Chapter 5

Linear forms in logarithms

Literature:
A. Baker, Transcendental Number Theory, Cambridge University Press, 1975.
T.N. Shorey, R. Tijdeman, Exponential Diophantine equations, Cambridge University Press, 1986; reprinted 2008.

5.1 Lower bounds for linear forms in logarithms

We recall Baker's transcendence result from the previous chapter. As before, $e^{z}=$ $\sum_{k=0}^{\infty} z^{k} / k!$.
Theorem 5.1 (A. Baker, 1966). Let $\alpha_{1}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}} \backslash\{0,1\}, \gamma \in \overline{\mathbb{Q}}$ and $\beta_{1}, \ldots, \beta_{m} \in$ $\overline{\mathbb{Q}} \backslash\{0\}$. For $i=1, \ldots, n$ let $\log \alpha_{i}$ be a solution of $e^{z}=\alpha_{i}$ and assume that

$$
\log \alpha_{1}, \ldots, \log \alpha_{m} \text { are linearly independent over } \mathbb{Q} .
$$

Then $\gamma+\beta_{1} \log \alpha_{1}+\cdots+\beta_{m} \log \alpha_{m} \neq 0$.
One may ask about quantitative versions of this theorem, i.e., can we give a strictly positive lower bound for the absolute value of the left-hand side? In 1967, Baker indeed obtained such a lower bound, which we conveniently refer to as a 'lower bound for a linear form in logarithms'. Baker's lower bound turned out to be an extremely powerful tool, not only in transcendence theory, but also in applications
which have nothing to do with transcendence, such as Diophantine equations and Gauss' class number 1 problem. For this reason, Baker's lower bound from 1967 was improved first by Baker himself and subsequently by many others. We will give some applications to certain Diophantine equations.

We recall a lower bound for linear forms in logarithms by Baker from 1975. In Chapter 3 we defined the height $H(\alpha)$ of $\alpha \in \overline{\mathbb{Q}}$ as the maximum of the absolute values of the coefficients of the primitive minimal polynomial F_{α} of α.

Theorem 5.2 (A. Baker, 1975). Let $\alpha_{1}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}} \backslash\{0,1\}$ and $\gamma, \beta_{1}, \ldots, \beta_{m} \in \overline{\mathbb{Q}}$. For $i=1 \ldots n$, let $\log \alpha_{i}$ be any solution of $e^{z}=\alpha_{i}$. Assume that

$$
\Lambda:=\gamma+\beta_{1} \log \alpha_{1}+\cdots+\beta_{m} \log \alpha_{m} \neq 0
$$

Then

$$
|\Lambda| \geqslant(e B)^{-C}
$$

where $B=\max \left(H(\gamma), H\left(\beta_{1}\right), \ldots, H\left(\beta_{m}\right)\right)$, and where C is an effectively computable positive number depending on m, on the degrees of $\gamma, \beta_{1}, \ldots, \beta_{m}$, on the degrees and heights of $\alpha_{1}, \ldots, \alpha_{m}$, and on the choices of $\log \alpha_{1}, \ldots, \log \alpha_{m}$.

The assertion that C is effectively computable means that by going through the proof of Theorem 5.2 one can compute an explicit value of C.

For our applications, we restrict ourselves to the case that $\gamma=0$ and $\beta_{i}=b_{i} \in \mathbb{Z}$ for $i=1, \ldots, m$. In that case, we can get rid of the logarithms.

Corollary 5.3. Let $\alpha_{1}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}} \backslash\{0,1\}$ and let $b_{1}, \ldots, b_{m} \in \mathbb{Z}$ such that

$$
\alpha_{1}^{b_{1}} \cdots \alpha_{m}^{b_{m}} \neq 1
$$

Then

$$
\left|\alpha_{1}^{b_{1}} \cdots \alpha_{m}^{b_{m}}-1\right| \geqslant(e B)^{-C^{\prime}}
$$

where $B:=\max \left(\left|b_{1}\right|, \ldots,\left|b_{m}\right|\right)$ and where C^{\prime} is an effectively computable positive number depending only on m and on the degrees and heights of $\alpha_{1}, \ldots, \alpha_{m}$.

Proof. For the logarithm of a complex number z we choose $\log z=\log |z|+i \cdot \arg z$ with $-\pi<\arg z \leqslant \pi$. With this choice of \log we have

$$
\log (1+z)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot z^{n} \text { for } z \in \mathbb{C} \text { with }|z|<1
$$

Using this power series expansion, one easily shows that

$$
|\log (1+z)| \leqslant|z|\left(1+|z|+|z|^{2}+\cdots\right) \leqslant 2|z| \text { for } z \in \mathbb{C} \text { with }|z| \leqslant \frac{1}{2}
$$

We apply this with $z:=\alpha_{1}^{b_{1}} \cdots \alpha_{m}^{b_{m}}-1$. If $|z|>1 / 2$ we have something much stronger than the lower bound we want to deduce, so we suppose that $|z| \leqslant 1 / 2$. We have to estimate from below $|\log (1+z)|$.

Recall that the complex logarithm is additive only modulo $2 \pi i$. That is, $\log (1+z)=b_{1} \log \alpha_{1}+\cdots+b_{m} \log \alpha_{m}+2 k \pi i=b_{1} \log \alpha_{1}+\cdots+b_{m} \log \alpha_{m}+2 k \log (-1)$ for some $k \in \mathbb{Z}$, since $\log (-1)=\pi i$. Applying Theorem 5.2 we get

$$
|\log (1+z)| \geqslant(e \max (B,|2 k|))^{-C_{1}}
$$

where C_{1} is an effectively computable constant depending only on m and $\alpha_{1}, \ldots, \alpha_{m}$. Since $|\log (1+z)| \leqslant 2|z| \leqslant 1$ we have

$$
|2 k \pi i| \leqslant 1+\sum_{j=1}^{m}\left|\log \alpha_{j}\right| \cdot\left|b_{j}\right| \leqslant C_{2} B \text { with } C_{2}:=1+\sum_{j=1}^{m}\left|\log \alpha_{j}\right|
$$

Hence $|2 k| \leqslant C_{2} B$ and so $|\log (1+z)| \geqslant\left(e C_{2} B\right)^{-C_{1}}$. This implies

$$
|z| \geqslant \frac{1}{2}\left(e C_{2} B\right)^{-C_{1}} \geqslant(e B)^{-C^{\prime}}
$$

for a suitable C^{\prime}, as required.
We should mention that although the proof of Corollary 5.3 uses techniques from transcendence theory, the result itself has nothing to do anymore with transcendence: it is an inequality for algebraic numbers!

