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ABSTRACT 

The evaluation of location-based mobile learning (LBML) 

concepts and technologies is typically performed using 

methods known from classical usability engineering, such as 

questionnaires or interviews. In this paper, we argue that 

many problems that may occur during LBML become 

apparent in the learner’s spatio-temporal behavior (i.e., her 

trajectory). We systematically explore how location tracking 

and spatial analyses can be used for the evaluation of LBML. 

Examples with trajectories recorded during a real learning 

session are presented. 
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MOTIVATION 

The positioning and multimedia capabilities of current 

mobile devices have given rise to novel learning paradigms 

that integrate the learner’s position in the didactical concept, 

thus enhancing learning by the discovery of phenomena in 

situ. We refer to this kind of learning as location-based 

mobile learning (LBML) [1]. Integrated LBML management 

systems, such as the one presented in [2] support the teacher 

in developing LBML lessons, as well as in the easy 

dissemination of these lessons to the learners’ devices. At the 

same time, the LBML management system stores content 

created by learners on a server, such as geo-tagged photos or 

textual answers, thus enabling the teacher to track the 

learning progress and provide individual feedback. 

Challenges, however, still exist when using such LBML 

platforms [3]. These are mainly caused by environmental 

variability, unreliable technology, low usability, and by the 

learners’ and teachers’ background and capabilities. A 

careful investigation and evaluation of LBML concepts and 

platforms is necessary to cope with these challenges. It is 

clear that evaluating only the learning results is not sufficient 

to explain problems that might occur. 

Along with the explicitly collected data, also implicit 

behavior data, such as trajectories measured using the Global 

Positioning System (GPS), can easily be logged with an 

LBML infrastructure. In general, the broad dissemination of 

mobile devices has resulted in large amounts of such location 

tracking data. These trajectories, also called geospatial 

lifelines or continuous paths in space and time, are 

represented as a series of observations and consist of at least 

a triple of ID, location, and time [4]. Such trajectories are 

calling for systematic research and for the development of 

new computing technologies for storage, pre-processing, 

retrieving, and mining of trajectory data and exploring its 

broad application [5]. 

This work-in-progress paper systematically explores the 

opportunities of analysing learners’ trajectories for the 

evaluation of LBML concepts and platforms. We suggest 

that LBML platforms should provide tools that support the 

visual and quantitative analysis of trajectory data. Through 

spatio-temporal analyses, teachers could then evaluate the 

track(s) taken by learners to identify problems, such as 

getting lost, time issues, visiting incorrect places, or visiting 

places in an order not intended by the teacher. The relation 

between spatio-temporal events in the trajectories and the 

success in completing learning units may help to understand 

LBML mechanisms. In this way, teachers could use such 

information to improve the tasks with respect to the learning 

goals. We demonstrate this approach with example tracks 

from students who executed a sequence of LBML tasks.  

 Christian Sailer Peter Kiefer Joram Schito Martin Raubal  

 Institute of Cartography and Geoinformation, ETH Zurich 

Stefano-Franscini-Platz 5, CH–8093 Zurich 

Switzerland 

 

 csailer@ethz.ch pekiefer@ethz.ch jschito@ethz.ch mraubal@ethz.ch   

Permission to make digital or hard copies of part or all of this work for 

personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact 
the Owner/Author.  

Copyright is held by the owner/author(s). 

MobileHCI '15 Adjunct, August 25-28, 2015, Copenhagen, Denmark 
ACM 978-1-4503-3653-6/15/08. 

http://dx.doi.org/10.1145/2786567.2801607 



The following section reviews related work on the evaluation 

of LBML and trajectory analysis. The section after the 

review describes how trajectory analyses can contribute to 

the evaluation of LBML, as well as privacy issues. The paper 

finally concludes the findings with a discussion and outlook. 

