
Chapter 3

Algebraic numbers and algebraic

number fields

Literature:

S. Lang, Algebra, 2nd ed. Addison-Wesley, 1984. Chaps. III,V,VII,VIII,IX.

P. Stevenhagen, Dictaat Algebra 2, Algebra 3 (Dutch).

We have collected some facts about algebraic numbers and algebraic number

fields that are needed in this course. Many of the results are stated without proof.

For proofs and further background, we refer to Lang’s book mentioned above, Peter

Stevenhagen’s Dutch lecture notes on algebra, and any basic text book on algebraic

number theory. We do not require any pre-knowledge beyond basic ring theory. In

the Appendix (Section 3.5) we have included some general theory on ring extensions

for the interested reader.

3.1 Algebraic numbers and algebraic integers

A number α ∈ C is called algebraic if there is a non-zero polynomial f ∈ Q[X] with

f(α) = 0. Otherwise, α is called transcendental. We define the algebraic closure of

Q by

Q := {α ∈ C : α algebraic}.

Lemma 3.1. (i) Q is a subfield of C, i.e., sums, differences, products and quotients

of algebraic numbers are again algebraic;
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(ii) Q is algebraically closed, i.e., if g = Xn + β1X
n−1 · · · + βn ∈ Q[X] and α ∈ C

is a zero of g, then α ∈ Q.

(iii) If g ∈ Q[X] is a monic polynomial, then g = (X − α1) · · · (X − αn) with

α1, . . . , αn ∈ Q.

Proof. This follows from some results in the Appendix (Section 3.5). Proposition

3.26 in Section 3.5 with A = Q, B = C implies that Q is a ring. To prove that Q
is a field we have to show that if α is a non-zero algebraic number then also α−1 is

algebraic. Indeed, for such α there are a0, . . . , ad ∈ Q such that a0α
d + a1α

d−1 +

· · ·+ad = 0 and a0ad 6= 0. But then, adα
−d+ · · ·+a0 = 0. This proves part (i). Part

(ii) follows at once from Proposition 3.26, while (iii) is a consequence of (ii).

Let α ∈ Q. Among all polynomials with rational coefficients having α as a root

there is a unique one of minimal degree that is monic (indeed, take two monic poly-

nomials in Q[X] of minimal degree, say d, having α as a root; then their difference

has degree < d, hence must be 0). This polynomial is called the minimal polynomial

of α, notation fα.

Lemma 3.2. Let α ∈ Q. Then fα is irreducible in Q[X] and fα divides all polyno-

mials in g ∈ Q[X] with g(α) = 0.

Proof. The irreducibility of fα is clear since otherwise α were a zero of a polynomial

in Q[X] of degree strictly smaller than that of fα. Let g ∈ Q[X] have g(α) = 0. By

division with remainder, we have g = qfα + r for certain q, r ∈ Q[X] with r = 0 or

deg r < deg fα. But r(α) = 0, so r 6= 0 is impossible.

Let α ∈ Q. The degree of α, notation degα, is by definition the degree of fα.

We can factorize fα over Q as

(X − α(1)) · · · (X − α(d)).

These α(1), . . . , α(d) are called the conjugates of α. They are necessarily distinct,

for otherwise, fα and its derivative f ′α would have a root in common, which would

then be a root of the greatest common divisor of fα and f ′α. But this is impossible

because since fα is irreducible, this gcd is 1.

An algebraic number α is called totally real if all α(i) are in R, and totally complex,

if all α(i) are in C \ R. In general, some of the α(i) may be in R and some not in
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R. For instance, α = 3
√

2 has minimal polynomial X3− 2, and conjugates 3
√

2, ζ 3
√

2,

and ζ2 3
√

2, where ζ is a primitive cube root of unity.

If α(i) is a non-real conjugate of an algebraic number α, then so is its complex

conjugate α(i). Hence the non-real conjugates of an algebraic number occur in pairs

of complex conjugates, and so their number is even.

Suppose fα = Xd + b1X
d−1 + · · ·+ bd−1X + bd; then b1, . . . , bd ∈ Q. Let a0 ∈ Z>0

be the least common multiple of the denominators of b1, . . . , bd. Put Fα := a0fα.

Then

Fα = a0X
d + a1X

d−1 + · · ·+ ad, with a0, . . . , ad ∈ Z, gcd(a0, . . . , ad) = 1.

We call Fα the primitive minimal polynomial of α (terminology invented by the

author; not used in general!). We define the height of α by

H(α) := max(|a0|, . . . , |ad|).

Examples. 1. Let α = a/b with a, b ∈ Z, b > 0, gcd(a, b) = 1. Then α has

primitive minimal polynomial bX − a, hence H(α) = max(|a|, b).

2. Let α = 1
5
(1 + 2

√
3). Then

fα = (X − 1
5
(1 + 2

√
3))(X − 1

5
(1− 2

√
3)) = X2 − 2

5
X − 11

25
,

Fα = 25X2 − 10X − 11, H(α) = 25.

Exercise 3.1. Let α ∈ Q be non-zero.

(i) Prove that H(α−1) = H(α).

(ii) Prove that (H(α) + 1)−1 6 |α| 6 H(α) + 1.

Definition. A number α ∈ C is called an algebraic integer if there is a monic

polynomial f ∈ Z[X] such that f(α) = 0. Elements of Z are often called rational

integers. A number α ∈ C is called an algebraic unit if both α, α−1 are algebraic

integers.

We define

Z := {α ∈ C : α algebraic integer}, Z∗ := {α ∈ C : α algebraic unit}.

Lemma 3.3. (i) Z is a ring, i.e., sums, differences and products of algebraic in-

tegers are again algebraic integers. Further, Z∗ is the multiplicative group of units
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(invertible elements) of Z.

(ii) Z is integrally closed, i.e., if g = Xn + β1X
n−1 · · ·+ βn ∈ Z[X] and α ∈ C is a

zero of g, then α ∈ Z.