For completeness, we give a completely explicit version of Corollary 5.3 in the case that $\alpha_{1}, \ldots, \alpha_{m}$ are rational numbers. Recall that the height of a rational number $a=x / y$ with $x, y \in \mathbb{Z}$ coprime, is given by $H(a):=\max (|x|,|y|)$.

Theorem 5.4 (Matveev, 2000). Let a_{1}, \ldots, a_{m} be non-zero rational numbers and let b_{1}, \ldots, b_{m} be integers such that

$$
a_{1}^{b_{1}} \cdots a_{m}^{b_{m}} \neq 1
$$

Then $\left|a_{1}^{b_{1}} \cdots a_{m}^{b_{m}}-1\right| \geqslant(e B)^{-C^{\prime}}$, where

$$
B=\max \left(\left|b_{1}\right|, \ldots,\left|b_{m}\right|\right), \quad C^{\prime}=\frac{1}{2} e \cdot m^{4.5} 30^{m+3} \prod_{j=1}^{m} \max \left(1, \log H\left(a_{j}\right)\right)
$$

To illustrate the power of the above results we give a quick application.
Corollary 5.5. let a, b be integers with $a \geqslant 2, b \geqslant 2$. Then there is an effectively computable number $C_{1}>0$, depending only on a, b, such that for any two positive integers m, n with $a^{m} \neq b^{n}$,

$$
\left|a^{m}-b^{n}\right| \geqslant \frac{\max \left(a^{m}, b^{n}\right)}{(e \max (m, n))^{C_{1}}}
$$

Consequently, for any non-zero integer k, there exists an effectively computable number C_{2}, depending on a, b, k such that if m, n are positive integers with $a^{m}-b^{n}=k$, then $m, n \leqslant C_{2}$.

Proof. Let m, n be positive integers. Put $B:=\max (m, n)$. Assume without loss of generality that $a^{m}>b^{n}$. By Corollary 5.3 or Theorem 5.4 we have

$$
\left|1-b^{n} a^{-m}\right| \geqslant(e B)^{-C_{1}}
$$

where C_{1} is an effectively computable number depending only on a, b. Multiplying with a^{m} gives our first assertion.

Now let m, n be positive integers with $a^{m}-b^{n}=k$. Put again $B:=\max (m, n)$. Since $a, b \geqslant 2$ we have $a^{m} \geqslant 2^{m}, b^{n} \geqslant 2^{n}$, hence $a^{m}=\max \left(a^{m}, b^{n}\right) \geqslant 2^{B}$. So,

$$
|k| \geqslant 2^{B} \cdot(e B)^{-C_{1}}
$$

This proves that B is bounded above by an effectively computable number depending on a, b, k.

In the exercise section you will be asked to work out an explicit example.
In 1844, Catalan conjectured that the equation in four unknowns,

$$
x^{m}-y^{n}=1 \text { in } x, y, m, n \in \mathbb{Z} \text { with } x, y, m, n \geqslant 2
$$

has only one solution, that is, $3^{2}-2^{3}=1$. In 1976, as one of the striking consequences of the results on linear forms in logarithms mentioned above, Tijdeman proved that there is an effectively computable constant C, such that for every solution (x, y, m, n) of Catalan's equation, one has $x^{m}, y^{n} \leqslant C$. The constant C can be computed but it is extremely large. Several people tried to prove Catalan's conjecture, on
the one hand by reducing Tijdeman's constant C using sharper linear forms in logarithm estimates, on the other hand by showing with techniques from algebraic number theory that x^{m}, y^{n} have to be very large as long as $\left(x^{m}, y^{n}\right) \neq\left(3^{2}, 2^{3}\right)$, and finally using heavy computations. This didn't lead to success. In 2000 Mihailescu managed to prove Catalan's conjecture by an algebraic method which is completely independent of linear forms in logarithms.

We give another application. Consider the sequence $\left\{a_{n}\right\}$ with $a_{n}=2^{n}$ for $n=0,1,2, \ldots$. Note that $a_{n}-a_{n-1}=\frac{1}{2} a_{n}$. Similarly, we may consider the increasing sequence $\left\{a_{n}\right\}$ of numbers which are all composed of primes from $\{2,3\}$, i.e., $1,2,3,4,6,8,9,12,16,18,24,27,32, \ldots$ and ask how the gap $a_{n}-a_{n-1}$ compares with a_{n} as $n \rightarrow \infty$. More generally, we may take a finite set of primes and ask this question about the sequence of consecutive integers composed of these primes.

Theorem 5.6 (Tijdeman, 1974). Let $S=\left\{p_{1}, \ldots, p_{t}\right\}$ be a finite set of distinct primes, and let $a_{0}<a_{1}<a_{2}<\cdots$ be the sequence of consecutive positive integers composed of primes from S. Then there are effectively computable positive numbers c_{1}, c_{2}, depending on t, p_{1}, \ldots, p_{t}, such that

$$
a_{n}-a_{n-1} \geqslant \frac{a_{n}}{c_{1}\left(\log a_{n}\right)^{c_{2}}} \text { for } n=1,2, \ldots
$$

Proof. let $n \geqslant 1$. We have $a_{n}=p_{1}^{k_{1}} \cdots p_{t}^{k_{t}}$, and $a_{n-1}=p_{1}^{l_{1}} \cdots p_{t}^{l_{t}}$ with non-negative integers k_{i}, l_{i}. By Corollary 5.3,

$$
\left|1-\frac{a_{n-1}}{a_{n}}\right|=\left|1-p_{1}^{l_{1}-k_{1}} \cdots p_{t}^{l_{t}-k_{t}}\right| \geqslant(e B)^{-C}
$$

where $B:=\max \left(\left|l_{1}-k_{1}\right|, \ldots,\left|l_{t}-k_{t}\right|\right)$ and C is effectively computable and depends only on t, p_{1}, \ldots, p_{t}. Note that

$$
k_{i} \leqslant \frac{\log a_{n}}{\log p_{i}} \leqslant \frac{\log a_{n}}{\log 2}, \quad l_{i} \leqslant \frac{\log a_{n-1}}{\log p_{i}} \leqslant \frac{\log a_{n}}{\log 2} \quad \text { for } i=1, \ldots, t
$$

hence $B \leqslant \log a_{n} / \log 2$. It follows that $a_{n}-a_{n-1} \geqslant a_{n}\left(e \log a_{n} / \log 2\right)^{-C}$.

