or tourism.

For example, Kiefer et al. 2014a investigated the visual matching processes between the
environment and a map during self-localization. Schwarzkopf et al. 2017 investigated the
eye movements during collaborative wayfinding tasks. In a different approach, Ohm et al.
2017 evaluated different designs for pedestrian navigation system. Finally, Kiefer et al.
2014b investigated factors affecting the duration of visual exploration in city panoramas.

Using mobile eye trackers introduces new challenges, in particular the estimation of
the Point of Regard (POR), as will be described in depth in Section 2.4.

2.3. Gazed-based interaction

One motivation for utilizing gaze as an input method for LBS is the possibility of deriving
higher-level information about a person’s cognitive processes from the visual attention
(see also Section 2.2 – the eye-mind hypothesis in Just and Carpenter 1976). From
a human-computer interaction (HCI) point-of-view, this idea would relate to implicit
interaction, i.e., adapting the interface based on a user behavior that is not primarily
intended to trigger an interaction (Schmidt 2000). Explicit gaze-based interaction, on
the other hand, implies that the user is intentionally focusing on an interactive element
(Majaranta et al. 2009), or performing a gaze gesture (Kangas et al. 2014a), with the
goal of triggering an interaction.

In principle, GAIN-LBS could use both, explicit and implicit interaction. In this paper,
we introduce and evaluate the enabling technology for GAIN-LBS and do not focus on
the interaction paradigm per se. Our proof-of-concept evaluation (Section 4.3) therefore
assumes a simple explicit interaction paradigm.

Implicit gaze-based interaction with maps has been explored recently: while Kiefer and
Giannopoulos (2012) describe how to match eye tracking data with the vector features
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on a map, Kiefer et al. (2013) have applied machine learning to gaze data in order to
recognize map activities, such as searching or route planning. Further approaches include
gaze-contingent displays for level-of-detail management based on gaze (Duchowski and
Çöltekin 2007), and the recording and display of gaze history to facilitate orientation
on small-display maps (Giannopoulos et al. 2012). These ideas could be integrated into
a GAIN-LBS by considering both, gazes on buildings and gazes on a map shown on a
mobile device.

An explicit gaze-based interaction approach for wayfinding in outdoor scenarios has
also been proposed, but was so far only evaluated in a virtual environment (Giannopoulos
et al. 2015). No running system for outdoor environments has been put forward yet.

2.4. Point of regard estimation

The most important prerequisite for enabling gaze-based interaction with objects in the
real world consists in the mapping of the Point of regard (POR) to a reference system
for which the objects of interest are known. This is the step we mainly focus on in this
paper, and this challenge originates mainly from how mobile eye trackers record their
data.

The POR is generally measured as a point in the current frame recorded by a field-of-
view (FOV) camera that is installed on the mobile eye tracker. That is, while we know
where in terms of video coordinates the user is looking at, the eye tracker does not provide
a link to the object of interest in the environment. Most software packages that come
with current mobile eye tracking systems require an extremely time-consuming manual
ex-post processing of the data or they require the installation of (visual) markers making
the real time integration of eye trackers with outdoor environments impossible.

Previous approaches for solving this problem fall into two categories:
First, the POR in the real world can be determined by combining mobile eye trackers

with location and head tracking. Head position and orientation can be estimated by
an additional sensor, such as a motion capture system or a magnetic sensor, in order to
calculate the 3D gaze vector (Essig et al. 2012, Lanata et al. 2015, Lidegaard et al. 2014).
The main disadvantage of these approaches is that free movement of the participants is
limited to the space of the extra sensor used (usually indoor space). Furthermore, the
calibration of such systems can be complex and time consuming (Scheel and Staadt 2015,
Mitsugami et al. 2003).

Secondly, computer vision methods have been applied. For instance, Munn and Pelz
(2008) introduce a method that is based on Structure from Motion (SfM), in which the
head pose and 3D POR are estimated with a single camera in world coordinates. Paletta
et al. (2013) describe a system based on simultaneous localization and mapping (SLAM)
that enables pervasive mapping and monitoring of human attention and achieves very
low angular projection errors. To recover the 3D gaze, scale-invariant feature transform
(SIFT) (Lowe 2004) keypoints are extracted from the eye tracker and a full 6DOF pose
is estimated using the perspective n-Point algorithm. Takemura et al. (2010, 2014) uses
Visual SLAM to estimate the 3D POR, by assuming that it is located on a plane which
consists of interest points and determining a triangle which includes the 2D POR com-
puted by the eye tracker. Most of these approaches are mainly focused on the analysis of
the eye tracking data and not on using them for interaction. Moreover they are limited
to indoor environments or they required specialized equipment for the generation of the
3D models.