Proof. Apply Proposition 3.26 in Section 3.5 with A = Z, B = C.

Lemma 3.4. Let α ∈ Q.

(i) α ∈ Z⇐⇒ fα ∈ Z[X].

(ii) α ∈ Z∗ ⇐⇒ fα ∈ Z[X] and fα(0) = ±1.

Proof. (i)⇐ is clear. To prove⇒, take a monic polynomial g ∈ Z[X] with g(α) = 0.

The polynomial fα divides g in Q[X]. By factorizing g in Z[X], we get g = h1h2
where h1, h2 ∈ Z[X] and where h1 is a constant multiple of fα. But the leading

coefficient of h1 divides that of g, hence is ±1, and so fα = ±h1 ∈ Z[X].

(ii) ⇐ is again clear. To prove ⇒, we already know that both fα ∈ Z[X] and

fα−1 ∈ Z[X]. Further, fα−1(0) = fα(0)−1 ∈ Z, hence fα(0) = ±1.

Lemma 3.5. Z ∩Q = Z.

Proof. Let α ∈ Z ∩Q. Then fα = X − α ∈ Z[X], hence α ∈ Z.

An important observation in many Diophantine approximation proofs is that if

a is a non-zero rational integer (i.e., in Z) then |a| > 1. This cannot be extended

to algebraic integers. For instance, α := 1
2
(1 −

√
5) is a non-zero algebraic integer

(being a root of X2 −X − 1) but |α| < 1. But in many cases we can use the next

lemma instead.

Lemma 3.6. Let α be a non-zero algebraic integer. Then α has a conjugate α(i)

with |α(i)| > 1.

Proof. Let α(1), . . . , α(d) be the conjugates of α. Then by Lemma 3.4, the minimal

polynomial of α, fα =
∏d

i=1(X − α(i)) has its coefficients in Z. In particular, the

product α(1) · · ·α(d) = ±f(0) is a non-zero rational integer, whence has absolute

value at least 1. This implies the lemma.

Lemma 3.7. Let α be an algebraic number, and let F = a0X
d+a1X

d−1 + · · ·+ad ∈
Z[X] be a polynomial with F (α) = 0. Then a0α is an algebraic integer.
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Proof. We clearly have

0 = ad−10 F (α) = (a0α)d + a1(a0α)d−1 + · · ·+ ad−10 ad,

hence a0α is a zero of a monic polynomial from Z[X].

Definition. Given a non-zero algebraic number α, we define the denominator of

α to be the smallest positive a ∈ Z such that aα is an algebraic integer, notation

den(α).

Exercise 3.2. (i) Let G = b0X
m + b1X

m−1 + · · ·+ bm where b0, . . . , bm are algebraic

integers with b0 6= 0. Let α ∈ C with G(α) = 0. Prove that G/(X − α) is a

polynomial whose coefficients are algebraic integers.

Hint. Induction on m. In the induction step, use that b0α is an algebraic integer,

after having showed this. Use Lemma 3.3.

(ii) We can express the primitive minimal polynomial of an algebraic number α as

Fα = a0
∏d

i=1(X − α(i)), where α(1), . . . , α(d) are the conjugates of α. Prove that

for each subset {i1, . . . , ik} of {1, . . . , d}, the number a0α
(i1) · · ·α(ik) is an algebraic

integer.

3.2 Algebraic number fields

We first recall a few generalities from field theory. We call K ⊃ k a field extension,

or K an extension of k, if k is a subfield of K, that is, k is a field with the addition

and multiplication coming from K. Note that in this case, K is a k-vector space,

since it is closed under addition and under scalar multiplication with elements from

k (but of course K has much more structure).

Definition. A field extension K ⊃ k is called finite (or K is a finite extension of

k) if K is finite dimensional as a k-vector space. In this case, the degree of K ⊃ k,

notation [K : k], is defined to be the dimension of K as a k-vector space.

Examples. 1. C = {a+ bi : a, b ∈ R}. So C ⊃ R is finite, and [C : R] = 2.

2. Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}. Verify that this is a field, in particular that it is

closed under division. Clearly, Q(
√

2) ⊃ Q is finite, and [Q(
√

2) : Q] = 2.

Definition. A(n algebraic) number field is a finite extension of Q.
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Lemma 3.8. Let L ⊃ K ⊃ k be a tower of field extensions (i.e., K is a subfield of

L, and k of K). Then L ⊃ k is finite if and only if L ⊃ K and K ⊃ k are finite,

and in this case, [L : k] = [L : K] · [K : k].

Proof. First assume that L ⊃ k is finite. Then certainly K ⊃ k is finite since K is a

k-linear subspace of L. Further, a k-basis of L also generates L as a k-vector space.

Hence L ⊃ K is finite as well. Conversely, suppose that K ⊃ k is finite and let

{α1, . . . , αr} a k-basis of K, and suppose that L ⊃ K is finite and let {β1, . . . , βs}
be a K-basis of L. Then {αiβj : i = 1, . . . , r, j = 1, . . . , s} is a k-basis of L. This

proves our lemma.

Let K ⊃ k be a field extension, and α1, . . . , αr ∈ K. Then k(α1, . . . , αr) denotes

the smallest subfield of K containing both k and α1, . . . , αr. Thus, k(α1, . . . , αr)

consists of all entities f(α1, . . . , αr)/g(α1, . . . , αr), where f, g ∈ k[X1, . . . , Xr], and

g(α1, . . . , αr) 6= 0. An extension of the type k(α) ⊃ k is called primitive.

Let K ⊃ k be an extension and α ∈ K. We say that α is algebraic over k if there

is a non-zero polynomial g ∈ k[X] with g(α) = 0. The necessarily unique, monic

polynomial of minimal degree with this property is called the minimal polynomial of

α over k, notation fα,k. The degree of α over k is the degree of fα,k. The polynomial

fα,k is necessarily irreducible in k[X].

Lemma 3.9. Suppose α has degree d over k. Then k(α) is a finite extension of k

with basis {1, α, . . . , αd−1} over k. Hence [k(α) : k] = d.