5.2 Dirichlet's Unit Theorem

We want to apply the results from the previous section to certain Diophantine equations, and for this, we need some facts on units in algebraic number fields.

Let K be an algebraic number field of degree d. Recall that K has precisely d embeddings in \mathbb{C}. An embedding σ of K in \mathbb{C} is called real if $\sigma(K) \subset \mathbb{R}$, and complex otherwise. If σ is a complex embedding of K, then so is $\bar{\sigma}: x \mapsto \overline{\sigma(x)}$, i.e., the composition of σ and complex conjugation. Hence the complex embeddings of K occur in complex conjugate pairs $\{\sigma, \bar{\sigma}\}$, and so, the number of complex embeddings of K is even. Let us denote by r_{1} the number of real embeddings of K, and by $2 r_{2}$ the number of complex embeddings of K. Thus,

$$
r_{1}+2 r_{2}=d
$$

Further, we order the embeddings $\sigma_{1}, \ldots, \sigma_{d}$ of K in such a way that

$$
\begin{aligned}
& \sigma_{1}, \ldots, \sigma_{r_{1}} \text { are the real embeddings, } \\
& \sigma_{r_{1}+r_{2}+1}=\overline{\sigma_{r_{1}+1}}, \ldots, \sigma_{r_{1}+2 r_{2}}=\overline{\sigma_{r_{1}+r_{2}}}
\end{aligned}
$$

We denote as usual by O_{K} the ring of integers of K, and by O_{K}^{*} the group of units of O_{K}. Further, we define the norm and house of $\alpha \in O_{K}$ by respectively,

$$
N_{K / \mathbb{Q}}(\alpha):=\sigma_{1}(\alpha) \cdots \sigma_{d}(\alpha), \quad|\alpha|:=\max _{1 \leqslant i \leqslant d}\left|\sigma_{i}(\alpha)\right| .
$$

Recall that the norm is multiplicative, and that $N_{K / \mathbb{Q}}(\alpha) \in \mathbb{Z}$ for $\alpha \in O_{K}$.
Lemma 5.7. Let $\alpha \in O_{K}$. Then $\alpha \in O_{K}^{*} \Longleftrightarrow N_{K / \mathbb{Q}}(\alpha)= \pm 1$.
Proof. \Longrightarrow. Let $\alpha \in O_{K}^{*}$. Then $\alpha, \alpha^{-1} \in O_{K}$. Hence $N_{K / \mathbb{Q}}(\alpha) \in \mathbb{Z}, N_{K / \mathbb{Q}}\left(\alpha^{-1}\right) \in \mathbb{Z}$. But the product of these two integers is $N_{K / \mathbb{Q}}(1)=1$, hence both integers are ± 1.
\Longleftarrow. Suppose $\sigma_{1}=$ id. Then $\alpha^{-1}= \pm \prod_{i=2}^{d} \sigma_{i}(\alpha)$ is an algebraic integer in K, hence in O_{K}. So $\alpha \in O_{K}^{*}$.

To study the units of \mathcal{O}_{K}, it will be useful to consider the logarithms of the absolute values of their conjugates. More precisely, we consider the map

$$
\overrightarrow{\log }: \mathcal{O}_{K}^{*} \rightarrow \mathbb{R}^{d}: \varepsilon \mapsto\left(\log \left|\sigma_{1}(\varepsilon)\right|, \ldots, \log \left|\sigma_{d}(\varepsilon)\right|\right)
$$

This is clearly a group homomorphism from \mathcal{O}_{K}^{*} with multiplication to \mathbb{R}^{d} with addition. For $\varepsilon \in \mathcal{O}_{K}^{*}$ we have

$$
\begin{aligned}
& \log \left|\sigma_{r_{1}+r_{2}+i}(\varepsilon)\right|=\log \left|\sigma_{r_{1}+i}(\varepsilon)\right| \text { for } i=1, \ldots, r_{2} \\
& \sum_{i=1}^{d} \log \left|\sigma_{i}(\varepsilon)\right|=\log \left|N_{K / \mathbb{Q}}(\varepsilon)\right|=0
\end{aligned}
$$

so $\overrightarrow{\log }$ maps O_{K}^{*} to the linear subspace H of \mathbb{R}^{d}, consisting of the vectors $\mathbf{x}=$ $\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ satisfying the equations

$$
x_{r_{1}+r_{2}+1}=x_{r_{1}+1}, \ldots, x_{r_{1}+2 r_{2}}=x_{r_{1}+r_{2}}, x_{1}+\cdots+x_{d}=0 .
$$

Notice that H has dimension $r:=d-\left(r_{2}+1\right)=r_{1}+r_{2}-1$.
The following result is known as Dirichlet's Unit Theorem. For a proof we refer to any textbook on algebraic number theory. A lattice in a real vector space V is an additive group

$$
\left\{z_{1} \mathbf{a}_{1}+\cdots+z_{m} \mathbf{a}_{m}: z_{1}, \ldots, z_{m} \in \mathbb{Z}\right\}
$$

where $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}$ is a basis of V. We call $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}$ also a basis of the lattice.
Theorem 5.8 (Dirichlet). The image of $\overrightarrow{\log }$ is a lattice in H. The kernel of $\overrightarrow{\log }$ is the group U_{K} of roots of unity of K, and this group is finite.

