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Chapter 1

Introduction

We give a brief overview of the contents of this course.

1.1 Geometry of numbers

One of the central theorems in the geometry of numbers is Minkowski’s first convex

body theorem. Before discussing this, we prove a predecessor, due to Dirichlet.

Theorem 1.1 (Dirichlet, 1842). Let α ∈ R. Then for every integer Q ⩾ 2 there are

integers x, y, not both 0, such that |x− αy| ⩽ Q−1, 0 < y ⩽ Q and gcd(x, y) = 1.

Proof. The proof is based on Dirichlet’s box principle: if n boxes contain altogether

at least n+ 1 objects, then one of the boxes must contain at least two objects.

The largest integer smaller or equal than a given real number α is denoted by

[α]. Partition the interval [0, 1] into Q subintervals of length 1/Q. Consider the

Q + 1 numbers 1 and α − [α], . . . , Qα − [Qα]. By the box principle, two among

these numbers must lie in the same subinterval of length 1/Q. So we either have

|(kα − [kα]) − (lα − [lα])| ⩽ 1/Q for two different integers k, l ∈ {1, . . . , Q}, or
|(kα − [kα]) − 1| ⩽ 1/Q for some integer k ∈ {1, . . . , Q}. In both cases, we find

integers x, y with 0 < |y| ⩽ Q and |x−αy| ⩽ 1/Q. By dividing x, y by their greatest

common divisor, and changing sign if necessary, we get integers x, y as in Theorem

1.1.
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Corollary 1.2. Let α ∈ R\Q. Then there are infinitely many pairs (x, y) such that

(1.1) |α− x

y
| ⩽ y−2, x, y ∈ Z, y ⩾ 0, gcd(x, y) = 1.

Proof. By Theorem 1.1, for every integer Q ⩾ 2 there is a pair of integers (xQ, yQ)

with |xQ−αyQ| ⩽ Q−1, 0 < yQ ⩽ Q, and gcd(xQ, yQ) = 1. This pair clearly satisfies

|α− xQ

yQ
| ⩽ Q−1y−1

Q ⩽ y−2
Q .

We are done if we have shown that if we let Q → ∞, then (xQ, yQ) runs through

infinitely many different pairs of integers. Assume this is false. Then there is a fixed

pair (x0, y0) such that (xQ, yQ) = (x0, y0) for arbitrarily large Q. But then,

|x0 − αy0| ⩽ Q−1

for arbitrarily large Q, and thus, x0 − αy0 = 0, i.e., α = x0/y0. This is against our

assumption α ∈ R \Q. Corollary 1.2 follows.

Remark. There is an alternative (and earlier) proof of Corollary 1.2 using the

theory of continued fractions, see Exercise 1.6 below or for instance the classic G.H.

Hardy, E.M. Wright, An Introduction to the Theory of Numbers.

Exercise 1.1. Is Corollary 1.2 true or false for α ∈ Q?

We now formulate Minkowski’s first convex body theorem. A set C ⊂ Rn is

called convex if for every x,y ∈ C, the line segment connecting them, that is

{(1− t)x+ ty : 0 ⩽ t ⩽ 1}, is also contained in C.

A central symmetric convex body in Rn is a closed, bounded, convex subset of Rn

that contains 0 as an interior point and is symmetric about 0, i.e., for every x ∈ C

we have −x ∈ C.

Theorem 1.3 (Minkowski’s first convex body theorem, 1896). Let C ⊂ Rn be

a central symmetric convex body of volume (n-dimensional measure) volC ⩾ 2n.

Then C contains a point x ∈ Zn with x ̸= 0.

We show that Theorem 1.3 implies Theorem 1.1. Let Q be an integer with Q ⩾ 2.

We apply Minkowski’s convex body theorem to

CQ :=
{
(x, y) ∈ R2 : |x− αy| ⩽ Q−1, |y| ⩽ Q

}
,
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which is easily seen to be a central symmetric convex body, with area (2-dimensional

measure) 22. We infer that there is a non-zero point (x, y) ∈ CQ ∩ Z2. If we

divide (x, y) by their gcd, and replace (x, y) by (−x,−y) if needed, we get a point

(x, y) ∈ CQ ∩ Z2 with gcd(x, y) = 1 and y ⩾ 0. If y = 0 then x = ±1. The point

(±1, 0) does not belong to CQ since Q > 1. Hence y > 0.