Finally, Toyama et al. (2012) used object recognition to identify objects from the eye
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tracking data, instead of mapping the gaze to the environment. The system worked in
real-time when image processing was reduced to less than 25 frames per second on a
small set of objects meaning that in more complex scenarios such as the ones in out-
door environments, it might not be efficient. Similar approaches were investigated by
Harmening and Pfeiffer (2013), as well as by (Brône et al. 2011).

3. Gaze-Informed LBS

In this section, we introduce the concept and architecture of Gaze-Informed LBS (GAIN-
LBS), explain our method for Point of Regard (POR) estimation, and describe our im-
plementation.

3.1. Motivating example and requirements

We illustrate the motivation for GAIN-LBS with a small tourist guide example:
Bob is a tourist in “X-city”. He has taken the elevator up the famous “V-tower” from

where he has a beautiful view of the city. He takes out his phone and starts a classic
LBS tourist guide. The app replays the audio information connected to his current lo-
cation: “From here you have a beautiful view of the city center where the old town hall
is located.” Bob does not find the building described by the application, so he pauses the
audio information and switches to a map service. He types in the name of the building,
and the map marks his position and that of the old town hall. After several attention
switches between the map on his device screen and the surrounding environment, he is
finally convinced of having identified the correct building and continues with the audio
guide.

The scenario demonstrates the limitations of current LBS: the user needs to align the
description provided by the guide with the real world. Visual search in the environment,
as well as frequent attention switches between the environment and a visual display,
become necessary. Further, the information provided by the audio guide is not temporally
aligned to what the user is looking at in that moment; the user’s preferred speed of visual
exploration may be faster or slower than that assumed by the system. Imagine now the
same scenario with a GAIN-LBS:

Alice has just arrived at the same vantage point as Bob. Her GAIN-LBS informs her
that gaze-based touristic information is available for her current location. She mounts
the eye tracker and starts exploring the panorama. After a while her interest is attracted
by one particular building. She is looking at the facade of that building when the service
starts providing audio information: “It seems you are interested in medieval architecture,
right? Let me give you some information on the building you are looking at. This is the
old town hall which was constructed in the 15th century. It had been planned by the same
mayor as the building you have looked at 20 seconds ago. . . . ”

The example provides an idea of how gaze-based interaction enhances the way LBS
communicate with their users: the system can adapt based on the current and previous
fixations of the user, thus avoiding a mismatch of the information provided and the
user’s speed of visual exploration. No screen is required: the attention of the user remains
on the panorama. Instructions of the service can unambiguously be matched with the
environment and user interests can potentially be detected.

Implementing novel interactions such as those sketched in the example, requires a
system that is able to recognize efficiently and accurately which object in the panorama
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Figure 2. The system architecture of a Gaze-Informed LBS.

the user is looking at. Regarding efficiency, the system must be able to process the data
fast enough to allow for real-time interaction. According to related work (Kangas et al.
2014b), 200 milliseconds is the maximum delay between gaze on a trigger and feedback
by the system for which humans are still able to identify those two events with each other.
We therefore use this as the maximum acceptable delay. In the eye tracking community,
the accuracy is usually measured as the average angular distance from the actual gaze
point to the one measured by the eye tracker. The accuracy of the system must be high
enough to allow distinguishing the buildings gazed at in the environment. Finally, an
ideal system should also be able to cope with varying light and/or weather conditions.

3.2. Architecture

Figure 2 illustrates our architecture for GAIN-LBS. It consists of the following modules:

• Positioning and geo-fencing : as with classic LBS, the user’s position is determined and
intersected with a set of geo-fences. Once the user enters a geo-fence (a vantage point
in the tourist example), the GAIN-LBS is started. The GAIN-LBS is stopped when
the user leaves the geo-fence.

• Eye tracking : this module receives the data from the mobile eye tracker and forwards
them to the POR estimation module. It provides an interface to the eye tracker,
making the rest of the system agnostic of the internal data structures of the concrete
eye tracker model.

• POR estimation: here the correspondence of the gazes to a reference panorama image
takes place. In Section 3.3 we describe our approach for this step.
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• Gaze Analysis: the next step of the analysis is the computation of aggregated eye events
from the basic gaze data. This is an essential part of any eye tracking data analysis and
can be handled with state-of-the art algorithms (e.g., Salvucci and Goldberg 2000).