Choose units $\varepsilon_{1}, \ldots, \varepsilon_{r}$ such that $\overrightarrow{\log }\left(\varepsilon_{1}\right), \ldots, \overrightarrow{\log }\left(\varepsilon_{r}\right)$ form a basis of the lattice $\overrightarrow{\log }\left(O_{K}^{*}\right)$ (we call such $\varepsilon_{1}, \ldots, \varepsilon_{r}$ a system of fundamental units for K). Then for every $\varepsilon \in O_{K}^{*}$, there are unique integers b_{1}, \ldots, b_{r} such that

$$
\overrightarrow{\log }(\varepsilon)=b_{1} \overrightarrow{\log }\left(\varepsilon_{1}\right)+\cdots+b_{r} \overrightarrow{\log }\left(\varepsilon_{r}\right)
$$

Hence $\varepsilon \in O_{K}^{*}$ can be expressed uniquely as

$$
\begin{equation*}
\zeta \varepsilon_{1}^{b_{1}} \cdots \varepsilon_{r}^{b_{r}} \text { with } \zeta \in U_{K}, b_{1}, \ldots, b_{r} \in \mathbb{Z} \tag{5.1}
\end{equation*}
$$

We deduce some consequences.
Lemma 5.9. There is an effectively computable number $C>0$ depending on $K, \varepsilon_{1}, \ldots, \varepsilon_{r}$, such that for every $\varepsilon \in O_{K}^{*}$ we have

$$
\max \left(\left|b_{1}\right|, \ldots,\left|b_{r}\right|\right) \leqslant C \cdot \log \mid \varepsilon,
$$

where b_{1}, \ldots, b_{r} are the integers defined by (5.1).
Proof. From $\varepsilon=\zeta \varepsilon_{1}^{b_{1}} \cdots \varepsilon_{r}^{b_{r}}$ we deduce

$$
\log \left|\sigma_{i}(\varepsilon)\right|=\sum_{j=1}^{r} b_{j} \log \left|\sigma_{i}\left(\varepsilon_{j}\right)\right| \quad(i=1, \ldots, d)
$$

or in matrix notation

$$
\left(\begin{array}{ccc}
\log \left|\sigma_{1}\left(\varepsilon_{1}\right)\right| & \cdots & \log \left|\sigma_{1}\left(\varepsilon_{r}\right)\right| \\
\vdots & & \vdots \\
\vdots & & \vdots \\
\log \left|\sigma_{d}\left(\varepsilon_{1}\right)\right| & \cdots & \log \left|\sigma_{d}\left(\varepsilon_{r}\right)\right|
\end{array}\right) \cdot\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{r}
\end{array}\right)=\left(\begin{array}{c}
\log \left|\sigma_{1}(\varepsilon)\right| \\
\vdots \\
\vdots \\
\log \left|\sigma_{d}(\varepsilon)\right|
\end{array}\right)
$$

The matrix has rank $r=\operatorname{dim} H$ since its columns form a basis of H. So we can select r rows, say with indices i_{1}, \ldots, i_{r}, which form an invertible $r \times r$-matrix. Denote by Ω the inverse of this matrix, and let $\Omega=\left(a_{i j}\right)_{i, j=1, \ldots, r}$. Then

$$
b_{i}=\sum_{j=1}^{r} a_{i j} \log \left|\sigma_{i_{j}}(\varepsilon)\right| \text { for } i=1, \ldots, r
$$

Note that the terms $a_{i j}$ are determined by $K, \varepsilon_{1}, \ldots, \varepsilon_{r}$ and are effectively computable in terms of these quantities.

By Lemma 3.6 from Chapter 3 we have $|\varepsilon| \geqslant 1$ and by exercise 3.7 (i) from Chapter 3 we have $\left|\sigma_{j}(\varepsilon)\right| \geqslant\left.\varepsilon\right|^{1-d}$ for $j=1, \ldots, d$. Hence

$$
|\log | \sigma_{j}(\varepsilon)| | \leqslant d \log |\varepsilon| \text { for } j=1, \ldots, d
$$

Now an application of the triangle inequality gives

$$
\max _{1 \leqslant i \leqslant r}\left|b_{i}\right| \leqslant\left(\max _{1 \leqslant i \leqslant r} \sum_{j=1}^{r}\left|a_{i j}\right|\right) \cdot d \log |\varepsilon|=C \cdot \log |\varepsilon| .
$$

The next lemma states that given $\alpha \in O_{K} \backslash\{0\}$, we can find $\varepsilon \in O_{K}^{*}$ such that all conjugates of $\varepsilon \alpha$ have about the same absolute value. Then the maximum of these absolute values, which is $\mid \varepsilon \alpha$, is about the d-th root of the product of these absolute values, which is $\left|N_{K / \mathbb{Q}}(\varepsilon \alpha)\right|=\left|N_{K / \mathbb{Q}}(\alpha)\right|$ since $N_{K / \mathbb{Q}}(\varepsilon)= \pm 1$.

Lemma 5.10. There is an effectively computable number $c>1$ with the following property: for every non-zero $\alpha \in O_{K}$ there is $\varepsilon \in O_{K}^{*}$ such that

$$
\begin{equation*}
c^{-1}\left|N_{K / \mathbb{Q}}(\alpha)\right|^{1 / d} \leqslant|\varepsilon \alpha| \leqslant c\left|N_{K / \mathbb{Q}}(\alpha)\right|^{1 / d} . \tag{5.2}
\end{equation*}
$$

Proof. In general, if L is a lattice in H, then for every point $\mathbf{x} \in H$ there is a point $\mathbf{u} \in L$ such that $\|\mathbf{u}-\mathbf{x}\|_{2} \leqslant c(L)$ for some number $c(L)$ depending only on L. This $c(L)$ can be computed in terms of a basis of L. By applying this with $L=\overrightarrow{\log }\left(O_{K}^{*}\right)$, we see that there is an effectively computable number $c_{1}>0$, depending on the lattice $\overrightarrow{\log }\left(O_{K}^{*}\right)$, such that for every $\mathbf{x} \in H$ there is $\varepsilon \in O_{K}^{*}$ with $\|\mathbf{x}-\overrightarrow{\log }(\varepsilon) \mid\|_{2} \leqslant c_{1} .{ }^{1}$ This implies

$$
\left|x_{i}-\log \right| \sigma_{i}(\varepsilon)| | \leqslant c_{1} \text { for } i=1, \ldots, d,
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$. We apply this with

$$
x_{i}:=-\log \left|\sigma_{i}(\alpha)\right|+\frac{1}{d} \log \left|N_{K / \mathbb{Q}}(\alpha)\right| \quad(i=1, \ldots, d) .
$$