We state without proof the following more general result of Dirichlet, which

can be proved either in a similar way as Theorem 1.1, or can be deduced from

Minkowski’s first convex body theorem.

Theorem 1.4 (Dirichlet, 1842). (i) Let α1, . . . , αn be n ⩾ 1 real numbers. Then for

every real Q > 1 there is a tuple (x1, . . . , xn, y) ∈ Zn+1 such that

|xi − αiy| ⩽ Q−1 for i = 1, . . . , n, 0 < y ⩽ Qn.

(ii) Assume in addition that α1, . . . , αn are not all rational numbers. Then there are

infinitely many tuples (x1, . . . , xn, y) ∈ Zn+1 such that

|α1 −
x1

y
| ⩽ y−1−1/n, . . . , |αn −

xn

y
| ⩽ y−1−1/n, y > 0, gcd(x1, . . . , xn, y) = 1.

In the next chapter on the Geometry of Numbers, we discuss a far-reaching

generalization of Minkowski’s Theorem, and some further applications.

1.2 Approximation of algebraic numbers by ratio-

nal numbers

In general, for given α ∈ R one may ask whether Corollary 1.2 remains true if we

replace y−2 by a smaller function, say y−2−δ with δ > 0. That is, we may ask

whether the inequality

(1.2) |α− x/y| ⩽ y−2−δ in x, y ∈ Z with y > 0, gcd(x, y) = 1

has infinitely many solutions. The set of α for which this holds is very rare, since

by a special case of a theorem of the Russian mathematician Khintchine (1927), for

every δ > 0, the set of α ∈ R such that inequality (1.2) has infinitely many solutions

has Lebesgue measure 0. But it is certainly possible to construct numbers α for

which (1.2) has infinitely many solutions, as is shown by the exercise below.
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Exercise 1.2. Let a be an integer ⩾ 3 and put α :=
∑∞

n=0 10
−a2n. Then the in-

equality

|α− x/y| ⩽ y−a

has infinitely many solutions in integers x, y with y > 0, gcd(x, y) = 1.

The number α constructed in this exercise seems very superficial. One may

wonder, whether there are “reasonable” numbers α for which (1.2) has infinitely

many solutions for some δ > 0. A famous and difficult theorem by K.F. Roth

(1955), states that this is not the case if α is algebraic. Recall that a number α is

called algebraic if there is a non-zero polynomial P ∈ Q[X] with P (α) = 0.

Theorem 1.5 (Roth, 1955). Let α ∈ R be an algebraic number and let δ > 0. Then

the inequality

|α− x/y| ⩽ y−2−δ in x, y ∈ Z with y > 0, gcd(x, y) = 1

has only finitely many solutions.

The proof of this result is too long to be included in this course. We will give

some applications of this result to Diophantine equations. Further, we will deduce

a weaker version of Theorem 1.5.

Likewise, one may ask whether Theorem 1.4 is best possible. In case that

α1, . . . , αn are all real algebraic numbers we have the following famous result of

W.M. Schmidt. A set of numbers {α1, . . . , αn} in C is said to be linearly indepen-

dent over Q if

{(x1, . . . , xn) ∈ Qn : x1α1 + · · ·+ xnαn = 0} = {(0, . . . , 0)}.

Theorem 1.6 (Schmidt, 1971). Let α1, . . . , αn be algebraic numbers in R such that

{1, α1, . . . , αn} is linearly independent over Q. Further, let δ > 0. Then there are

only finitely many tuples (x1, . . . , xn, y) ∈ Zn+1 such that

y > 0, gcd(x1, . . . , xn, y) = 1,

|α1 − x1/y| ⩽ y−1−(1/n)−δ, . . . , |αn − xn/y| ⩽ y−1−(1/n)−δ.

Theorem 1.1 is a consequence of a far more general, very central result in Dio-

phantine approximation, the Subspace Theorem. This theorem is too difficult to be

stated in this introduction, but we will discuss it later in this course. The Sub-

space Theorem has many consequences, in particular to Diophantine equations and

inequalities, but also to other areas in number theory.
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1.3 Transcendence

Recall that a number α ∈ C is transcendental (over Q) if it is not algebraic, i.e.,

there is no non-zero P ∈ Q[X] with P (α) = 0. The following counting argument

implies that transcendental numbers exist.