Proof. {1, α, . . . , αd−1} is certainly linearly independent over k since any non-trivial

k-linear combination of these elements would yield a polynomial expression in α of

degree < d which is necessarily non-zero. Let V := {g(α) : g ∈ k[X]}. This is

clearly a k-vector space. Using division with remainder, we can write g ∈ k[X] as

qfα,k + r with q, r ∈ k[X] and r = 0 or deg r < d. Now g(α) = r(α) is a k-linear

combination of 1, α, . . . , αd−1, so these elements form a k-basis of V . To show that

V is a field, it remains to show that it is closed under multiplicative inversion. Let

g(α) ∈ V where g ∈ k[X] is non-zero and of degree < d. Since fα,k is irreducible in

k[X] it is coprime with g, implying that there are a, b ∈ k[X] with ag + bfα,k = 1.

Hence a(α)g(α) = 1. This shows that V = k(α).

We now specialize to algebraic number fields. Note that by Lemmas 3.8 and

3.9, if α1, . . . , αr are algebraic numbers then Q(α1, . . . , αr) is an algebraic number
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field. Conversely, any algebraic number field K can be expressed in this form, for

instance by taking a Q-basis of K. The following result, which we state without

proof, asserts that a number field can always be generated by a single element.

Theorem 3.10 (Theorem of the primitive element). Let K be an algebraic number

field of degree d. Then there is θ ∈ K such that K = Q(θ).

A consequence is that K is a Q-vector space with basis {1, θ, . . . , θd−1}.

Example. Q(
√

2,
√

3) = Q(
√

2 +
√

3).

To verify this, observe first that
√

3 6∈ Q(
√

2). Hence K := Q(
√

2,
√

3) has degree

[K : Q(
√

2)]·[Q(
√

2) : Q] = 4. For a Q-basis of K one may take {1,
√

2,
√

3,
√

6}. On

the other hand, L := Q(
√

2 +
√

3) is a subfield of K, and it has the four Q-linearly

independent elements 1,
√

2+
√

3, (
√

2+
√

3)2 = 5+2
√

6, (
√

2+
√

3)3 = 11
√

2+9
√

3.

Hence L = K.

An embedding of a number field K in C is an injective field homomorphism of K

into C. An embedding of K in C necessarily leaves the elements of Q unchanged.

This has the following consequences.

First, let σ be an embedding of K in C, α1, . . . , αr ∈ K, and

β = f(α1, . . . , αr)/g(α1, . . . , αr) with f, g ∈ Q[X1, . . . , Xr].

Then σ(β) = f(σ(α1), . . . , σ(αr))/g(σ(α1), . . . , σ(αr)). So if K = Q(α1, . . . , αr),

then σ is uniquely determined by its images on α1, . . . , αr.

Second, if f ∈ Q[X], and α ∈ K is a zero of f , then also σ(α) is a zero of f . For

f(σ(α)) = σ(f(α)) = 0.

Proposition 3.11. Let K be an algebraic number field of degree d. Then there are

precisely d distinct embeddings of K in C.

These d embeddings can be described explicitly as follows. Suppose that K =

Q(θ). Let fθ be the minimal polynomial of θ (over Q) and suppose fθ has degree d.

Then

fθ = (X − θ(1)) · · · (X − θ(d)) with θ(1), . . . , θ(d) ∈ C.

As mentioned above, the embeddings of K in C map θ to the zeros of fθ, and

each embedding is uniquely determined by its image of θ. Hence the d embeddings

σ1, . . . , σd of K in C can be given by σi(θ) = θ(i).
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An embedding σ of K in C is called real if σ(K) ⊂ R, and complex if σ(K) 6⊂
R. If σ is a complex embedding of K, then so is its composition with complex

conjugation, σ : x 7→ σ(x). Thus the complex embeddings of K occur in conjugate

pairs σ, σ. Suppose thatK has precisely r1 real embeddings, and r2 pairs of conjugate

complex embeddings. Then r1 + 2r2 = d. It will often be convenient to order the

embeddings σ1, . . . , σd in such a way that

- σ1, . . . , σr1 are the real embeddings;

- {σr1+1, σr1+r2+1 = σr1+1}, . . . , {σr1+r2 , σr1+2r2 = σr1+r2} are the pairs of conjugate

complex embeddings.

Example. Let K = Q( 4
√

2). The minimal polynomial of 4
√

2 is X4 − 2, and the

zeros of X4 − 2 are ik 4
√

2 (k = 0, 1, 2, 3), where i2 = −1. Thus,

K =

{
3∑
j=0

xj(
4
√

2)j : xj ∈ Q

}
,

the four embeddings of K in C are given by

3∑
j=0

xj(
4
√

2)j 7→
3∑
j=0

xj(i
k 4
√

2)j (k = 0, 1, 2, 3),

and σ0, σ2 are real, σ1, σ3 are complex, and σ3 = σ1. So r1 = 2, r2 = 1.

Let K be an algebraic number field, and L a finite extension of K. Further, let

σ, τ be embeddings of respectivelyK and L in C. Then τ of L is called a continuation

of σ if τ |K = σ, i.e., σ(x) = τ(x) for x ∈ K. Obviously, each embedding of L in C is

a continuation of some embedding of K in C. We state without proof the following:

Proposition 3.12. Each embedding of K in C can be continued in precisely [L : K]

ways to an embedding of L in C.

Example. Let K = Q( 4
√

2), L = Q( 12
√

2). Then L ⊃ K and [L : K] = 3. The

four embeddings of K in C are given by σk(
4
√

2) = ik 4
√

2 (k = 0, 1, 2, 3). The twelve

embeddings of L in C are given by τl(
12
√

2) = ζ l12
12
√

2 (l = 0, 1, . . . , 11), where ζ312 = i.

The continuations of σk to L are τl with 3l ≡ k (mod 4), 0 6 l 6 11.