• Interaction module: based on fixations and saccades in the reference frame of the
panorama, this module communicates with the user. Different explicit and implicit
interaction types are possible (refer to Section 2.3). In most cases, the module will use
an annotation of the panorama image with polygons (called Areas of Interest, AOI)
to determine which object corresponds to a certain position in the panorama image,
thus relating fixations to objects.

Modules can be flexibly exchanged by different implementations. For instance, different
positioning sensors, eye tracker interfaces, or interaction types can be used.

3.3. Point of regard estimation

In contrast to previous research in the context of eye tracking, we propose to use feature
extraction and matching methods from the computer vision literature to transfer the
position of the gaze in the FOV image to a reference image (see Figure 1). Note that
the advantage of having a 2-dimensional reference image is that standard gaze analysis
methods can be directly applied for further processing.

We first make the assumption that the user performs only rotational but no transla-
tional motion. In section 4.1 we analyze the errors that occur from this assumption.

The required end-to-end transformation is a 2D mapping between two image coordinate
systems (see Figure 3): (i) the pixel coordinates in the FOV image; and (ii) the pixel
coordinates in the reference image. As a reference image, we use a spherical panorama
stitched together from several perspective images (Brown and Lowe 2007), using Image
Composite Editor1.

A pair of perspective images taken at the same location (just viewing in different direc-
tions) is related by a projective transformation represented by a 3×3 homography matrix.
To estimate these transformations, first, visual features are detected and described for
each of the acquired images. A visual feature is an image pattern which differs from its
immediate neighborhood (i.e. feature is salient) and is usually associated with a change
of an image property or several properties simultaneously such as the intensity, color,
and texture of the image. The descriptor then encodes the feature point’s neighborhood
such that visually similar regions have similar descriptors even under changing viewing
direction and lighting conditions (i.e. descriptor is invariant). Note that the combination
of a feature detector and descriptor is often called as a feature extractor in the literature.
Based on the similarity of the descriptors, putative feature matches are established for
pairs of overlapping images. To improve the robustness of the calculation of the homog-
raphy matrices by eliminating possibly erroneous matches, RAndom SAmple Consensus
(RANSAC) (Fischler and Bolles 1981) is being utilized. In the final step, bundle adjust-
ment is employed as the concatenation of pairwise homographies leads to accumulated
errors. To create a visually pleasing panorama, the combined image is usually rendered
with the help of a multi-band blending.

By combing several images into one reference image we can cover the full 360◦ hor-

1https://www.microsoft.com/en-us/research/product/computational-photography-applications/
image-composite-editor/

https://www.microsoft.com/en-us/research/product/computational-photography-applications/image-composite-editor/
https://www.microsoft.com/en-us/research/product/computational-photography-applications/image-composite-editor/
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Figure 3. The coordinate systems of the two images. The rays from the detected features are
matched and a rotational matrix R is calculated which aligns the features from the FOV image
to the features of the reference image.

izontal FOV without excessive warping effects.2 In our system we use the Mercator3

projection (Snyder 1987), i.e., image points are projected onto a sphere centered at the
camera center, non-linearly mapped onto a vertical cylinder such that lines of constant
azimuth are preserved, and the cylinder is flattened into a planar panorama. The Mer-
cator projection distorts the size of objects as the latitude increases from the equator
to the poles of the image. As a result, objects near the equator are less deformed (i.e.,
less warping effects), making the projection ideal for panorama images, since most of the
objects of interest are usually projected near the equator.

To find corresponding image points, features are extracted (Szeliski 2011) from the
reference image in an offline process, and for each feature a high-dimensional descriptor
vector is computed from the surrounding image intensities. The descriptors are usually
stored in an efficient search structure, in our case a variant of the KD-tree (Muja and
Lowe 2009).

At runtime, features are extracted from the FOV image of the eye tracker, also con-
verted to descriptors, and matched to those from the reference panorama, by (approx-
imate) nearest-neighbour search in the tree. To avoid mismatches in cases where the
descriptors are ambiguous, it is common to search also for the 2nd nearest neighbour and
threshold the distance ratio between the 1st and 2nd best one (Lowe 2004).