With these x_{i}, the point \mathbf{x} is easily seen to lie in H. It follows that there is $\varepsilon \in O_{K}^{*}$ such that

$$
|\log | \sigma_{i}(\varepsilon)|+\log | \sigma_{i}(\alpha)\left|-\frac{1}{d} \log \right| N_{K / \mathbb{Q}}(\alpha)| | \leqslant c_{1} \text { for } i=1, \ldots, d,
$$

i.e.,

$$
|\log | \sigma_{i}(\varepsilon \alpha)\left|-\frac{1}{d} \log \right| N_{K / \mathbb{Q}}(\alpha)| | \leqslant c_{1} \text { for } i=1, \ldots, d .
$$

Choosing i with $|\varepsilon \alpha|=\left|\sigma_{i}(\varepsilon \alpha)\right|$, we get (5.2) with $c:=e^{c_{1}}$.
Corollary 5.11. Given $\alpha \in O_{K} \backslash\{0\}$, one can effectively determine a finite set of divisors $\gamma_{1}, \ldots, \gamma_{m}$ of α in O_{K} such that for each divisor β of α in O_{K} there are $\varepsilon \in O_{K}^{*}$ and $i \in\{1, \ldots, m\}$ such that $\beta=\varepsilon \gamma_{i}$.

Proof. Let β be a divisor of α. Then $N_{K / \mathbb{Q}}(\beta)$ divides $N_{K / \mathbb{Q}}(\alpha)$. By the previous lemma, there is $\varepsilon \in O_{K}^{*}$, such that

$$
|\varepsilon \beta| \leqslant c\left|N_{K / \mathbb{Q}}(\beta)\right|^{1 / d} \leqslant c\left|N_{K / \mathbb{Q}}(\alpha)\right|^{1 / d} .
$$

By exercise 3.6 (ii) from Chapter 3, there are only finitely many algebraic integers γ of degree at most d and house at most $c\left|N_{K / \mathbb{Q}}(\alpha)\right|^{1 / d}$. This implies that there are at most finitely many $\gamma \in O_{K}$ with

$$
|\gamma| \leqslant c\left|N_{K / \mathbb{Q}}(\alpha)\right|^{1 / d} .
$$

[^0]Using constructive algebraic number theory, we can effectively determine these, and check for each of these γ whether it divides α in O_{K}. Let $\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ be the set of divisors of α among these γ. Then $\varepsilon \beta \in\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$, i.e., $\beta=\varepsilon^{-1} \gamma_{i}$ for some i.

5.3 Unit equations and Thue equations

Let K be an algebraic number field. We consider the so-called unit equation

$$
\begin{equation*}
\alpha x+\beta y=1 \text { in } x, y \in O_{K}^{*}, \tag{5.3}
\end{equation*}
$$

where $\alpha, \beta \in K^{*}$.
Theorem 5.12. Eq. (5.3) has at most finitely many solutions, and these can be determined effectively.

In 1921, Siegel proved that (5.3) has only finitely many solutions, but his proof is ineffective, in the sense that it shows only that there are only finitely many solutions, but it does not give a method how to determine them. Our proof, based on lower bounds for linear forms in logarithms, does give a method to determine the solutions. This effective proof is already implicit in work of Baker from the 1960's. Győry (1978) made this explicit.

Proof. Let (x, y) be a solution of (5.3). By (5.1), there are $\zeta_{1}, \zeta_{2} \in U_{K}$, as well as $a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r} \in \mathbb{Z}$, such that

$$
x=\zeta_{1} \varepsilon_{1}^{a_{1}} \cdots \varepsilon_{r}^{a_{r}}, \quad y=\zeta_{2} \varepsilon_{1}^{b_{1}} \cdots \varepsilon_{r}^{b_{r}} .
$$

Thus,

$$
\alpha \zeta_{1} \varepsilon_{1}^{a_{1}} \cdots \varepsilon_{r}^{a_{r}}+\beta \zeta_{2} \varepsilon_{1}^{b_{1}} \cdots \varepsilon_{r}^{b_{r}}=1
$$

We assume without loss of generality that $B:=\max \left(\left|a_{1}\right|, \ldots,\left|b_{r}\right|\right)=\left|b_{r}\right|$. We estimate from above and below,

$$
\Lambda_{i}:=\left|\sigma_{i}(\alpha) \sigma\left(\zeta_{1}\right) \sigma_{i}\left(\varepsilon_{1}\right)^{a_{1}} \cdots \sigma_{i}\left(\varepsilon_{r}\right)^{a_{r}}-1\right|=\left|\sigma_{i}(\beta) \sigma_{i}(y)\right|
$$

for a suitable choice of i.

In fact, let $\left|\sigma_{i}(y)\right|$ be the smallest, and $\left|\sigma_{j}(y)\right|=|y|$ the largest among $\left|\sigma_{1}(y)\right|, \ldots,\left|\sigma_{d}(y)\right|$. Then by Lemma 5.7,

$$
\left|\sigma_{i}(y)\right|^{d-1} \cdot|y| \leqslant 1
$$

Subsequently, by Lemma 5.9 we have $e^{B} \leqslant|y|^{C}$, hence

$$
\left|\sigma_{i}(y)\right| \leqslant|y|^{-1 /(d-1)} \leqslant e^{-(B / C(d-1))}
$$

This leads to

$$
\Lambda_{i} \leqslant\left|\sigma_{i}(\beta)\right| e^{-(B / C(d-1))}
$$

Since $1-\alpha x=\beta y \neq 0$ we have $\Lambda_{i} \neq 0$. So we can apply Corollary 5.3 and obtain $\left|\Lambda_{i}\right| \geqslant(e B)^{-C^{\prime}}$ for some effectively computable number C^{\prime} depending on $\alpha, \varepsilon_{1}, \ldots, \varepsilon_{r}$ and the finitely many roots of unity of K. Combining the upper and lower bound for $\left|\Lambda_{i}\right|$ derived above gives

$$
(e B)^{-C^{\prime}} \leqslant\left|\sigma_{i}(\beta)\right| e^{-B / C(d-1)}
$$

and this leads to an effectively computable upper bound for B.

Remark. There are practical algorithms to solve equations of the type (5.3) which work well as long as the degree of the field K is not too large, and K has a system of fundamental units whose heights are not too large. These algorithms are based on lower bounds for linear forms in logarithms and the Lenstra-Lenstra-Lovász lattice basis reduction algorithm (LLL-algorithm). For instance, in 2000 Wildanger determined all solutions of the equation $x+y=1$ in $x, y \in \mathcal{O}_{K}^{*}$, with $K=\mathbb{Q}(\cos (2 \pi / 19))$. This number field has degree 9 and all its embeddings are real. Thus, the unit group \mathcal{O}_{K}^{*} has rank 8.