Corollary 3.13. Let K be an algebraic number field of degree d, and let σ1, . . . , σd
be the embeddings of K in C. Further, let α ∈ K. Then each of the conjugates of α

occurs precisely [K : Q(α)] times in the sequence σ1(α), . . . , σd(α).
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Proof. Suppose Q(α) has degree m. Let fα =
∏m

i=1(X − α(i)). Then the m embed-

dings τ1, . . . , τm of Q(α) in C are determined by τi(α) = α(i) for i = 1, . . . ,m. Since

each τi has precisely d/m continuations to K and each embedding of K in C is a

continuation of some τi, each of the numbers α(i) occurs precisely d/m = [K : Q(α)]

times among σ1(α), . . . , σm(α).

Let K be an algebraic number field of degree d and σ1, . . . , σd the embeddings

of K in C. The characteristic polynomial of α ∈ K is defined by

χα,K :=
d∏
i=1

(X − σi(α)).

In case that K = Q(α), we have χα,K = fα is the minimal polynomial of α. In case

that Q(α) is strictly smaller than α we have the following.

Lemma 3.14. Let α ∈ K and let fα be the minimal polynomial of α. Then χα,K =

f
[K:Q(α)]
α . Hence χα,K ∈ Q[X].

Proof. Let m := [Q(α) : Q]. Then fα = (X−α(1)) · · · (X−α(m)) where α(1), . . . , α(m)

are the conjugates of α. Apply Corollary 3.13.

Definition. Let K be an algebraic number field. The ring of integers of K is given

by

OK := {α ∈ K : α is integral over Z} = K ∩ Z.

That is, OK is the integral closure of Z in K. The group of units (invertible elements)

of OK is denoted by O∗K . We observe that if α ∈ OK and σ is an embedding of K

in C, then σ(α) is an algebraic integer. For α is a zero of a monic f ∈ Z[X] hence

so is σ(α).

Lemma 3.15. Let α ∈ K. Then α ∈ OK ⇐⇒ χα,K ∈ Z[X].

Proof. ⇐= χα,K is a monic polynomial having α as a root.

=⇒ Lemma 3.4 implies fα ∈ Z[X], and then Lemma 3.14 implies χα,K ∈ Z[X].
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Definition. Let K be an algebraic number field of degree d and σ1, . . . , σd the

embeddings of K in C. Then the trace and norm of α ∈ K over Q are given by

respectively

TrK/Q(α) =
d∑
i=1

σi(α), NK/Q(α) =
d∏
i=1

σi(α).

These numbers are coefficients of χα,K . So by Lemma 3.14 these numbers belong

to Q; moreover, if α ∈ OK then by Lemma 3.15 they belong to Z. Notice that for

α, β ∈ K we have

TrK/Q(α + β) = TrK/Q(α) + TrK/Q(β), NK/Q(αβ) = NK/Q(α)NK/Q(β).

Lemma 3.16. Let α ∈ OK. Then α ∈ O∗K ⇐⇒ NK/Q(α) = ±1.

Proof. =⇒ Both α, α−1 are in OK , hence NK/Q(α) ∈ Z, NK/Q(α−1) ∈ Z. But

NK/Q(α)NK/Q(α−1) = 1, hence NK/Q(α) = ±1.

⇐= Without loss of generality, σ1(α) = α. Then α−1 = ±σ2(α) · · ·σd(α) is an

algebraic integer, hence belongs to OK .

Exercise 3.3. Let K be a quadratic number field, that is an algebraic number field

of degree 2.

(i) Prove that K = Q(
√
d) = {a + b

√
d : a, b ∈ Q}, where d ∈ Z \ {0, 1} and d is

not divisible by the square of an integer 6= 1. Also determine the two embeddings of

K in C.

(ii) Let α = a+ b
√
d with a, b ∈ Q. Prove the following:

if d ≡ 2 (mod 4) or d ≡ 3 (mod 4) then α ∈ OK if and only if a, b ∈ Z;

if d ≡ 1 (mod 4) then α ∈ OK if and only if 2a, 2b ∈ Z and 2a ≡ 2b (mod 2).

Hint. Determine the minimal polynomial fα of α and use that its coefficients are

in Z.

3.3 Galois theory

Let K be an algebraic number field with K ⊂ C. The field K is called normal if

K = Q(α1, . . . , αr) where α1, . . . , αr are such that (X − α1) · · · (X − αr) ∈ Q[X].

Let K ⊂ C be a normal algebraic number field and α1, . . . , αr as above. Let σ

be an embedding of K in C. In general, if f ∈ Q[X] and α is a zero of f in K, then
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f(σ(α)) = 0. As a consequence, σ permutes α1, . . . , αr. Since K consists of rational

functions in α1, . . . , αr with coefficients in Q, this implies that σ is an isomorphism

mapping K to itself, i.e., an automorphism of K.

The automorphisms of K form a group under composition, the Galois group of

K, notation Gal(K/Q). We state without proof some properties of the Galois group.

Proposition 3.17. Let K be a normal algebraic number field, and Gal(K/Q) its

Galois group.

(i) Gal(K/Q) is a group of order [K : Q]. We have

{x ∈ K : σ(x) = x ∀σ ∈ Gal(K/Q)} = Q.

(ii) There is a bijection between the subgroups of Gal(K/Q) and the subfields of K,

given by

H 6 Gal(K/Q) −→ KH := {x ∈ K : σ(x) = x ∀σ ∈ H}

Gal(K/L) := {σ ∈ Gal(K/Q) : σ|L = id} ←− L

and the order of H is equal to [K : KH ].

(iii) Let f ∈ Q[X] be an irreducible polynomial having at least one root in K. Then

all roots of f lie in K, for any two roots α, β of f there is σ ∈ Gal(K/Q) such that

σ(α) = β, and each σ ∈ Gal(K/Q) permutes the roots of f .

Remarks. 1. The bijection in (ii) reverses inclusions: if H1 is a subgroup of H2,

then KH2 is a subfield of KH1 .