RELATED WORK 

Evaluation of LBML 

Vavuola and Sharples proposed six challenges in evaluating 

mobile learning [6]: capturing and analysing learning in 

context and across contexts, measuring mobile learning 

processes and outcomes, respecting learner/participant 

privacy, assessing mobile technology utility and usability, 

considering the wider organisational and socio-cultural 

context of learning, and assessing (in)formality. We will 

discuss in the final section how the method proposed in this 

paper helps to approach these challenges. 

Several researchers have reported results of user 

evaluations of LBML, typically using methods known from 

classical usability engineering: Naismith et al. [7], for 

instance, describe their work with a complete context-aware 

educational resource system for outdoor tourist sites and 

educational centres (CAERUS) which was evaluated by a 

short questionnaire followed by a semi-structured interview 

on users’ experiences. Another study was performed by [8] 

on the augmented reality game “Environmental Detectives”, 

simulating a toxic spill for which students had to find the 

source. This study was evaluated through each team 

presenting their findings in front of the class, as well as 

through cross-team interviews and written short reports. A 

different evaluation approach was chosen by [9] who 

evaluated the “Augmenting the Visitor Experience” project 

through direct observation by the researchers and an analysis 

of in-field video diaries. Summarising, most evaluations of 

LBML were performed through questionnaires, interviews, 

or by evaluating the learning results. However, these 

evaluation methods require high effort and feedback to the 

learner has been hardly provided instantaneously. 

A specific group of LBML approaches targets the 

improvement of students’ spatial skills, such as 

understanding cartographic maps, improving orientation and 

wayfinding, or general spatial thinking. One example by 

[10], found in a study using a navigation game (Ori-Gami) 

that the interaction with the map was more intense (more 

touches) for children who made more errors in orientation 

and wayfinding. Those errors, as well as the average distance 

and speed, were determined by analysing GPS tracks. In this 

paper, we argue that spatio-temporal analyses can also help 

to evaluate LBML with learning objectives different from 

spatial thinking. The Ori-Gami example underlines the 

necessity to integrate spatio-temporal analysis functionality 

into LBML platforms. 

Trajectory analysis of moving objects 

Many scientists have conducted research on the physical 

activity and movement of human beings. Trajectory analysis 

has found particular interest in the fields of geographic data 

mining and wayfinding. Often, their goal is to understand the 

decision making processes, interests and activities of 

individual persons or crowds. 

Andrienko  et al. [11] identified three different types of 

movement data and related analysis tasks: movements of a 

single object (e.g., one pedestrian’s navigation from A to B), 

movements of multiple unrelated objects (e.g., the daily 

commuting behavior of all inhabitants of one city), and 

movements of multiple related objects (e.g., an animal herd 

looking for food). The typical analysis goals, tasks, and 

methods for these three types differ, and most of the papers 

found in literature fall into exactly one of the three 

categories. We will use this categorization throughout our 

paper. 

For the movement of a single object, [12] describe the 

following typical analysis tasks: extracting significant 

places, times and durations of visits, typical trips, their times 

and durations, deviations, and their reasons. They distinguish 

between single events and trajectories (temporally ordered 

sequences of positions). For multiple unrelated objects [13] 

introduce the following analysis tasks: 1) studies of space 

use, accessibility, permeability, connectivity, major flows, 

typical routes between places, and 2) studies of emerging 

patterns of collective movement: concentration/dispersion, 

convergence/divergence, and propagation of movement 

characteristics. In our work, we consider a variety of spatio-

temporal properties of both, single trajectories and multiple 

trajectories. 

Several approaches for spatial analyses of photo collections 

have been considered by [14]. Geo-tagged photos comprise 

a particularly interesting data source because, in addition to 

the photographer’s position, his or her object of interest can 

also be extracted from the data [15]. Photo tasks are common 

in LBML since they encourage learners to explore their 

environment and direct their attention to the real-world 

phenomena of interest. By uploading these photos to a server 

a (geo-referenced) collection becomes available for analysis. 

