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1 Introduction

Mobility is often regarded as a necessity we cannot avoid due
to professional and private activities in our daily lives. Waiting
for the train, being trapped in a traffic jam, and the like, are
generally perceived as time-consuming and enervating. Mobile
computing has opened a bunch of new possibilities for entertain-
ment which can help us to make the best of our journey. Mobile
phone games and mobile TV (e.g. [9]) are typical examples.
Most of these systems try to port a stationary entertainment
experience to a mobile device. The spatio-temporal movement
is seen as an unavoidable precondition for which we must find a
technical solution, but not as an entertaining element itself.

Exactly this issue is addressed by location-based games (LBG),
which take use of positioning technology (e.g. GPS) and inte-
grate the player’s position into the logics of a game [11]. This
approach of not only creating entertainment for mobility, but
also creating entertainment from mobility seems quite promis-
ing. Projects in the pervasive gaming community have proposed
a number of LBGs [3], and addressed various research questions.
However, the AI aspects connected with LBGs have largely been
ignored.

The Geogames project aims at exploring how methods from
AI can be used in all phases of a LBG: before, during, and
after the game. The research directions addressed in the project
follow these three phases. We are especially interested in the
implications of space and time on AI in LBGs. The following
questions guide our research:

1. Game design and setup: how can we create a game that
addresses both, the player’s intellectual and sportive skills?
How does the choice of geographic footprints influence
the spatio-temporal flow of a game? And, closely related:
how can we help the game designer to port a game to a
new geographic area? (section 2)

2. During the game: how can we infer the player’s inten-
tions to act from her spatio-temporal behavior (mobile
intention recognition)? How can we model complex con-
nections between intentions, space, and time? How can
we use the spatial context to make the inference process
more efficient? (section 3)

3. After the game: how can the spatial data collected during
the game help us to improve geographic data quality?
Can we use LBGs for the community-based collection of
geographic data? (section 4)

In this project report we will only shortly review the main
findings of the first research direction and then concentrate on
the current project phase which is concerned with the second and
third. These two directions are closely related to ongoing PhD
research projects. We present the central findings of previous
and current work, and conclude our report in section 5.

Figure 1: Board game Tic Tac Toe (left) and the spatialized
version GeoTicTacToe (right)

2 AI support during game design and
setup

Game creators tend to have a metaphor in mind when conceiving
a new game. While other LBGs follow metaphors like arcade
games or catch games (PacManhattan, Can You See Me Now,
see [3]), the Geogames project creates games from the metaphor
of traditional board games. The strategic elements of the board
game are combined with the sportive challenge of moving in a
city. Geogames define not only a single game but a whole class
of LBGs.

The simplest example of a Geogame is GeoTicTacToe, a
location-based variant of Tic Tac Toe (see Fig. 1). In Schlieder
et al. [21] we explained why it is not trivial to bring a board
game to the real world: due to the real-time nature of game-
play, trivial strategies that support pure race games are possible.
We call this the synchronization problem. We showed that a
temporal solution to this problem exists: players are forced to
wait a certain amount of time (synchronization time) after each
move before they are allowed to change their position.

But why do we need AI research in this context? The game
creator has several parameters she needs to adjust for a spe-
cific game: regarding the spatial parameters, she has to decide
about the size of the gaming area, and the spatial layout of the
relevant coordinates. Obstacles, road network, and elevation
profile must be considered. With respect to the temporal pa-
rameters, she must select an appropriate synchronization time
interval. Testing an arbitrary number of possible configurations
in the real world is not possible, for organizing and playing a
LBG takes quite some time and effort. Thus, tool support for
configuring the game parameters beforehand is desired. The Ge-
ogames Tool [21] offers the possibility to compute an optimal
synchronization time interval for any spatial layout of the game.
The tool is working with a variant of the well-known MinMax al-
gorithm, adapted to spatio-temporal problems. The alternating
turns of a traditional MinMax tree are replaced by a spatio-
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temporal mechanism for deciding who will do the next move.
With the Geogames tool, porting a Geogame (like GeoTicTac-
Toe) from one geographic location to another becomes an easy
task.

The choice of the spatial parameters becomes even more
complicated if we allow the adversary teams to be located in
different cities [12]. Here, another parameter becomes impor-
tant: the logical identification of game-relevant coordinates.