Having found corresponding points in the two images, estimating the transformation
boils down to calculating a 3×3 rotation matrix R. To that end, feature point coordinates
(u, v) in the reference image and (u′, v′) in the FOV image are lifted to directional (unit)
rays (x, y, z), respectively (x′, y′, z′) in 3D space. For the reference image this is the inverse
Mercator projection (Snyder 1987), i.e., (x, y, z) is simply the point on the spherical
projection surface that corresponds to (u, v). For the FOV image, the camera must have
been calibrated to obtain its perspective calibration matrix, and the lifting corresponds

2To limit distortions that impair image matching, cylindrical panoramas are limited to ∼ 100◦ in vertical direction,
conventional wide-angle perspective images are limited both vertically and horizontally.
3Other projections could also be used.
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to applying the inverse calibration matrix to the image point in homogeneous coordinates
(Hartley and Zisserman 2003).

Given two rays p′,q′ in the FOV image and p,q in the reference image (see Figure 3),
one first finds a rotation that brings p′ to p,

r1 =
p′ × p

||p′ × p||
(1)

R1 = exp
(
arccos(p′ · p)[r1]×

)
(2)

where [·]× denotes the 3 × 3 skew symmetric matrix such that for any two vectors s, t
the vector cross product can be expressed as:

[s]× t =

 0 −s3 s2

s3 0 −s1

−s2 s1 0

t1t2
t3

 = s× t (3)

Then one finds another rotation that brings the plane spanned by p′ and q′ to coincide
with the plane spanned by p and q,

d′ =
R1p

′ × R1q
′

||R1p′ × R1q′||
(4)

d =
p× q

||p× q||
(5)

r2 =
d′ × d

||d′ × d||
(6)

R2 = exp
(
arccos(d′ · d)[r2]×

)
(7)

The complete rotation R is the concatenation of the two steps,

R = R2R1 . (8)

To achieve robustness against false feature point matches, which cannot be avoided in
practice, the computation is embedded in a two-point (RANSAC) (Fischler and Bolles
1981) loop, to find the rotation R with the largest support in the full setup of putative
feature matches, using the angular distances between corresponding rays as the error
function.

With the estimated rotation R, arbitrary gaze points (u′, v′) in the system of the eye
tracker can now be mapped to either 3D unit rays or 2D image locations in the reference
coordinate system.



12

3.4. Implementation

For the implementation of the system, the SMI Eye Tracking Glasses v.1.81 with a
frequency of 30Hz were employed. The software modules provided by the SMI Eye Tracker
(i.e., iViewETG) were used for calibration, as well as the recording of the raw gaze data.
The SMI API (i.e., iViewNG SDK) was utilized to access the gaze data from the eye
tracker in real-time, returning the FOV image and the gaze data in the coordinate system
of this FOV image.

The image frames from the eye tracker were processed using the OpenCV library1 and
the given default values were used for the feature detectors/descriptors. As extracting
features requires a considerable amount of time and it is therefore not possible to extract
features from all frames of the 30Hz video stream, a two-threaded approach (see Figure 4)
was chosen to achieve real-time performance. One thread (Features thread) was used to
extract the features from a subset of frames of the eye tracker and match them to the
reference image as described in Section 3.3. The second thread (Optical Flow thread)
was used to track these features from one FOV frame to the next one by iteratively
computing fast optical flow (Lucas and Kanade 1981) using image pyramids, without
extracting new features in these frames.

For every incoming frame the rotation matrix ∆R w.r.t. the previous frame is calcu-
lated using the tracked locations of the features as computed by the Optical Flow thread
(similarly to Section 3.3). By knowing the rotation matrices between consecutive frames
and between the original frame (i.e., the frame in which the features were extracted and
the reference image, we can compute a composed rotation matrix that maps the gaze
from the current frame to the reference image.

During the computation of the Optical Flow thread, drifts in the locations of the tracked
features might occur. This drifting error continues to grow until the Features thread has
finished with the extraction of new features, allowing to restart the optical flow again,
thus, accounting for this error. Furthermore, restarting the optical flow also allows us to
account for the problem that occurs when the features tracked by the optical flow are
lost due to excessive head rotation.

The current implementation allows the use of arbitrary feature detectors and descrip-
tors. During our testing, we used feature detectors and descriptors that are known
to be robust and fast according to the computer vision literature (Heinly et al. 2012,
Tuytelaars and Mikolajczyk 2008, Miksik and Mikolajczyk 2012). These are (see Sec-
tion 4): ORB (Rublee et al. 2011), SURF (Bay et al. 2008), SIFT (Lowe 2004), Cen-
SurE (Agrawal et al. 2008)–SURF (Bay et al. 2008), BRISK (Leutenegger et al. 2011),
FAST (Rosten and Drummond 2006)–FREAK (Alahi et al. 2012), FAST (Rosten and
Drummond 2006)–BRISK (Leutenegger et al. 2011), and CenSurE (Agrawal et al. 2008)–
BRIEF (Calonder et al. 2010) (see also Krig 2016, Chapter 6 for a comprehensive tax-
onomy of feature detectors/descriptors).