Attractions of interest to tourists were identified by [16] with 

different profiles who were visiting a tourist destination such 

as Hong Kong. Tourist managers are interested in what 

locations are preferred by different groups of tourists and 

what travel routes they are likely to take when visiting 

different locations. The authors presented a method for 

constructing a travel dataset from geotagged photos on Flickr 

(popular websites for sharing photos). A dataset containing 

thousands of photos with temporal and geographic 

information attached enabled them to capture the movement 

trajectories of tourists on a larger scale. Two techniques, a 

density-based clustering algorithm (P-DBSCAN) and 

Markov chains, were used to mine travel behavior patterns 

from this dataset. 

In addition, the third type of movement analysis – the 

analysis of relative movement of related objects 

(approaching, encountering, following, evading, etc.) – has 



been investigated. For instance, the RElative MOtion 

(REMO) approach proposed by [17] targets the analysis of 

motion based on geospatial lifelines of related moving 

objects. Motion patterns help to answer questions, such as 

the identification of an alpha animal in a pack of GPS-

collared wolves, or the detection of strategic and game-play 

behavior of two football teams, where the trajectories of 22 

players were recorded with a sampling rate of 1 second. The 

basic idea of the analysis is to compare the motion attributes 

of point objects over space and time, and thus to relate one 

object’s motion to the motion of all others. 

ANALYSING LEARNERS’ TRAJECTORIES 

As described in the previous section, we structure the 

following discussion based on the classification of 

movement analysis tasks by Andrienko & Andrienko [18]: 

analysis of the movement of single learners, analysis of the 

movement of multiple unrelated learners, and analysis of the 

movement of multiple related learners, i.e., learners moving 

in a group. 

The distinction between single users and group users plays 

an important role for LBML: single users learn alone and 

independently, and traverse the learning area on their own. If 

a teacher is involved in the LBML process, information 

sharing happens indirectly and delayed. Because phenomena 

perceived during the LBML process crucially contribute to a 

holistic understanding of the learning content, a single user 

might have difficulties to classify an impression as important 

or unimportant due to missing second opinions. Furthermore, 

it can be boring to fulfill vastly interactive location-based 

tasks alone. In this way, free exploration is highly 

constructivist and might increase motivation more than 

executing a learning module along a predefined path. 

In contrast, group users interact with each other and must 

take decisions together. Thus, group users can obtain social 

competence while finding solutions within a debate by 

compromise or by assertiveness. Often, self-assertive 

individuals try to act as map leaders. In contrast, other group 

members risk becoming followers by avoiding conflicts and 

by evading group decision-making. One advantage of groups 

is the direct and immediate share of impressions, which 

might contribute to the holistic understanding of the learning 

content. Groups may be put together randomly or based on 

common intrinsic or extrinsic motivational factors. 

In the following, we describe how to apply spatio-temporal 

analysis to learners’ trajectories. In addition, we discuss in 

how far spatio-temporal analysis might be useful to evaluate 

LBML classes post-hoc. Examples are mainly taken from an 

LBML project for architecture students at university level by 

[2]. 

Movement of single learners 

Two types of location tracking can be found in LBML 

projects and the type of tracking significantly influences the 

kind of analysis that can reasonably be applied: 

Seamless tracking, as done by a GPS logger, is typically 

implemented as a background service recording location data 

at a regular frequency, often chosen between one and several 

seconds. Sometimes, seamless tracking is considered as too 

privacy offending, too battery straining, or simply not 

possible due to missing hardware capabilities. In these cases, 

an alternative approach to location tracking consists in 

recording a position every time a specific function is called, 

such as when taking a picture [16] or solving a task. While 

the recording frequency of function-dependent location 

tracking is typically much lower, additional (task-related) 

data are recorded which can help in the semantic 

interpretation of the track point, i.e., finding the reason for 

the stop. The two tracking methods can also be combined. 

The logged data consist of information about location and 

time, from which additional spatio-temporal characteristics 

can be derived, depending on the recording rate (e.g., speed, 

acceleration, curviness, curvature, sinuosity, etc. [19]). 

These can be indicators for the reasons why decisions were 

made. Obviously, the higher the recording rate, the more 

valid conclusions can be drawn.  