A thorough reader may have noticed that games like GeoTic-
TacToe allow (and also require) players to move freely in the
gaming area. In contrast, an entertainment solution for com-
muters, like sketched in the introduction, must support route-
based movement with only few degrees of freedom. This kind
of games has been explored under the title of ‘backseat gaming’
(e.g. [2]). ’Linear’ LBGs with an emphasis on strategic game
play have been developed in the Geogames project, see GeoAlak
[10] and the FluPa-game [13]. The configuration problems de-
scribed above apply for these games in a similar way.

3 Mobile Intention Recognition:
AI support during the game

Players in a LBG move at high speed and focus on several other
tasks besides gaming. Current mobile devices are rather small
and difficult to handle under such conditions. Similar situa-
tions occur in non-gaming areas, like maintenance work or car
navigation. If we were able to read the player’s thoughts we
could offer her an appropriate information service automatically.
Instead, we try to infer the player’s intentions from her (spatio-
temporal) behavior (mobile intention recognition). In literature,
intention recognition is also known as plan recognition (see [5]
for an overview). In difference to traditional applications of plan
recognition, like language and story understanding, mobile be-
havior happens in space. The computational resources of mobile
devices are restricted, and the context changes rapidly.

The most commonly used type of context is position. Our
gaming device in the FluPa-game could automatically offer us
a map at detailed zoom level if we enter a region of type ‘vil-
lage’ (see Fig. 2). Many location-based services map the user’s
position directly to a information service. There are situations
where this can lead to an undesirable information push: as soon
as the player in Fig. 2 starts to cross village 2, we present him
a detailed map although he is not specifically interested in that
region (room-crossing problem, see [20]). Our first contribution
to the problem of mobile intention recognition is an architecture
that introduces two layers (‘behaviors’ and ‘intentions’) between
the position and the information service, like displayed in Fig. 2.
A pattern recognition mechanism produces a stream of behaviors
which is processed by an intention recognition mechanism in the
next step. The current intention is mapped to an information
service.

Our second interest is the intention recognition mechanism
itself. Intention recognition in its general form is known to be
intractable. Tractable special cases of the problem are therefore
of great practical interest. The idea is to model not only the
intentions in a certain domain, but also the connection between
intentions and space: which intention can occur in which spa-
tial region? By using this knowledge the intention recognition

Figure 2: Motion track, behavior sequence, and grammatical
intention recognition in a location-based game.

algorithm can prune those hypotheses about possible intentions
that are not consistent with the spatial context.

We use formal grammars to model intentions so that inten-
tion recognition becomes a parsing problem. With formal gram-
mars the connection between expressiveness and complexity be-
comes explicit. In [20], we have presented spatially grounded in-
tentional systems, a representational formalism based on context-
free grammars (CFG) that takes use of spatial knowledge. CFGs
are known to be efficiently parsable and intuitively understand-
able during model creation. Not displayed in Fig. 2 is the spatial
grounding of rules. Each rule in an SGIS is only applicable in a
certain set of regions. Thus, the parsing mechanism does not
need to check any rule at any position in space, which reduces
parsing ambiguities. For instance, the rule TreatV illage →
ChooseHarbour ReachHarbour ChangeGoods is only appli-
cable in regions of type ‘village’.

In some domains, context-free rules may not be expressive
enough. In recent work we have discussed the use of mildly
context-sensitive grammars for intention recognition [13]. These
are grammars developed in the natural language processing com-
munity which are still polynomially parsable. A similar argument
is made in [7], but not for mobile systems. We are currently de-
veloping a new formalism, Spatially Constrained Tree-Adjoining
Grammars, that allows to formalize complex constraints between
intentions and space. As future work we will evaluate if parsing
our spatially constrained grammars is feasible on mobile phones.

Recent work in the field of plan recognition has mostly used
probabilistic network based approaches (Bayesian approaches,
[6]). One approach chooses a Hierachical Markov Model and
Particle Filtering to predict a user’s changes in transportation
mode, like getting on or off a bus [14]. Another probabilistic
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network based approach, the Abstract Hidden Markov Model,
is chosen by [4]. Both systems send the collected data to a
server which does the computations. In contrast, we target
at on-device computations and believe that there is a need for
stand-alone mobile intention recognition, given the incomplete
covering of low-cost data transfer possibilities, and privacy is-
sues.

4 Spatial Data Quality:
AI support after the game

In the course of the above discussed intention recognition ap-
proach a considerable amount of geographic data is logged dur-
ing the course of a game. This data is not only useful to provide
the player with an intelligent user interfaces but can be of use
when the game is long over.