4. Evaluation

In the previous section we made the assumption that the user performs only rotation
motions. The approximation is justified in many outdoor scenarios, including sightseeing
from panoramic lookouts, because the translational motion is typically small compared

1http://www.eyetracking-glasses.com
1http://opencv.org

http://www.eyetracking-glasses.com
http://opencv.org
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Figure 4. The two-threaded design of the POR estimation. The optical flow is restarted based
on the progress of the features thread.

to the distance between the viewer and the object. In this section we quantify the effect
this has on mapping the gazes on the reference image.

Moreover, the previously introduced feature detectors/descriptors will now be com-
pared under real conditions in order to assess their robustness and accuracy taking into
account the variability introduced by humans and their head movements. Through the
following experiments we were able to choose the appropriate detectors/descriptors as
well as the parameters for the employed RANSAC that fit best for the proposed GAIN-
LBS scenario. The evaluation focused on the percentage of gazes that could be mapped
in the reference image, i.e., whose estimated rotation gathered a certain support from
the set of putative feature matches (measured as the number of inliers), as well as on the
accuracy of that rotation. Furthermore, the feasibility of the system was demonstrated
under real conditions with a proof-of-concept evaluation.

4.1. Error analysis

In scenes with good conditions for vision-based tracking (i.e. the distant scene is still
dominant and a sufficient number of features is tracked in the distant scene), the most
significant source of errors is the angular difference of the two rays observing the 3D point
of interest, i.e., one originated from the point where the panorama image was taken and
the other originated from the actual location of the camera.

To quantify the effect this has on mapping the gazes on the reference image, we can es-
timate the relationship between translation and measured rotation (DiVerdi et al. 2008).
For a translation t, the apparent error (in degrees) can be computed as:

θ = arctan

(
t

d

)
(9)

where t is the translation of the user from the point the panoramic image was taken and
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Figure 5. The theoretical errors that occur from the translation of the user.

d is the distance of the object being gazed at from the camera.
In real world scenarios, the distance of the building from the viewer in outdoor

panoramic scenes tends to range between 200m and 20km. Furthermore, according to
Zandbergen and Barbeau (2011), the median horizontal error of position fixes from mo-
bile phones in static outdoor tests varies between 5.0 and 8.5 meters. Therefore the errors,
even for translation of 15 meters (see Figure 5), remain under 4.5 deg, which will allow
us to implement interactions with the environment.

4.2. Gaze service performance evaluation

4.2.1. Experiment

For the evaluation of the system we collected data from real users exploring a panorama.
The data consisted of the video captured from the eye tracker’s front camera while the
participants were performing one of the given tasks.

In total we gathered 15 video recordings (3 panorama vantage points, 5 different veloc-
ities of head movement for each). This was done in order to account for different urban
structures and distances between the observer and the buildings, as well as to assess the
impact of a fast head movement on the system.

In total 4 participants were recruited for gathering the necessary data. From all three
panorama vantage points, one user was asked to look at the panorama from left to right
and from right to left at a given speed (i.e., slow, medium, fast, very fast). The speed
was controlled by the experimenter through a countdown mechanism, which the user was
asked to follow. The average speed of the slow head movements was 9deg/s, for the medium
head movements 18deg/s, for the fast head movements 39deg/s, and for the very fast head
movements 63deg/s. Furthermore, three recordings with natural head movements were
collected (41 seconds each), one from each vantage point. For these recordings, further
three participants (i.e., one for each panorama) were recruited and were asked to freely
explore the city panorama.

From these 15 recordings, only the video files were used, without using the participants’
real gaze data, to evaluate the success rate and the accuracy of pixel mapping from the
FOV frame to the reference panorama image. Finally, all video recordings were manually
annotated frame by frame with (artificial) gaze points by a human rater who, whenever
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one of the predefined reference points was in view, marked the position in the frame (see
Figure 6). This was done in order to create ground truth data (i.e., the gaze coordinates
were known in the reference image used) that can be utilized for benchmarking.

The reference points were chosen in a systematic way, so we could empirically test the
system and find it’s limits. Most of the points were scattered across the reference images.
In that way, we could test if points near the edges of the reference images, or if points
near the skyline would be more susceptible to errors by the lack of visual features in
these areas. Furthermore, in one of the panoramas we picked a nearby point to also test
the influence of the unmodelled parallax.