For instance, acceleration or deceleration could provide 

evidence of the learner’s uncertainty, time pressure, or 

(missing) motivation. This, however, may be dependent on 

the learner’s social and cultural background. Another 

indicator for uncertainty could be a “zig-zag” path which 

could mean that the learner had problems finding the target 

or understanding the map [10]. However, in cases where 

exploration of the environment is part of the intended 

learning behavior, a “zig-zag” path is part of envisioned 

location-based learning. By correlating the path with spatial 

knowledge about the area, intended “zig-zag” or 

decelerations can be distinguished from those indicating 

problems. 

Often the teacher expects learners to follow a certain path 

and to take a certain means of transportation. In that case, a 

spatial analysis can reveal deviations from that path, or 

transportation mode respectively, for which several reasons 

may exist: wayfinding problems (see above), changes in the 

environment (e.g., a construction site or flooded area), 

unclear communication on the path to take, or physical 

activity avoidance behavior. For identifying the reason 

additional sources need to be used (including simply asking 

the student). A challenge, however, consists in determining 

whether learners who stayed on the intended path did really 

perceive the real-world phenomena the teacher expected 

them to pay attention to. 

As an example, Figure 1 shows a seamless track of one 

individual person who was supposed to visit as many shows 

and species as possible in the zoo in Nuremberg (Germany) 

within a four hour time limit. The trajectory in this case 

allows the teacher to investigate places in which the learner 

was moving rather fast, showing less interest in certain 

species (e.g., close to the lakes in the South), and which 

species or shows he spent more time with. In the example, 



the subject has visited the majority of the available shows, 

thus fulfilling at least part two of the learning goal. Analysing 

very carefully, the tracks also reveal stops when the visitor 

interrupted the task to eat, drink, or rest. Such information 

can be valuable to estimate the time a teacher should plan for 

the task. Thus, the evaluation of seamless tracking paths can 

provide helpful information for the improvement of lessons. 

 

 

Figure 1. Learner exploring the zoo in Nuremberg 

(basemap: © OpenStreetMap).  

 

 

Figure 2. Recorded track on the Former Nazi Party Rally 

Grounds, Nuremberg, Germany (today a museum site) 

(basemap: © OpenStreetMap). 

Another example is displayed in Figure 2. After a theoretical 

introduction in the classroom, a single learner had to find ten 

architectural buildings belonging to the “Third Reich 

architecture” and capture the coordinates, one representative 

photo, and a current usage description for each of them. Here, 

the learner has indeed found ten relevant buildings, but a 

different set than the teacher had expected. The new content 

can now be included into the theoretical introduction and/or 

the task for the next session. 

Besides the improvement of lessons, the analysis of a single 

learner’s track also enables the teacher to provide 

individualized help to that specific learner. 

Movements of multiple unrelated learners 

LBML platforms enable learners to execute the learning unit 

individually, i.e., outside of a formal classroom setting and 

in a time window of their choice. In this case, the trajectories 

learners take are independent from each other, while still 

based on the same tasks. Logging the movement data of these 

independent learners can lead to a, possibly large, collection 

of trajectories that allows for a number of analysis tasks. 

First, all trajectory properties that can be analysed for an 

individual user (section Movement of single learners) can 

now be investigated in an aggregated form, such as: which 

locations did most learners find interesting (detection of 

Points of Interest, POI)? Where did most wayfinding 

problems occur? etc. Even more than for single user 

analyses, the results can be used to improve the LBML 

lessons. Methods for this kind of aggregated analyses, such 

as POI detection, are well-known in the literature (e.g., 

spatial clustering and visual analytics as described in [12]). 

Second, a large dataset of trajectories can help identify users 

who showed similar movement (e.g., [20]) and, based on 

these similarities, detect clusters. The clusters can then be 

analysed w.r.t. the demographic, social, cultural, and other 

information available for the participants. For instance, we 

may find that females, on average, solved the task at hand in 

a similar way, and different to average male learners. 