As we have seen, the main game element in a LBG is the
locomotion of the player in the real world. Players are equipped
with some kind of mobile device using some sort of localization
technology to determine the position of the player in the games.
With such a device players are capable of saving geospatial data
during the course of a game, turning them into ”voluntary sen-
sors” [8]. The idea to motivate communities of non-experts to
provide data that are hard to acquire otherwise has been al-
ready conducted successfully with a browser game by von Ahn
and Debbish [1]. They used their ESP game to gather seman-
tic tags for images found in the World Wide Web. For the
location-based gaming domain a similar approach was proposed
by Matyas (2007) [15].

But why do we need AI research when the wanted geospa-
tial data are already provided freely by a community of players?
Traditionally geographic and semantic data about the real world
is collected by expert data collectors. Using such experts has
the advantage that the quality of the data is known in advance.
In contrast, the quality of the data acquired by the participating
non-experts in a LBG can at best be qualified as being unknown.
It is this disadvantage that we want to address by using tech-
niques from semantic information and spatial data processing.
The basic idea consists in aggregating data inputs of as many
users as possible to increase the size of data sample and, ulti-
mately, the quality of the result.

The aggregation problem for collaboratively collected geospa-
tial data has two facets: the spatial and the semantic aggrega-
tion problem. With point of interest (POI) data, the spatial
problem amounts to aggregate several measurements of the ge-
ographic position of a POI. Spatial averaging based on reason-
able assumptions about the positional error distribution will solve
this problem. In a similar way, positional data about higher-
dimensional features is approached. Morris et al. [17], for ex-
ample, suggest methods for the aggregation of 2D line features.
However, the issue of which measurements actually refer to the
same feature is more complex as it involves feature type seman-
tics.

Consider the following example: In Figure 3 two GPS tracks
are shown, which represent bicycle tours recorded by two differ-
ent tourists playing the FluPa game [13] along the Regnitz river.
One was taking the route along the left bank of the Regnitz river
(track 1), the other the route on the right bank (track 2). Both
tourists submit their data after the game to a related website.

Figure 3: Spatial data gathered and categorized (as River Reg-
nitz tour) by two biking tourists, c© aerial photo: Google Earth
(http://earth.google.com/).

We assume that the spatial data describing the course of the
Regnitz river is already part of the data set. It could have been
computed, for instance, from tracks entered by canoe tourists.
A simple spatial aggregation algorithm such as the one proposed
in [19] would just interpolate between the two biking tracks by
constructing a line of points with equal distance to each of the
two tracks. However, the resulting track would end up in the
middle of the river, thereby producing a semantic conflict. A
semantic conflict situation is described in form of a rule: the
result of spatial aggregation of biking trails may not lie within a
water body.

Typically, the data collected for a POI or a higher-dimensional
spatial feature associates positional information (e.g. lat/long)
with information about the feature type (e.g. restaurant). A
comprehensive solution of the data aggregation problem needs
a combined approach which takes both, the spatial as well as
the semantic data into account. Our first approach to solve this
problem consists of two steps: The definition of preconditions in
form of rules and the definition of an actual aggregation method.

In the first step we use a simple relational language that aug-
ments spatial SQL relations by constructs from formal ontologies
which permit to specify type information for the relation‘s ar-
guments. A relational statement makes an assertion about a
spatial or semantic relation that holds between geographic ob-
jects of a certain type. The language permits the modeling of
both distance relations (e.g. small distance) and directional re-
lations encoding ordering information (e.g. between) besides the
traditional spatial SQL relations (e.g. intersects).

If data sets are found that are checked positively against
defined precondition rules, an data aggregation algorithm like
the one of Morris et al. (2004) [17] is used to aggregate the
geospatial data.

A first formalization of the language can be found in [16].
Currently we are working on the specification of new aggrega-
tion methods that take the semantic data into account also in
the actual aggregation step and not only in the precondition
statements.

5 Conclusion and Outlook

The research in the Geogames project has opened a new per-
spective on LBGs. At the same time, the methods developed in
the scope of this project are of interest for a larger AI commu-
nity as they can be applied for non-gaming scenarios. As future
work we continue with our research in each of the three research
directions, as mentioned in each section. As well we plan to

Page 3



explore the possibilities of combining the three directions. For
instance, the data aggregation process described in section 4 can
provide input data for the geographic model needed for mobile
intention recognition.
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ism, Sept. 2007, Birkhäuser, ISBN 978-3-7643-8414-2.