In general, a form of degree d in n variables is a homogeneous polynomial $F\left(X_{1}, \ldots, X_{n}\right)$ of degree d, i.e., a polynomial consisting of terms $c X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$ with $i_{1}+\cdots+i_{n}=d$. Note that $F\left(t X_{1}, \ldots, t X_{n}\right)=t^{d} F\left(X_{1}, \ldots, X_{n}\right)$. A binary form of degree d is a homogeneous polynomial of degree d in two variables, i.e.,

$$
F(X, Y)=a_{0} X^{d}+a_{1} X^{d-1} Y+\cdots+a_{d} Y^{d}
$$

Suppose that F has its coefficients in \mathbb{C}, say. Let a_{r} be the first non-zero coefficient of F from the left. We can factor the polynomial $F(X, 1)$ as $a_{r}\left(X-\alpha_{1}\right)^{r_{1}} \cdots\left(X-\alpha_{t}\right)^{r_{t}}$,
where $\alpha_{1}, \ldots, \alpha_{t}$ are distinct complex numbers, and the multiplicities r_{1}, \ldots, r_{t} are positive integers with $r_{1}+\cdots+r_{t}=r$. Then we get

$$
\begin{equation*}
F(X, Y)=Y^{d} F(X / Y, 1)=a_{r} Y^{d-r}\left(X-\alpha_{1} Y\right)^{r_{1}} \cdots\left(X-\alpha_{t} Y\right)^{r_{t}} . \tag{5.4}
\end{equation*}
$$

Thus, a binary form can be factored into linear forms.
A Thue equation is an equation of the shape

$$
\begin{equation*}
F(x, y)=m \quad \text { in } x, y \in \mathbb{Z} \tag{5.5}
\end{equation*}
$$

where F is a binary form with coefficients in \mathbb{Z} and m is a non-zero integer. For binary forms of degree 1 or 2 this equation is very classical. The Norwegian mathematician A. Thue was the first to study such equations for binary forms F of degree larger than 2 , thence the name 'Thue equation.'

In case that F is linear, equation (5.5) becomes

$$
a x+b y=m \quad \text { in } x, y \in \mathbb{Z}
$$

As is well-known, this equation has no solution if $\operatorname{gcd}(a, b)$ does not divide m, and infinitely many solutions if $\operatorname{gcd}(a, b)$ does divide m.

In case that F is quadratic, equation (5.5) specializes to

$$
a x^{2}+b x y+c y^{2}=m .
$$

If the discriminant $D=b^{2}-4 a c<0$ then this equation describes an ellipsis, and this has only finitely many points $(x, y) \in \mathbb{Z}^{2}$ on it. In fact, these points may be determined by rewriting the equation as

$$
a(x+(b / 2 a) y)^{2}+(|D| / 4 a) y^{2}=m .
$$

This implies $|y| \leqslant \sqrt{|4 a m / D|}$, and thus one can find all solutions (x, y) by trying a finite number of possibilities. In case that $D>0$ the equation may have infinitely many solutions, e.g., the Pell equation $x^{2}-d y^{2}=1$ where $d>1$ is a positive integer, not equal to a square. In fact it can be shown that if $D=b^{2}-4 a c>0$ and D is not a square, then $a x^{2}+b x y+c y^{2}=m$ has either no, or infinitely many solutions.

Another special case is, where F may have arbitrary degree d but the coefficient a_{0} of X^{d} is 0 . Then F is divisible by Y, so if (x, y) is a solution of (5.5), then y divides m. For each divisor y of m there are at most finitely many integers x with $F(x, y)=m$, which, if they exist, can be determined effectively.

We prove the following.

Theorem 5.13. Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree d. Suppose that the coefficient of X^{d} in F is non-zero and that $F(X, 1)$ has at least three distinct zeros in \mathbb{C}. Let m be a non-zero integer. Then the equation

$$
\begin{equation*}
F(x, y)=m \quad \text { in } x, y \in \mathbb{Z} \tag{5.5}
\end{equation*}
$$

has only finitely many solutions.
In 1909, Thue proved in an ineffective way that Eq. (5.5) has only finitely many solutions. We discuss Thue's proof in the next chapter. Here we give an effective and rather different proof, which uses Siegel's idea (1921) of reducing (5.5) to a unit equation. This proof is essentially the one given by Baker in 1967 for Theorem 5.13.

Proof. By assumption, $F(X, Y)=a_{0} X^{d}+\cdots+a_{d} Y^{d}$ with $a_{0} \neq 0$. We make a reduction to the case $a_{0}=1$. If (x, y) is a solution of (5.5), then, by multiplying with a_{0}^{d-1},

$$
\left(a_{0} x\right)^{d}+a_{1}\left(a_{0} x\right)^{d-1} y+a_{2} a_{0}\left(a_{0} x\right)^{d-2} y^{2}+\cdots+a_{d} a_{0}^{d-1} y^{d}=m a_{0}^{d-1}
$$

Thus, $\left(a_{0} x, y\right)$ satisfies a Thue equation $F^{\prime}\left(x^{\prime}, y^{\prime}\right)=m^{\prime}$, where the coefficient of X^{d} in F^{\prime} is 1 .

Henceforth, we consider again (5.5), but assume that the coefficient of X^{d} in F is 1 . Then

$$
F(X, Y)=\left(X-\alpha_{1} Y\right)^{r_{1}} \cdots\left(X-\alpha_{t} Y\right)^{r_{t}}
$$

where $\alpha_{1}, \ldots, \alpha_{t}$ are pairwise distinct complex numbers, $r_{1}, \ldots, r_{t}>0$ and $t \geqslant 3$.
We want to reduce (5.5) to a unit equation. The crucial observation here is that the three linear forms in two variables $X-\alpha_{i} Y(i=1,2,3)$ are linearly dependent over \mathbb{C}. More precisely, we have Siegel's identity

$$
\left(\alpha_{2}-\alpha_{3}\right)\left(X-\alpha_{1} Y\right)+\left(\alpha_{3}-\alpha_{1}\right)\left(X-\alpha_{2} Y\right)+\left(\alpha_{1}-\alpha_{2}\right)\left(X-\alpha_{3} Y\right)=0
$$