Moreover, the paths learners took in a free-exploration task 

could be correlated with information on the learning effect, 

leading to a change in the LBML unit design. 

Movements of multiple related learners 

Learning can also occur within a team that pursuits the same 

target. Several studies have shown that the motivation rises 

when working with peers [21]. Knowledge can be exchanged 

and the constructivist learning rises as well on the condition 

that interaction by discussion between the learners is 

frequent. Each group member contributes to the team’s 

success by occupying a specific role. However, social 

competence plays an important part. Consequently, the 

movement patterns differ between the roles occupied. The 

trendsetter motion pattern was introduced by [17] as one 

trend-setting moving point object that anticipates the motion 

of n others with the REMO approach. Once a trendsetter has 

been detected as leader, the other group members act as 

followers. Followers can indeed be interested in the LBML 

process and consequently like to adapt the leader’s behavior. 

However, other followers prefer to evade the responsibility 

of contributing to the group’s success. One assumption can 

be that interested or engaged learners are always sited close 

to the leader, moving at the same speed along the route. In 

contrast, uninterested people are located more distant to the 

group leader. Consequently, the speed pattern may provide 

evidence for distinguishing between interested and 

uninterested learners. Repeating outdoor learning units with 

the same group of learners could support these indications. 

However, in order to evaluate or interpret such observations 

it is required that the location accuracy is always known and 



taken into account. Another evaluation can be made by 

investigating the size of the group. Are the moving learners 

close together in a small clustered group or are they 

dispersing over time when they join a larger group? 

In addition to the trendsetter motion pattern, [17] described 

two more patterns. On the one hand, the concurrence motion 

pattern shows cutting trajectories, which occur because 

individuals are pursuing their own objectives. This situation 

might happen after an unpredicted phenomenon, such as an 

accident. On the other hand, the constant motion pattern 

shows non-cutting trajectories, which occur because the 

individuals share a sequence of equal motion attributes for r 

consecutive time steps. 

Privacy 

The opportunities to improve the understanding of human 

behavior in its environmental context were highlighted by 

[22] but at the same time they warned of the potential breach 

of confidentiality statements made during data collection. In 

the case of LBML platforms, privacy issues are, first of all, 

the same issues as for (non location-based, non-mobile) e-

learning [23]. For instance, when solving tasks in an e-

learning management system (eLMS) over the web, the 

learner needs to trust all parties who get access to her data, 

which includes at least the eLMS provider and the teacher. It 

is plausible to simply assume a trustful teacher-student 

relationship, since otherwise learning would be seriously 

hampered. For the eLMS provider (in our case: the LBML 

management system provider) we suggest to choose a 

trustworthy party, such as the educational institution. 

However, assuming that location privacy is exactly the same 

as general online privacy is not completely correct [24]. With 

data mining techniques it is possible to identify real persons 

based on their trajectory, even if the user is anonymized with 

a pseudonym [25] based on the detection of frequently 

visited locations (home, work, etc.) and profiles created from 

other data sources. The movement behavior shown during 

LBML, however, is usually not related to the daily routines 

or interests of the individual, but determined either by the 

pre-defined path, or by the set of locations available in the 

area of the learning unit. In other words, deanonymization 

will be difficult because all learners visit (more or less) the 

same set of locations. 

More nuanced license models were pinpointed by [26] as 

another possible solution: while existing data licenses focus 

on property rights, it would often be more adequate to have 

licenses only for data usage which disallow specific kinds of 

harmful use or processing. 

DISCUSSION AND OUTLOOK 

In this paper we have systematically explored how spatio-

temporal analyses of location-based mobile learners’ data 

can be used to evaluate and improve LBML concepts and 

technologies. Although our method enables new types of 

evaluations for LBML, it is clear that the method needs to be 

combined with classical evaluation approaches, such as 

questionnaires or interviews. 

As described in Evaluation of LBML, six major challenges 

for the evaluation of LBML have been identified by [6]. The 

method proposed here contributes to these challenges as 

follows:  

Capturing and analysing learning in context and across 

contexts: location is recognized as one of the most important 

– if not the most important form of context. By tracking 

location during learning, we enable the analysis of learning 

behavior, strategies and success in relation to specific 

locations, as well as across locations. 