First, the data from the recordings will be used in order to select suitable detec-
tors/descriptors, secondly, to tune the parameters of RANSAC, and finally, to test the
selected detectors/descriptors under different weather and/or light conditions.

4.2.2. Feature extractor performance

We evaluated with the collected data (see Section 4.2.1) how different head movements
influence the implemented system. During this analysis, we compared the results from
the detectors/descriptors by having the minimum number of constraints in the RANSAC
loop (2 inliers and an inlier threshold of 0.29 degrees (0.005 rad)).

According to the results of this evaluation, the most robust feature extractors (in terms
of extracting repeatable features with invariant descriptors according to the literature
review), i.e., SURF and SIFT, are slower in computing features compared to the other
extractors (see Figure 7). A similar behavior is also observed for BRISK. These methods
then have to heavily rely on the optical flow to track the computed features. These
feature extractors work well for the slow head movements, but fail to align the gazes to
the reference image when the head moves faster (i.e., fast and very fast head movements,
refer to section 4.2.1) due to the fact that the features go out of scope and tracking is
no longer possible (see Figure 8 and Section 3.4). Also during natural gaze behavior,
where we observed that the participants usually made a few sudden movements and
afterwards fixated on specific objects, these feature extractors were not able to cope with
the movements. The fact that they need more than 200 ms on average to compute new
features might hinder the interaction abilities of the system (see our requirements in
Section 3.1).

This disqualified these three extractors (in the implementation provided by OpenCV)
from the use in our proposed GAIN-LBS and they will be excluded from further analysis.

We calculated the accuracy in degrees of visual angle for the remaining tested extrac-
tors. The most accurate ones were ORB, CenSurE-SURF, and CenSurE-BRIEF with a
mean accuracy of 0.6 degrees. The calculation of the accuracy in degrees of visual angle
was done by lifting the corresponding gazes from pixels to unit rays and using the arccos
of the scalar product between the ground truth and the computed locations (see Eq. 10).

q = arccos(presult · pground truth) (10)

4.2.3. RANSAC parametrization

In this step of the analysis, we tuned the parameters of the RANSAC loop, so we could
improve the accuracy of the system by making it more robust against false correspon-
dences during the feature matching procedure.

We experimented by increasing the minimum number of inliers required to consider a
valid rotational matrix (i.e. if the number of the matches consistent with the consensual
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Figure 6. The reference images for the vantage points. The yellow points indicate the locations
of the manually annotated ground truth gazes.
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Figure 7. The mean time (in ms) required to extract new features for each head movement and
for each detector/descriptor over the three panoramas.
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Figure 8. The mean percentage of gazes for each head movement and for each detector/descriptor
that were not mapped over the three panoramas.

rotation is not sufficient, we reject the rotational matrix and we consider the gaze map-
ping as failed) and we made the RANSAC threshold stricter in an attempt to improve
the angular accuracy of the system. To exclude any potential influence from the head
movements, we used only the medium speed videos from all 3 panoramas.

We used three combinations of RANSAC parameters of varying strictness (see Fig-
ure 9). By increasing the minimum number of required inliers from 2 to 8, all
detectors/descriptors improved their accuracy (see Figure 9). Furthermore, when we
decreased the RANSAC threshold, most of the detectors/descriptors improved their ac-
curacy even more (see Figure 9), but at the same time, the number of gazes not mapped
increased for some of the extractors making them less effective (see Figure 10). For this
reason, we choose to keep the less strict threshold for ORB and CenSurE-BRIEF (a min-
imum number of 8 inliers and a RANSAC threshold of 0.29 degrees (0.005 rad)). Again
from the tested detectors/descriptors the most accurate, in terms of visual angle, were
ORB and CenSurE-BRIEF and the mean percentage of gazes not mapped was minimal
(around 0.2%, see also Figure 10).

4.2.4. Influence of weather and light conditions

We evaluated the system under different weather and light conditions for one of the
panoramas, for which these conditions were available (see Figure 11). We used videos
collected in the experiment described in Section 4.2.1, but with reference images taken
under different weather/light conditions. To exclude any potential influence from the
head movements, we again utilized only the medium speed videos. In total, three different
conditions were tested (rain, snow, backlight; refer to Figure 11). Using these different
reference images, we tested the system using the same parameters as in Section 4.2.3.

Most of the algorithms started failing with the exception of CenSurE-BRIEF (see
Figure 12). All algorithms achieved only a reduced number of inliers, but CenSurE-
BRIEF managed to retain enough corresponding points, required for the calculation of
a sufficiently accurate R.