This implies that if $(x, y) \in \mathbb{Z}^{2}$ is a solution of (5.5), then

$$
\begin{equation*}
\frac{\alpha_{2}-\alpha_{3}}{\alpha_{2}-\alpha_{1}} \cdot \frac{x-\alpha_{1} y}{x-\alpha_{3} y}+\frac{\alpha_{3}-\alpha_{1}}{\alpha_{2}-\alpha_{1}} \cdot \frac{x-\alpha_{2} y}{x-\alpha_{3} y}=1 . \tag{5.6}
\end{equation*}
$$

Let $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$. Then $\alpha_{1}, \ldots, \alpha_{t} \in O_{K}$ since they are zeros of the monic polynomial $F(X, 1) \in \mathbb{Z}[X]$. Let $(x, y) \in \mathbb{Z}^{2}$ be a solution of (5.5). Then the numbers $x-\alpha_{i} y(i=1,2,3)$ divide m in O_{K}. By Corollary 5.11 , we have

$$
x-\alpha_{i} y=\mu_{i} \varepsilon_{i},
$$

where μ_{i} belongs to an effectively determinable finite set and $\varepsilon_{i} \in O_{K}^{*}$ for $i=1,2,3$. By substituting this into (5.6) we obtain

$$
\left(\frac{\alpha_{2}-\alpha_{3}}{\alpha_{2}-\alpha_{1}} \cdot \frac{\mu_{1}}{\mu_{3}}\right) \cdot \frac{\varepsilon_{1}}{\varepsilon_{3}}+\left(\frac{\alpha_{3}-\alpha_{1}}{\alpha_{2}-\alpha_{1}} \cdot \frac{\mu_{2}}{\mu_{3}}\right) \cdot \frac{\varepsilon_{2}}{\varepsilon_{3}}=1 .
$$

We may view this as a unit equation with unknowns $\varepsilon_{1} / \varepsilon_{3}, \varepsilon_{2} / \varepsilon_{3}$. We have only finitely many possibilities for each μ_{i} which can be determined effectively, and by Theorem 5.12 , for each choice of $\mu_{1}, \mu_{2}, \mu_{3}$ we have only finitely possibilities for the pair $\left(\varepsilon_{1} / \varepsilon_{3}, \varepsilon_{2} / \varepsilon_{3}\right)$ which can be determined effectively. Consequently, if (x, y) runs through the solutions of (5.5), then the quotient $\left(x-\alpha_{1} y\right) /\left(x-\alpha_{3} y\right)=\left(\mu_{1} / \mu_{3}\right)\left(\varepsilon_{1} / \varepsilon_{3}\right)$ runs through a finite set which can be determined effectively. We can compute x / y from $\left(x-\alpha_{1} y\right) /\left(x-\alpha_{3} y\right)$ and then x, y from $y^{d} F(x / y, 1)=F(x, y)=m$. In this way, it follows that (5.5) has only finitely many solutions which can be determined effectively.

Remark. Since about 30 years, Thue equations can really be solved in practice, and several packages contain routines to solve Thue equations (KANT, Maple but to my knowledge not yet SAGE). These routines are based on lower bounds for linear forms in logarithms, and the LLL-algorithm.

We finish with stating, without proof, an effective finiteness result for the equation

$$
\begin{equation*}
b y^{n}=f(x) \text { in } x, y \in \mathbb{Z} \tag{5.7}
\end{equation*}
$$

where $n \geqslant 2, b$ is a non-zero integer and $f \in \mathbb{Z}[X]$. For $n=2$ this is called a hyperelliptic equation and for $n \geqslant 3$ a superelliptic equation. Such equations can be reduced to unit equations or Thue equations.

Theorem 5.14 (Baker, 1968). Assume that f has no multiple zeros and that f has degree at least 2 if $n \geqslant 3$ and degree at least 3 if $n=2$. Then (5.7) has only finitely many solutions, and its set of solutions can be determined effectively.

We consider a special case to illustrate the idea of the proof. Consider the equation

$$
\begin{equation*}
y^{3}=2 x(x-3) \text { in } x, y \in \mathbb{Z} \tag{5.8}
\end{equation*}
$$

Let (x, y) be a solution of (5.8). The gcd of $2 x$ and $x-3$ divides 6 . So if p is a prime number $\geqslant 5$, then p divides at most one of $2 x, x-3$ and if it divides one of these numbers, the exponent of p in the unique factorization of that number is divisible by 3 . It follows that

$$
2 x=a u^{3}, \quad x-3=b v^{3}
$$

where $a b$ is a third power, and both a and b are composed of primes from $\{2,3\}$. In fact, we may assume that the exponents on 2,3 in a, b are either 0,1 , or 2 , since powers $2^{3 k}, 3^{3 l}$ can be absorbed by u, v. Thus, $a, b \in\left\{ \pm 2^{k} 3^{l}: k, l=0,1,2\right\}$. Considering the solutions (x, y) of (5.8) with fixed a, b, we get a Thue equation

$$
a u^{3}-2 b v^{3}=6
$$

By determining the solutions (u, v) for each of these Thue equations, we can determine the solutions of (5.8).

A similar approach can be followed for equations $y^{n}=f(x)$ with $n \geqslant 3$ if f does not have all its zeros in \mathbb{Q}. Then f has all its zeros in some algebraic number field K, and we have to make a reduction to Thue equations of which the unknowns are taken from O_{K} instead of \mathbb{Z}. For such equations one has an effective finiteness result similar to Theorem 5.13. In the case $n=2$, one can make a reduction only to Thue equations where the involved binary form has degree 2 , and in this case, Thue's theorem is not applicable. Then one needs a more complicated argument, where one makes a reduction to a system consisting of two Thue equations of degree 2 , which has only finitely many solutions. In one of the exercises in the exercise section you are asked to work out an example.

In 1976, Schinzel and Tijdeman obtained the surprising result that Eq. (5.7) has no solutions with $y \neq 0, \pm 1$ if n is too large.

Theorem 5.15 (Schinzel-Tijdeman, 1976). Let b be a non-zero integer and $f(X) \in$ $\mathbb{Z}[X]$ a polynomial of degree at least 2 without multiple zeros. Then there is an effectively computable number C depending on f such that if $b y^{n}=f(x)$ is solvable in $x, y \in \mathbb{Z}$ with $y \neq 0, \pm 1$, then $n \leqslant C$.