Theorem 1.7. (i) R is uncountable.

(ii) The set of algebraic numbers in C is countable.

Proof. (i) We use Cantor’s diagonal argument. It suffices to prove that the open

interval ]0, 1[= {x ∈ R : 0 < x < 1} is uncountable. We have to prove that

]0, 1[ \T ̸= ∅ for any countable subset T of ]0, 1[ . Take an arbitrary countable

subset T , and represent its numbers by their decimal expansions. The assumption

that T is countable means that its elements can be arranged in a sequence, say

0.x11x12x13 . . .

0.x21x22x23 . . .

0.x31x32x33 . . .
...

There is 0.y1y2y3 . . . ∈]0, 1[ with yi ̸= xii, 9 for all i ⩾ 1, and this number clearly

does not belong to T .

(ii) A number α ∈ C is algebraic if there is non-zero F ∈ Z[X] such that F (α) =

0. For F = a0X
r + a1X

r−1 + · · ·+ ar ∈ Z[X] we put S(F ) := max(r, |a0|, . . . , |ar|).
Note that for given value of S there are only finitely many F ∈ Z[X] with S(F ) = S

and each of these F has only finitely many zeros in C. Now order the algebraic

numbers in a sequence as follows: first take all algebraic numbers which are zeros

of polynomials F ∈ Z[X] with S(F ) = 1, then take the algebraic numbers not

considered so far that are zeros of polynomials F ∈ Z[X] with S(F ) = 2, and so

on. In this way, we eventually obtain all algebraic numbers, and thus they can be

arranged in a sequence.

It is of course a much more interesting (and difficult) problem whether numbers

“from nature” such as e and π are transcendental. In 1873, Hermite proved that e

is transcendental, and in 1882 Lindemann did the same for π. In fact, Lindemann

proved the following result, which covers both. Here we define ez :=
∑∞

n=0 z
n/n! for

z ∈ C.
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Theorem 1.8. Let α ∈ C be a non-zero algebraic number. Then eα is transcenden-

tal.

To deduce from this that π is transcendental, assume that it is algebraic. Then πi

would be algebraic, while eπi = −1 is not transcendental, contradicting Lindemann’s

Theorem.

In our course we will discuss also other transcendence results.

To give some flavour, we finish with a proof that e is irrational. We start with a

simple but useful irrationality criterion.

Lemma 1.9. Let α ∈ R. Assume there is a sequence of pairs of integers (xn, yn)

with yn > 0 such that xn/yn ̸= α and |xn − αyn| → 0 as n → ∞. Then α ̸∈ Q.

Proof. Assume that α ∈ Q, that is, α = a/b with a, b ∈ Z, b > 0. Then for any pair

of integers x, y with y > 0, x/y ̸= α we have

|x− αy| = |bx− ay|
b

⩾
1

b

since the numerator is a non-zero integer. Hence a sequence of pairs (xn, yn) as in

the statement of the lemma cannot exist.

Theorem 1.10. e ̸∈ Q.

Proof. We use the identity e =
∑∞

k=0 1/k!. We apply Lemma 1.9 with yn = n! and

xn = n!
∑n

k=0
1
k!
. Then

|xn − eyn| = n!
∞∑

k=n+1

1

k!

hence

0 < |xn − eyn| =
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

<
1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · ·

=
1

n
→ 0 as n → ∞.

This proves that e ̸∈ Q.
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1.4 Exercises

Exercise 1.3. Hurwitz (1891) improved Corollary 1.2 as follows: if α is any ir-

rational, real number, then there are infinitely pairs of integers (x, y) ∈ Z2 such

that

|α− x/y| ⩽ 1√
5
· y−2, y > 0, gcd(x, y) = 1.

The proof uses the theory of continued fractions (see exercise 1.6 below). You are

asked to prove that Hurwitz’ theorem becomes false if
√
5 is replaced by any constant

A >
√
5. More precisely, you have to prove that if α := 1

2
(1 +

√
5) then for every

A >
√
5 there are only finitely many pairs of integers (x, y) such that |xy−α| ⩽ 1/Ay2.