2. Every algebraic number field K can be extended to a normal number field. Let

K = Q(θ). Then for the minimal polynomial fθ of θ we have fθ = (X−θ(1)) · · · (X−
θ(d)). Clearly, N := Q(θ(1), . . . , θ(d)) is normal, and N contains K.

Example. Let K = Q(
√

2,
√

3). Then K = Q(
√

2,−
√

2,
√

3,−
√

3) is generated by

the four roots of (X2−2)(X2−3) hence it is normal. We have seen before that [K :

Q] = 4, and that K has basis {1,
√

2,
√

3,
√

6} over Q. Hence G := Gal(K/Q) has

order 4. Any σ ∈ Gal(K/Q) maps
√

2 to a root of X2− 2, hence to ±
√

2. Likewise,

σ maps
√

3 to ±
√

3. Thus, G = {σab : a, b ∈ {1,−1} }, where σab(
√

2) = a
√

2,

σab(
√

3) = b
√

3. It is easy to check that G is the Klein four group, with σ11 the

identity. The table below gives the subgroups of G and corresponding subfields of

K.
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H KH = {x ∈ K : σ(x) = x ∀σ ∈ H}

{id} Q(
√

2,
√

3)

{id, σ1,−1} Q(
√

2)

{id, σ−1,1} Q(
√

3)

{id, σ−1,−1} Q(
√

6)

G Q

As an example, we compute the subfield KH corresponding to the subgroup H =

{id, σ−1,−1} of G. Recall that {1,
√

2,
√

3,
√

6} is a basis of K. Thus, every element

of K can be expressed uniquely as x0 + x1
√

2 + x2
√

3 + x3
√

6 with xi ∈ Q. Now

σ−1,−1 maps β = x0 + x1
√

2 + x2
√

3 + x3
√

6 to x0− x1
√

2− x2
√

3 + x3
√

6, and thus

σ11(β) = β if and only if x1 = x2 = 0. This shows that KH = Q(
√

6).

Exercise 3.4. Let 3
√

2 be the real cube root of 2, and ζ a primitive cube root of unity.

(i) Prove that the field K := Q( 3
√

2, ζ) is normal and that [K : Q] = 6.

(ii) Determine the subfields of K.

3.4 Siegel’s Lemma

We develop a tool which is very important in Diophantine approximation, the so-

called Siegel’s Lemma, which was formally stated for the first time by Siegel in 1929,

but was known before. Essentially, it states that under certain hypotheses, a system

of M homogeneous linear equations in N unknowns

(3.1)


a11x1 + · · · + a1NxN = 0

...
...

aM1x1 + · · · + aMNxN = 0

has a non-trivial solution in integer coordinates, the absolute values of which are

not too large.

Theorem 3.18 (Siegel’s Lemma). Assume that N > M > 0, A > 1, and

aij ∈ Z, |aij| 6 A for i = 1, . . . ,M , j = 1, . . . , N.

Then (3.1) has a solution x = (x1, . . . , xN) ∈ ZN \ {0} with

max
16i6N

|xi| 6 (NA)M/(N−M).
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Proof. For i = 1, . . . ,M , x ∈ ZN , put li(x) :=
∑N

j=1 aijxj and let

−Ci :=
N∑
j=1

min(aij, 0), Di :=
N∑
j=1

max(aij, 0).

Notice that Ci +Di 6 NA. Let B be a positive integer, and let SB := {0, . . . , B}N .

For each y ∈ SB we have

−CiB 6 li(y) 6 DiB for i = 1, . . . ,M.

Notice that SB has cardinality (B + 1)N . Further, if y runs through SB, then

(l1(y), . . . , lM(y)) runs through a set of cardinality at most

M∏
i=1

(CiB +DiB + 1) 6 (NAB + 1)M .

We choose B such that (B + 1)N > (NAB + 1)M . Then by the box principle, there

are distinct y1,y2 ∈ SB with li(y1) = li(y2) for i = 1, . . . ,M . Take x = y1 − y2.

Then x satisfies (3.1) and |xi| 6 B for i = 1, . . . , N .

We finish our proof by showing that the choice B = [(NA)M/(N−M)] is valid.

Indeed, with this choice of B we have (B + 1)N−M > (NA)M , hence

(B + 1)N > (NA(B + 1))M > (NAB + 1)M .

We often need a generalization where the coefficients aij are algebraic integers

instead of just rational integers. To deduce this, we need some preparations.

Let K be an algebraic number field of degree d. Denote as usual by OK its

ring of integers. Assume K has r1 real embeddings, and r2 pairs of conjugate

complex embeddings, so that r1 + 2r2 = d. We order the embeddings of K in

C in such a way that σ1, . . . , σr1 are the real embeddings, and {σr1+1, σr1+r2+1 =

σr1+1}, . . . , {σr1+r2 , σr1+2r2 = σr1+r2} are the pairs of conjugate complex embeddings.

Define the map

ϕ : K → Rd :

x 7→
(
σ1(x), . . . , σr1(x),Reσr1+1(x), Imσr1+1(x), . . . ,Reσr1+r2(x), Imσr1+r2(x)

)
.
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The house of an algebraic number α is defined by

α := max(|α(1)|, . . . , |α(m)|),

where α(1), . . . , α(m) denote the conjugates of α. We have

(3.2) α = max(|σ1(α)|, . . . , |σd(α)|) for α ∈ K,

for by Corollary 3.13, the sequence σ1(α), . . . , σd(α) consists of the conjugates of α,

each repeated exactly [K : Q(α)] = d/m times.

Lastly, we define ‖x‖∞ := maxi |xi| for x = (x1, . . . , xd) ∈ Rd.

Lemma 3.19. Let α ∈ OK with ‖ϕ(α)‖∞ 6 2
3
. Then α = 0.

Proof. We prove that |σi(α)| < 1 for i = 1, . . . , n. By Lemma 3.6, this implies

α = 0.