In this experiment we also faced the known limitation of the proposed gaze mapping
approach. In case that the position of the user differs from the vantage point of the
captured panorama (which was the case for the panoramas with different weather and/or
light conditions), a systematic error in the calculation of the POR is introduced (see
Figure 13). This error affects mostly objects in close vicinity of the vantage point, which
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Figure 9. Mean accuracy of the detectors/descriptors in degrees for each of the three RANSAC
parameters and for each detector/descriptor over the three panoramas. Standard deviation is
given above the bars. Each pair corresponds to the minimum correspondence and to the RANSAC
threshold in degrees.
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Figure 10. The mean percentage of gazes that were not mapped for each of the tree RANSAC
parameters and for each detector/descriptor over the three panoramas.

are seen under a different azimuth from the actual position of the user. The point that was
influenced most was the one in the middle of the first picture in Figure 6. Although the
error observed for that specific point was larger (average for all 3 conditions ≈3.0 deg)
and it even reached ≈6.0 deg during the “rain” condition, where we also noticed the
largest translational error, the corresponding point in the reference image still remained
on the same building, meaning that the error would not influence the interaction module.

When we excluded our closest point from the analysis (the one in the middle of the
first picture in Figure 6), the accuracy improved (i.e., the average accuracy for all detec-
tors/descriptors for the “rain” condition was ≈0.49 deg, for the “snow” conditions was
≈0.44 deg and for the “backlight” conditions was ≈1.09 deg) and it was similar to the re-
sults obtained when we used the “normal” reference images (see first image in Figure 6).
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Figure 11. Same panorama as shown in Figure 6, but recorded under different weather conditions
(top: rain; center: snow; bottom: backlight).

��

���

���

���

����

��	
�� 	�� ���� ��������

���������	
������	�	��

�
�
��
�
�
��


�
�
��


�
�
�
�
��

��
�
�
�
�
�
�

�����	�������

�����	��� ��

�!�"������

�!�"�����#

�!�"����!#

$��

Figure 12. Evaluation under different weather and/or light conditions: the percentage of gazes
that were not mapped.
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Figure 13. Mean accuracy of feature detectors/descriptors in degrees for different weather and/or
light conditions. Standard deviation is given above the bars.

4.3. Proof-of-concept: GAIN-LBS for touristic assistance

For interactive applications, such as the tourist assistant presented in Section 3.1, the
recall of the system w.r.t. the AOI1 is a decisive criterion. The recall depends on the
accuracy in angular degree (see Section 4.2), as well as on whether the user looks at the
center or rather at the edges of a building. For this reason, in a practical system, the
AOIs will typically be created by applying a buffer to the building contour to account for
fixations at the building edges. A larger buffer will lead to higher recall, while overlaps
of neighboring AOIs and large buffers that might lead to erroneous interactions (i.e.
interactions triggered by an AOI although the user was not gazing at the AOI) should
be avoided. In the following experiment, we evaluate how the buffer size influences the
recall.

4.3.1. Experiment

In order to demonstrate the functionality of the proposed system, a one-participant ex-
periment was performed at one of the panorama points (Lindenhof Panorama in Zurich)
that was also used in the experiment described in Section 4.2. The participant was given
a printout of the panorama with five of the buildings highlighted and numbered (see
Figure 14). First, the participant was asked to memorize the buildings as well as their
numbering. Next, the participant was asked to look at the facades of the memorized
buildings one after the other in the order given by the numbering, each for 30 seconds.
The experimenter was counting up loud and informed the participant when to proceed
with the next building. The participant was asked to visually explore the facade of each
building in a natural way, but to strictly keep the gaze on the building during the 30
seconds.

4.3.2. Results

The reference image created for this vantage point for the evaluation described in
Section 4.2 was used and the system was tested using the ORB extractor. A point-in-
polygon operation was performed for the resulting AOIs, and the result (AOI hit or

1Recall is defined as the percentage of frames in which the user observes building A and the system correctly
identified it as ‘AOI A’.
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Figure 14. The image given to the participant with the five buildings the participant had to
fixate.
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Figure 15. Percentage of correctly mapped gazes (recall) in the proof-of-concept experiment for
different buffer sizes applied to the five buildings shown in Figure 14.

no AOI hit) was compared to whether the participant was instructed to look at the
respective building at that moment. The resulting recall diagram is shown in Figure 15.
It can be observed that even without a buffer around the buildings, the mean recall of
the system is more than 98%. From the recall diagram, we notice that when including a
small buffer of 15 pixels (0.76 degrees) the recall reaches over 99%.