(i) Let α := 1
2
(1 +

√
5), α′ := 1

2
(1 −

√
5). Prove that for any two integers x, y with

y > 0,

1 ⩽ |x2 − xy − y2| = y2|xy − α| · |xy − α′|.

(ii) Let A >
√
5 and let x, y be integers with y > 0 such that |xy − α| ⩽ 1/Ay2.

Estimate the right-hand side of the inequality in (i) from above, and deduce that y

and x are bounded.

Exercise 1.4. Prove that sin 1 =
∞∑
n=0

(−1)n

(2n+ 1)!
is irrational.

Exercise 1.5. Complete the following irrationality proof for π (attributed to Cartwright,

1945).

Assume that π = a
b with a, b ∈ Z>0, gcd(a, b) = 1.

(i) Define

In :=

∫ 1

−1

(1− x2)n cos(1
2
πx)dx for n = 0, 1, 2, . . . .

Prove that

I0 =
4
π , I1 =

32
π3 , In = 8n

π2

(
(2n− 1)In−1 − (2n− 2)In−2

)
for n ⩾ 2.

(ii) Prove that a2n+1

n! · In ∈ Z for n ⩾ 0.

(iii) Prove that 0 < In ⩽ 2 for all n and 0 < a2n+1

n! · In < 1 for all sufficiently large

n, and deduce a contradiction.
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In the next exercise you are asked to prove some basic properties of continued

fractions. The rational function [x0, . . . , xn] in the variables x0, . . . , xn is inductively

defined by

[x0] := x0; [x0, x1] := x0 +
1
x1
; [x0, . . . , xn] := [x0, . . . , xn−2, xn−1 +

1
xn

] (n ⩾ 2).

Thus,

[x0, x1, x2] = x0 +
1

x1 +
1
x2

; [x0, x1, x2, x3] = x0 +
1

x1 +
1

x2+
1
x3

; . . .

For a real number α we define the sequences {an}n⩾0, {αn}n⩾1 inductively by

α = a0 + α1, a0 ∈ Z, 0 ⩽ α1 < 1;
1
αn

= an + αn+1, an ∈ Z, 0 ⩽ αn+1 < 1 (n = 1, . . . , n0),

where n0 is the first index n with αn+1 = 0. If no such index exists, we set n0 := ∞.

Further, we define the sequences {pn}n⩾−2, {qn}n⩾−2 by

p−2 := 0, p−1 := 1, pn := anpn−1 + pn−2

q−2 := 1, q−1 := 0, qn := anqn−1 + qn−2

}
for n = 0, . . . , n0.

We call a0, a1, . . . the continued fractions, and
p0
q0
,
p1
q1
, . . . the convergents of α.

Exercise 1.6. Prove that n0 is finite if and only if α ∈ Q.

Hint. Supposing α ∈ Q, write α = r0
r1

with r0, r1 ∈ Z, gcd(r0, r1) = 1 and r1 > 0

and apply Euclid’s algorithm to r0 and r1.

Exercise 1.7. Assume that α ∈ R \Q, i.e., n0 = ∞, and prove the following:

(i) α = [a0, . . . , an−1, an + αn+1] for n = 0, 1, 2, . . .;

(ii)
pn+xpn−1

qn+xqn−1
= [a0, . . . , an−1, an + x] for n = 0, 1, 2, . . . (identity of rational func-

tions) and deduce that
pn
qn

= [a0, . . . , an] for n = 0, 1, 2, . . .;

(iii) pnqn−1 − pn−1qn = (−1)n−1 for n = −1, 0, 1, 2, . . .;

(iv) (−1)n(qnα− pn) =
1

(an+1+αn+2)qn+qn−1
for n = 0, 1, 2, . . .;

(v) 1
qn+2

< (−1)n(qnα− pn) <
1

qn+1
for n = 0, 1, 2, . . ..

Deduce that (−1)n(qnα− pn) strictly decreases to 0 as n → ∞.
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Notice that the convergents pn/qn of α give infinitely many fractions x/y with

y > 0, gcd(x, y) = 1, and |α− x/y| < 1/y2. In fact (vi) implies

p0
q0

<
p2
q2

<
p4
q4

· · · < α < · · · < p3
q3

<
p1
q1
.
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