Our assumption implies that |σi(α)| 6 2
3
< 1 for i = 1, . . . , r1. Further, for

i = r1 + 1, . . . , r1 + r2 the real and imaginary parts of σi(α) have absolute values

at most 2
3
. But this is then also true for their complex conjugates, which are σi(α)

for i = r1 + r2 + 1, . . . , r1 + 2r2 = d. Hence |σi(α)| 6
√

(2/3)2 + (2/3)2 < 1 for

i = r1 + 1, . . . , d.

We consider again systems (3.1), but now the coefficients aij are from OK .

Theorem 3.20. Let [K : Q] = d, let M,N be integers with N > dM > 0, let A be

a real > 1, and suppose that

aij ∈ OK , aij 6 A for i = 1, . . . ,M, j = 1, . . . , N.

Then the system

(3.1)


a11x1 + · · · + a1NxN = 0

...
...

aM1x1 + · · · + aMNxN = 0

has a solution x = (x1, . . . , xN) ∈ ZN \ {0} such that

(3.3) max
16i6N

|xi| 6 (3NA)dM/(N−dM).
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Remark. Notice that the condition N > M from Theorem 3.18 has been replaced

by N > dM , while there is also an occurrence of d in the exponent on 3NA. The

reason for this is that if we apply σ1, . . . , σD to the equations in (3.1) we get in fact

a system of dM equations in N unknowns.

Proof. Write li(x) := ai1x1 + · · ·+aiNxN for i = 1, . . . ,M and define the linear map

ψ : ZN → RMd by

ψ(x) :=
(
ϕ(l1(x)), . . . , ϕ(lM(x))

)
.

This is well defined since li(x) ∈ OK for i = 1, . . . ,M . Note that for x = (x1, . . . , xN) ∈
ZN , and for an embedding σ of K in C we have σ(li(x)) =

∑N
j=1 σ(aij)xj. Thus,

we see that the components of ψ(x) are linear expressions b1x1 + · · ·+ bNxN , where

each coefficient bj is either σk(aij) or the real or imaginary part of σk(aij), for some

k ∈ {1, . . . , d}, i ∈ {1, . . . ,M}. By (3.2), all bj have absolute value at most A.

Let B be a positive integer to be specified later and consider the vectors y ∈
SB := {0, . . . , B}N . If y ∈ S then all coordinates of ψ(y) have absolute value at

most NAB, that is, ψ(y) lies in the cube [−NAB,NAB]Md.

We can partition this cube into ([3NAB]+1)Md small cubes of side length 6 2/3.

Now suppose that the cardinality of SB is larger than the number of small cubes,

that is,

(3.4) (B + 1)N > ([3NAB] + 1)Md.

Then there must be distinct y1, y2 ∈ SB such that ψ(y1), ψ(y2) lie in the same

small cube. Let x := y1 − y2. Then

‖ψ(x)‖∞ = ‖ψ(y1)− ψ(y2)‖∞ 6
2

3
.

This implies ‖ϕ(li(x))‖∞ 6 2
3

for i = 1, . . . ,M . Since li(x) ∈ OK , by Lemma 3.19

we have li(x) = 0 for i = 1, . . . ,M . Further, ‖x‖∞ 6 B.

We verify that (3.4) is satisfied with B = [(3NA)Md/(N−Md)]. Indeed, for this

value of B we have

(B + 1)N = (B + 1)N−Md(B + 1)Md > (3NA)Md(B + 1)Md > (3NAB + 1)Md.
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3.5 Appendix: Ring extensions

A ring A is always supposed to have a (necessarily unique) unit element 1 such that

x · 1 = 1 · x = x for all x ∈ A. An element a ∈ A is called a unit of A if there is

b ∈ A with ba = ab = 1; this necessarily unique element b is denoted by a−1. The

units of A form a multiplicative group, the unit group of A, which we denote by A∗.

In particular, the unit group of a field K is K∗ = K \ {0}.

An integral domain is a commutative ring without divisors of 0, i.e., it does not

contain non-zero elements a, b such that ab = 0. The quotient field of an integral

domain A is denoted by QA. The field QA consists of all fractions a/b with a, b ∈ A,

b 6= 0, where two fractions a/b, c/d are identified if ad = bc.

Given two rings A,B, when writing A ⊂ B or B ⊃ A we always mean that A is a

subring of B, i.e., A is a ring with the addition, multiplication and unit element of B.

We call A ⊂ B or B ⊃ A a ring extension. It is possible to set up a theory for ring

extensions similar to that for field extensions. We restrict ourselves to extensions of

commutative rings.

A role similar to that of vector spaces in the theory of field extensions is played

by modules in the theory of ring extensions. In general, if A is a commutative ring,

then an A-module is a set M , endowed with an addition + : M ×M → M and

scalar multiplication · : A ×M → M , which satisfy precisely the same axioms as

the addition and scalar multiplication of a vector space, except that the scalars are

taken from a ring instead of a field. A Z-module is simply an abelian group.

Let A be a commutative ring, and M an A-module. We call M ′ an A-submodule

of M if it is closed under the addition and scalar multiplication of M . That is, M ′ is

an A-submodule of M if and only if for all α, β ∈M ′, r, s ∈ A we have rα+sβ ∈M ′.

We say that M is finitely generated over A, if there is a finite set of elements

α1, . . . , αr ∈ M such that M = {
∑r

i=1 xiαi : xi ∈ A}. We call {α1, . . . , αr} an

A-basis for M if α1, . . . , αr generate M as an A-module, and if they are A-linearly

independent, i.e., there is no (x1, . . . , xr) ∈ Ar \ {0} with
∑r

i=1 xiαi = 0.

One notable difference between vector spaces and modules is that finitely gen-

erated vector spaces always have a basis, whereas finitely generated modules over a

ring need not have a basis. An A-module which does have a basis is called free.