5. Discussion

The evaluation of the system revealed that the most suitable feature extractors for
our application, using the implementation of OpenCV, are ORB and CenSurE–BRIEF.
ORB can calculate features faster than CenSurE–BRIEF, but CenSurE–BRIEF per-
forms better in difficult weather and/or light conditions. Regarding other feature detec-
tors/descriptors, although some of them (e.g., SIFT, SURF, and BRISK) were sufficiently
robust to find correspondences between the reference image and the FOV image, they
were not fast enough to achieve real time performance and relied heavily on the optical
flow to track the computed features. As a result, they failed to align the gazes to the
reference image when the movements were faster than 18deg/s.

Furthermore, we tried to improve the quality of feature matches by tweaking the
RANSAC parameters. Although it was observed that an improved accuracy of rota-
tion estimation can be achieved for ORB and CenSurE–BRIEF with stricter RANSAC
thresholds, at the same time, the number of the gazes which were not mapped increased.
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For this reason, it was chosen to keep the less strict thresholds for the RANSAC param-
eters for these extractors. The robustness of different feature extractors was then tested
under various weather and light conditions. The number of matches which were consistent
with the consensual rotation decreased for all the tested extractors, but CenSurE–BRIEF
managed to retain more than the minimum required number of corresponding points for
the calculation of the mapped gaze. Finally, although CenSurE-BRIEF is the most ro-
bust of the detectors/descriptors that were tested, the mean accuracy of the estimated
rotation is worse than that of ORB and it is also almost two times slower than ORB (see
Figure 7) in calculating new features. We therefore recommend to use ORB as long as
the weather and light conditions allow for it, i.e., the number of putative feature matches
(measured as the number of inliers) are sufficient.

A central objective of the presented experiments was to examine the suitability of the
proposed platform for interactive applications. For that reason, a final experiment was
conducted that examined the recall of the system, i.e., how often the building the user
was gazing at was also correctly identified by the system. Adding a small buffer of 15
pixels around building edges, the recall reached over 99%.

The novel system we proposed will remove the restriction of working only with user
trajectories in an LBS. It will provide an objective and qualitative way of examining the
gaze of a user while overlooking a city panorama and it can form the basis for a system
giving recommendations based on what the user is currently looking at. Although there
are still some limitations in the current implementation of the POR estimation, mainly
that the user is allowed to perform only a dominantly rotational motion, the obvious
advantages of this system are twofold: (i) it facilitates novel interaction ways with the
environment and (ii) it can automate the analysis of the eye tracking data.

6. Conclusions and outlook

The ability to determine an observer’s POR in the real world can be very beneficial for
LBS. This article presented a novel system for real-time gaze tracking in outdoor envi-
ronments and introduced a novel kind of LBS, GAIN-LBS. We contributed an approach
for mapping the gazes from a mobile eye tracking system to a georeferenced view, in
order to detect the OOR in real-time, thus demonstrating the feasibility of GAIN-LBS.

In our current approach, the participant is requested to stand at the same location from
where the reference image was taken to achieve the ideal performance, which should be
kept in mind when designing the sizes of the respective LBS geo-fences (i.e., the size
of the zones that will trigger the interactions with the environment). Nevertheless, the
systematic error originating from inaccurate user locations is very small for a distant
scene, where most of the observations are expected to take place. Problems caused by
inaccurate user location are well-known also for other (“classic”) LBS, but are alleviated
by progresses in positioning technology (Clausen et al. 2015, Mok and Retscher 2007).

This technology will allow the seamless integration of gaze data into existing GIS. As a
result, it will be possible not only to store information about the location of the user, but
also where the user was gazing at. This in turn will lead to new challenges for analyzing
the gaze data, as well as to a deeper understanding of the users’ needs and interests. As
a result the LBS will adapt better to the ever changing needs of the users.

In the future, our system could be combined with further improvements introduced by
the computer vision literature, such as the approaches proposed by Kroepfl et al. (2010)
and Langlotz et al. (2011) and create a gaze-aware LBS that will also work while the user



REFERENCES 23

is in locomotion. Kroepfl et al. (2010) describes an efficient and reliable method for geo-
positioning images based on 360 degrees panoramas, which are similar to our reference
images. On the other hand, Langlotz et al. (2011) describes an annotation server that
could store and retrieve annotations for panoramic images. Instead of having only one
reference image, one could extract the features from all the locations of interest into a
database and then search the database.
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