Measuring mobile learning processes and outcomes: 

learning processes in LBML almost always include 

locomotion. Perceiving, reasoning about, and understanding 

environmental phenomena happens at locations, as well as 

during locomotion between locations. A learner’s trajectory 

thus reflects the progress and individual development of the 

learning process. 

Respecting learner/participant privacy: as discussed in the 

section Privacy, LBML is not more privacy-breaching than 

other eLMS. However, regulatory approaches to privacy 

need to be respected by LBML platforms which are 

summarized by the five principles of fair information 

practices in [27]. They point out that various types of 

inferences of movement patterns make anonymity and 

pseudonymity much harder to maintain than in other privacy 

applications, such as the Internet. Because information about 

personal location is highly dynamic, the potential uses and 

privacy implications of dynamic location information change 

over time. Finally they caution that without proper 

protection, the location information generated by location-

aware systems could conceivably be abused or unfairly used 

in almost any domain of human, social, or economic activity. 

Assessing mobile technology utility and usability: trajectory 

analyses can show whether learners get lost, thus revealing 

problems with the navigation assistance of the system (e.g., 

the map design). Also, systematic positioning errors become 

apparent in the trajectories, such as urban canyons 

shadowing the GPS signal in certain areas, which means a 

different type of positioning technology could become 

necessary for that specific region. 

Considering the wider organizational and socio-cultural 

context of learning: the social context of learning could be 

detected if an analysis of movement dynamics within a 

learning group can be performed. We also mentioned that 

correlations between the socio-cultural context and typical 

movement patterns can be detected through cluster analyses 

based on large collections of trajectory data. 

Assessing (in)formality: learning in LBML can take place at 

any time, independent from a formal classroom setting. This 

informal setting could lead to students not visiting the places 

they are supposed to. As explained in the section Movement 



of single learners, such deviations from a pre-defined path 

can be detected in trajectories. 

One of the curriculum goals of e-learning in school education 

is to provide learners with 21st century skills. Kong et al. 

[28] anticipated a growing trend towards more 

individualized and collaborative learning in school 

education. While physical classrooms will keep their 

importance in learners’ interaction and socialization, 

learning will extend to outside classrooms and play an 

increasingly important role in learners’ knowledge 

construction through their daily learning activities. LBML 

platforms enable these learning styles, while at the same time 

fostering mobile technology skills, as well as orientation and 

navigation skills. 

A delicate discussion issue is the direct derivation of the 

learning effect from the processed track. On the one hand, 

tracks can reveal a behavior; however, this behavior does not 

have to be based on specific impressions at a given spatio-

temporal location. Because learning is influenced by feelings 

and impressions are perceived individually, it is not possible 

to state learning effects based on processed tracks only. 

Furthermore, teachers should reflect how they deal with 

mistakes. Even if location-based problems might have been 

solved incorrectly, this failure does not automatically testify 

a lacking spatial comprehension. It might be that these failing 

learners did not perceive the same as the teacher did in 

advance to determine the correct answer. In this way, 

teachers must be careful and reflect the task validity to 

broaden the horizon of correct answers by the consideration 

of different perceptions. Situations might occur in which 

learners are able to construct truthful mental models without 

staying on the path suggested by the teacher, however, built 

with impressions unknown to the teacher. Thus, the validity 

of location-based tasks should be reflected in favor of 

constructivist knowledge acquisition.  

Nevertheless, exploring the target area during preparation is 

essential to determine possible obstacles and to gain routine 

with the conduction of LBML. Consequently, teachers can 

get an idea about impressions perceived by the learners; this 

supports the creation of meshing learning goals and tasks for 

the LBML unit [29]. 

Broad studies for each presented movement category are 

considered right now and in future research. We will address 

peers across disciplines and demography as well as social 

and cultural origin to generate profound knowledge about 

LBML. 
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