Example. View the residue class ring Z/nZ (with n a positive integer) as a Z-
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module. Write the residue class a modn as a. As a Z-module, Z/nZ is generated

by 1. But for each a ∈ Z/nZ we have n · a = 0, Hence each element of Z/nZ is

linearly dependent over Z, and so Z/nZ does not have a Z-basis.

Now let A ⊂ B be an extension of commutative rings. We denote the unit

element of A by 1. Clearly, B may be viewed as an A-module. We call A ⊂ B

or B ⊃ A a finite ring extension and say that B is finite over A, if B is finitely

generated as an A-module.

Given α1, . . . , αr ∈ B, we denote by A[α1, . . . , αr] the smallest subring of B

containing A and α1, . . . , αr. Thus,

A[α1, . . . , αr] = {f(α1, . . . , αr) : f ∈ A[X1, . . . , Xr]}.

An element α ∈ B is said to be integral over A if there is a monic polynomial

f ∈ A[X] with f(α) = 0.

Before proceeding, we recall a version of the division with remainder algorithm

for rings.

Lemma 3.21. Let A be a commutative ring, and f, g ∈ A[X] polynomials such that

the leading coefficient of f is in A∗. Then there are polynomials q, r ∈ A[X] such

that g = qf + r, deg q 6 deg g − deg f and deg r < deg f . The polynomials q, r are

uniquely determined by f, g.

Proof. Induction on the degree of g. First assume that deg g < deg f . If g = qf + r

for some q, r ∈ A[X] with q 6= 0 and deg r < deg f , then since the leading coefficient

of f is in A∗, we have deg qf > deg f , while on the other hand deg qf = deg(g−r) <
deg f , which is impossible. Hence q = 0, r = g.

Suppose that deg g = m and deg f = n with m > n. let a, b be the leading

coefficients of f, g, respectively. So a ∈ A∗. Then apply the induction hypothesis to

g − ba−1Xm−nf , which is in A[X] and has degree smaller than m.

Lemma 3.22. Let A ⊂ B be an extension of commutative rings, and α ∈ B. Then

the following are equivalent:

(i) α is integral over A;

(ii) A[α] is finite over A;
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(iii) there is a non-zero, finitely generated A-submodule M of B such that 1 ∈ M
and αM ⊆M , where αM = {αx : x ∈M}.

Proof. (i)=⇒(ii). Let f ∈ A[X] be a monic polynomial with f(α) = 0. Let β ∈ A[α].

Then β = g(α) with g ∈ A[X]. Since f is monic, using division with remainder

we find q, r ∈ A[X] with g = qf + r, and deg r < deg f = n. We may write

r = c0 + c1X + · · ·+ cn−1X
n−1 with ci ∈ A. Thus,

β = g(α) = q(α)f(α) + r(α) = r(α) =
n−1∑
i=0

ciα
i.

It follows that A[α] is generated as an A-module by 1, α, . . . , αn−1.

(ii)=⇒(iii). Trivial.

(iii)=⇒(i). let {ω1, . . . , ωr} be a set of A-module generators for M . Since 1 ∈M
we may assume that ω1 = 1. Further, since αωi ∈M we have

αωi = ci1ω1 + · · ·+ cirωr with cij ∈ A for i, j = 1, . . . , r.

This can be rewritten as

(αI − C)

 ω1

...

ωr

 =

 0
...

0

 ,

where I is the r × r unit matrix and C = (cij)i,j=1,...,r is the r × r-matrix with cij
on the i-th row and j-th column. We multiply both sides of this identity on the left

with the matrix consisting of the minors of αI − C, i.e., with D = (Mij)i,j=1,...,r,

where Mij = (−1)i+j times the determinant of the matrix, obtained by removing

the j-th row and i-th column from αI − C. Then since

D · (αI − C) = det(αI − C) · I,

we obtain det(αI − C)ωi = 0 for i = 1, . . . , r, so det(αI − C) = 0. That is, α is a

zero of det(XI − C), which is a monic polynomial from A[X].

Corollary 3.23. Let A ⊂ B be a finite extension of commutative rings. Then every

α ∈ B is integral over A.
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Proof. Apply Lemma 3.22, (iii)=⇒(i) with M = B.

Lemma 3.24. Let A,B,C be commutative rings such that B is finite over A and

C is finite over B. Then C is finite over A.

Proof. Suppose that B is generated as an A-module by α1, . . . , αm, and C is gener-

ated as a B-module by β1, . . . , βn. A straightforward computation shows that C is

generated an as A-module by αiβj (i = 1, . . . ,m, j = 1, . . . , n).

Lemma 3.25. Let A,B be commutative rings. Then B is finite over A if and only

if B = A[α1, . . . , αr] for certain α1, . . . , αr that are integral over A.

Proof. Suppose that B is finite over A, say B is generated as an A-module by

α1, . . . , αr. By Corollary 3.23, α1, . . . , αr are integral over A, and clearly, B =

A[α1, . . . , αr].

Conversely, suppose that B = A[α1, . . . , αr] where α1, . . . , αr are integral over

A. Let B0 := A and Bi := A[α1, . . . , αi] for i = 1, . . . , r. Thus, Bi = Bi−1[αi] for

i = 1, . . . , r. By Lemma 3.22, (i)=⇒(ii), Bi is finite over Bi−1 for i = 1, . . . , r, and

then by Lemma 3.24, B = Br is finite over A.

Proposition 3.26. Let A ⊂ B be an extension of commutative rings.

(i) Let α, β ∈ B be integral over A. Then α± β and αβ are integral over A.

(ii) Let β1, . . . , βn ∈ B be integral over A, and let α ∈ B be a zero of Xn+β1X
n−1 +

· · ·+ βn. Then α is integral over A.

Proof. (i). By Lemma 3.25, the ring A[α, β] is finite over A, and then by Corollary

3.23, all elements of A[α, β] are integral over A.

(ii). Let C = A[β1, . . . , βn]. By Lemma 3.25, C is finite over A. The number α

is integral over C, so by Lemma 3.22, C[α] is finite over C. Again by Lemma 3.25,

C[α] is finite over A, and then by Corollary 3.23, α is integral over A.