[4] Bui, H.H. (2003): A general model for online probabilistic plan
recognition. In: Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI)

[5] Carberry, C. (2001). Techniques for plan recognition. User Mod-
eling and User-Adapted Interaction, 11(1-2), pp. 31–48

[6] Charniak, E., and Goldman, R.P. (1993): A Bayesian model of
plan recognition, Artificial Intelligence 64(1), pp. 53-79

[7] Geib, C.W., and Steedman, M. (2007): On natural language
processing and plan recognition, In: Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI)

[8] Goodchild, M. F., 2007. Citizens as Voluntary Sensors: Spatial
Data Infrastructure in the World of Web 2.0, International Jour-
nal of Spatial Data

[9] Grünvogel, S. M., Wages, R., Bürger, T., and Zaletelj, J. (2007).
A Novel System for Interactive Live TV, Proc. of the Interna-
tional Conference on Entertainment Computing (ICEC 2007)

[10] Kiefer, P., Matyas, S., Schlieder, C. (2007). Playing on a line:
Location-based games for linear trips, In: Bernhaupt, R. and
Tscheligi, T. (eds): Proc. of ACE 2007, Salzburg University Aus-
tria, ACM, pp. 250-252.

[11] Kiefer, P., Matyas, S. and Schlieder, C. (2006). Systemati-
cally Exploring the Design Space of Location-based Games, In:
Strang, Th. et al. (eds.): Pervasive 2006 Workshop Proceedings,
PerGames2006, Dublin, Ireland, pp. 183-190.

[12] Kiefer, P., Matyas, S. and Schlieder, C. (2007). Playing Location-
based Games on Geographically Distributed Game Boards, In:
Magerkurth et al. (eds.): PerGames 2007, Shaker Verlag Aachen

[13] Kiefer, P., Schlieder, C. (2007). Exploring Context-Sensitivity
in Spatial Intention Recognition Workshop on Behavior Moni-
toring and Interpretation, 40th German Conference on Artificial
Intelligence (KI-2007), Osnabrück, Germany, TZI University of
Bremen, TR-42, ISSN 1613-3773, pp. 102-116.

[14] Liao, L., Patterson, D.J., Fox, D., and Kautz, H. (2007): Learn-
ing and inferring transportation routines, Artificial Intelligence
171(5-6), pp. 311-331

[15] Matyas, S. (2007a), Playful Geospatial Data Acquisition by
Location-based Gaming Communities, The International Journal
of Virtual Realities (IJVR) 6(3), 2007, www.ijvr.org, IPI Press,
ISSN 1081-1451, pp. 1-10.

[16] Matyas, S. (2007b), Collaborative Spatial Data Acquisition - A
Spatial and Semantic Data Aggregation Approach, In: Proceed-
ings of the 10th AGILE International Conference on Geographic
Information Science 2007, Aalborg University, Denmark.

[17] Morris, S., Morris, A., and Barnard, K. (2004). Digital trail li-
braries. Proc. of the 4th ACM/IEEE-CS Joint Conference on
Digital Libraries, JCDL ’04. ACM Press, pp. 63-71.
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Rodŕıguez et al. (Eds.): Geospatial Semantics, LNCS 3799,
Berlin: Springer, pp. 30 - 44.

[21] Schlieder, C., Kiefer, P., Matyas S. (2006). Geogames - De-
signing Location-based Games from Classic Board Games, IEEE
Intelligent Systems, Special Issue on Intelligent Technologies for
Interactive Entertainment, Sept/Okt 2006, pp 40-46.

Contact

Prof. Dr. Christoph Schlieder
Chair for Computing in the Cultural Sciences
Feldkirchenstr. 21, D-96045 Bamberg, Germany
Phone: +49 (0)951-863 2840
christoph.schlieder@uni-bamberg.de

Bild Peter Kiefer is a research assistant and PhD
candidate in Applied Computer Sciences at
the University of Bamberg. He received a
graduate degree in information systems from
the University of Bamberg in 2005. His PhD
research is concerned with intention recogni-
tion from motion patterns for mobile devices.

Bild Sebastian Matyas is a research assistant in
Applied Computer Sciences at the University
of Bamberg and is currently working on a
PhD project data quality of spatial data col-
lected by communities of voluntary contrib-
utors. He earned a diploma degree in infor-
mation systems in 2004 from the University
of Bamberg.

Bild Christoph Schlieder is professor of Comput-
ing in the Cultural Sciences at the University
of Bamberg. His research focuses on devel-
oping and applying methods from semantic
information processing to problems from the
cultural sciences. He has contributed in more
than 100 publications to the fields of qual-
itative spatial reasoning, cognitive model-
ing, geospatial semantics, and location-based
games.

Page 4