Definition. Let A ⊂ B be an extension of commutative rings. By Proposition 3.26

(i), the set

C = {α ∈ B : α is integral over A}

is a subring of B, called the integral closure of A in B. Note that by Proposition

3.26,(ii) every element of B that is integral over C already belongs to C.
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We say that A is integrally closed in B if C = A, i.e., every element of B that is

integral over A already belongs to A.

Let A be an integral domain. The integral closure of A is defined as its integral

closure in its quotient field. If this integral closure is equal to A itself, we call A

integrally closed.

Examples. 1. Z is integrally closed.

2. Let A = Z[2
√

2]. The quotient field of A is Q(
√

2), and its integral closure is

Z[
√

2].

3.6 Further exercises

Let α ∈ Q be an algebraic number of degree d.

Recall that the denominator of α is the smallest positive m ∈ Z such that mα is an

algebraic integer, notation den(α).

Further, we have defined the house of an algebraic number α by

α := max(|α(1)|, . . . , |α(d)|)

where d = degα and α(1), . . . , α(d) denote the conjugates of α.

Lemma 3.6 implies that if α is a non-zero algebraic integer, then α > 1. In the

next exercises you are asked to prove some further properties of the house.

Exercise 3.5. Let α, β be algebraic numbers. Prove that

α + β 6 α + β , α · β 6 α · β , αn = α n for n ∈ Z>0.

Hint. Apply (3.2) with K = Q(α, β).

Exercise 3.6. (i) Let α be an algebraic integer of degree d that is not equal to 0

and that is not an algebraic unit. Prove that α > 21/d.

(ii) Let α be a non-zero algebraic integer of degree d. Prove that H(α) 6 (2 · α )d

(consider the minimal polynomial of α).

(iii) Compute an explicit expression f(C, d) depending only on C and d, such that

the number of algebraic integers α ∈ C with α 6 C, degα 6 d is at most f(C, d).

(iv) Let α be a non-zero algebraic integer. As mentioned above, we have α > 1.

Prove that α = 1 ⇐⇒ α is a root of unity.
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(v) Let α be a non-zero algebraic integer of degree d which is not a root of unity.

Compute an explicit expression C(d) > 1 depending only on d such that α > C(d).

Hint. Consider the set {αn : 0 6 n 6 n0} where n0 is the largest integer n such

that α n 6 2.

Remark. For a non-zero algebraic integer α, define the quantity

f(α) := (degα) log α .

From (i) of the above exercise, one derives that f(α) > log 2 if α is a non-zero

algebraic integer which is not an algebraic unit. From (v) it follows that there is

c(d) > 0 depending only on d such that f(α) > c(d) for every algebraic unit α of

degree d not equal to a root unity; probably what you get from your anwer in (v) is

a function in d decreasing rapidly to 0 as d→∞.

The Schinzel-Zassenhaus conjecture, posed by them in 1965, asserts that there

is a constant c > 0 independent of the degree of α such that f(α) > c for every

algebraic unit α that is not a root of unity.

This conjecture was open until recently. It came as a surprise when in 2019,

Vesselin Dimitrov proved that for every algebraic unit α not equal to a root of unity

one has

f(α) >
log 2

4
= 0.1732...,

thereby establishing the conjecture of Schinzel and Zassenhaus.

In 1985, Boyd conjectured the following, which is still open: f(α) assumes its

minimum at the zeros of X3 + X2 − 1, i.e., for every algebraic unit α not equal to

a root of unity one has

f(α) > f(θ) = 0.4217...,

where θ is any zero of X3 + X2 − 1. We mention here that X3 + X2 − 1 has

one real zero θ1 with 0 < θ1 < 1 and two complex conjugate zeros θ2, θ3 with

|θ3| = |θ2| = θ
−1/2
1 > 1. Thus, if θ ∈ {θ1, θ2, θ3} is any zero of X3 + X2 − 1 then

f(θ) = 3 log |θ2| = 3 log |θ3| = −3
2 log θ1 for i = 1, 2, 3.
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Exercise 3.7. (i) Let α be a non-zero algebraic number of degree d. Prove that

|α| > den(α)−d · α 1−d.

(ii) Give a proof for the following inequality of Liouville (1844):

let α be an algebraic number in R of degree d > 2, not necessarily an algebraic

integer. Then there is a constant c(α) > 0 such that∣∣∣α− x

y

∣∣∣ > c(α)y−d for all x, y ∈ Z with y > 0.

Hint. Assuming that c(α) < 1, the inequality is certainly true if |α − x/y| > 1, so

we may assume that |α − x/y| 6 1. This gives a bound for |x/y|. Now apply (i) to

α− x/y.

(iii) Using (ii), prove that
∑∞

n=1 10−n! is transcendental.

Hint. Assume that α :=
∑∞

n=1 10−n! is algebraic of degree d. Take x/y =
∑N

n=1 10−n!.

Exercise 3.8. Denote by Z[[X]] the ring of formal power series with coefficients in

Z. Addition and multiplication of two power series f(X) =
∑∞

n=0 anX
n, g(X) =∑∞

n=0 bnX
n are given by

f(X) + g(X) =
∞∑
n=0

(an + bn)Xn, f(X)g(X) =
∞∑
n=0

( n∑
k=0

an−kbk

)
Xn.

Further, we write f(X) ≡ 0(modXs) if f(X) is divisible by Xs, i.e., if a0 = · · · =
as−1 = 0.

Let f1(X), . . . , fm(X) ∈ Z[[X]] be formal power series whose coefficients have abso-

lute values at most A, where A > 1. Let r, s be integers with mr > s > 0. Prove

that there are polynomials p1(X), . . . , pm(X) ∈ Z[X], not all zero, of degree < r and

with coefficients with absolute values at most (mrA)s/(mr−s), such that

p1(X)f1(X) + · · ·+ pm(X)fm(X) ≡ 0(modXs).
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