Again, in an exercise in the exercise section you will be asked to work out an example.

5.4 p-adic analogues

The results mentioned in Section 5.1 have so-called p-adic analogues. We give one example.

Recall that each non-zero rational number can be expressed uniquely as a product of prime powers. We may express this as

$$
a= \pm \prod_{p \in \mathcal{P}} p^{\operatorname{ord}_{\mathrm{p}}(\mathrm{a})}
$$

where \mathcal{P} is the set of prime numbers, and the exponents $\operatorname{ord}_{p}(a)$ are integers, at most finitely many of which are non-zero. We define the p-adic absolute value of a by

$$
|a|_{p}:=p^{-\operatorname{ord}_{p}(a)} \text { for } a \in \mathbb{Q}^{*}, \quad|0|_{p}:=0 .
$$

For instance, $-72 / 343=-2^{3} \cdot 3^{2} \cdot 7^{-3}$, hence

$$
|-72 / 343|_{2}=2^{-3},|-72 / 343|_{3}=3^{-2},|-72 / 343|_{7}=7^{3}
$$

Notice that for any prime number p we have

$$
|a b|_{p}=|a|_{p}|b|_{p}, \quad|a+b|_{p} \leqslant \max \left(|a|_{p},|b|_{p}\right) \text { for } a, b \in \mathbb{Q} .
$$

The last inequality is called the strong triangle inequality or ultrametric inequality. In general, if a_{1}, \ldots, a_{r} are rational numbers such that $\left|a_{1}\right|_{p}>\left|a_{i}\right|_{p}$ for $i=2, \ldots, r$, then

$$
\begin{equation*}
\left|a_{1}+\cdots+a_{r}\right|_{p}=\left|a_{1}\right|_{p} . \tag{5.9}
\end{equation*}
$$

The strong triangle inequality implies that the p-adic absolute value $|\cdot|_{p}$ defines a metric d_{p} on \mathbb{Q}, given by $d_{p}(x-y):=|x-y|_{p}$. Two numbers $x, y \in \mathbb{Q}$ are p adically close, if $d_{p}(x-y)$ is small, which means that $x-y=a / b$ where a, b are coprime integers and a is divisible by a high power of p. From topology it is known how to complete a metrical space, by considering the collection of all its Cauchy sequences, and identifying two such sequences if their difference converges to 0 . The metrical completion of \mathbb{Q} with metric d_{p} is denoted \mathbb{Q}_{p}. As it turns out, addition and multiplication on \mathbb{Q} can be extended to \mathbb{Q}_{p} (in a similar way as addition and multiplication on \mathbb{Q} can be extended to \mathbb{R}), and this makes \mathbb{Q}_{p} into a field, the field of
p-adic numbers. In Diophantine approximation, $|\cdot|_{p}$ and \mathbb{Q}_{p} have the same 'status' as the ordinary absolute value and \mathbb{R}, and many results in Diophantine approximation and transcendence theory have analogues in the p-adic setting. For more on p adic numbers, see for instance Neal Koblitz, p-adic Numbers, p-adic Analysis and Zeta-Functions, 2nd edition, Springer Graduate Texts in Mathematics, 1984.

To gave a flavour, we give an analogue of Corollary 5.3 in the case that $\alpha_{1}, \ldots, \alpha_{m}$ are rational numbers. There is a more general version for algebraic $\alpha_{1}, \ldots, \alpha_{m}$ but it requires more knowledge of algebraic number theory to state this.

Theorem 5.16. (Yu, 1986) Let p be a prime number, let a_{1}, \ldots, a_{m} be non-zero rational numbers with $\left|a_{i}\right|_{p}=1$ for $i=1, \ldots, m$. Further, let b_{1}, \ldots, b_{m} be integers such that

$$
a_{1}^{b_{1}} \cdots a_{m}^{b_{m}} \neq 1
$$

Put $B:=\max \left(\left|b_{1}\right|, \ldots,\left|b_{m}\right|\right)$. Then

$$
\left|a_{1}^{b_{1}} \cdots a_{m}^{b_{m}}-1\right|_{p} \geqslant(e B)^{-C}
$$

where C is an effectively computable number depending on p, m and a_{1}, \ldots, a_{m}.
For $m=1$ there is a sharper result which can be proved by elementary means (see exercise section). But for $m \geqslant 2$ the proof is very difficult. One may define p adic logarithms and translate the theorem into a lower bound for the p-adic absolute value of a linear form in p-adic logarithms. We do not work this out.

We give an application. Let $S=\left\{p_{1}, \ldots, p_{t}\right\}$ be a finite set of prime numbers and define the multiplicative group of S-units

$$
U_{S}:=\left\{ \pm p_{1}^{z_{1}} \cdots p_{t}^{z_{t}}: z_{1}, \ldots, z_{t} \in \mathbb{Z}\right\}
$$

Theorem 5.17. The equation

$$
\begin{equation*}
x+y=1 \quad \text { in } x, y \in U_{S} \tag{5.10}
\end{equation*}
$$

has only finitely many solutions, and these can be determined effectively.
Proof. Let (x, y) be a solution of (5.10). We may write $x=u / w, y=v / w$ where u, v, w are integers with $\operatorname{gcd}(u, v, w)=1$. Then

$$
\begin{equation*}
u+v=w \tag{5.11}
\end{equation*}
$$

The integers u, v, w are composed of primes from S, and moreover, no prime divides two numbers among u, v, w since u, v, w are coprime. After reordering the primes p_{1}, \ldots, p_{t}, we may assume that

$$
u= \pm p_{1}^{b_{1}} \cdots p_{r}^{b_{r}}, \quad v= \pm p_{r+1}^{b_{r+1}} \cdots p_{s}^{b_{s}}, \quad w= \pm p_{s+1}^{b_{s+1}} \cdots p_{t}^{b_{t}}
$$

where $0 \leqslant r \leqslant s \leqslant t$ and the b_{i} are non-negative integers (empty products are equal to 1 ; for instance if $r=0$ then $u= \pm 1)$. We have to prove that $B:=\max \left(b_{1}, \ldots, b_{t}\right)$ is bounded above by an effectively computable number depending only on p_{1}, \ldots, p_{t}. We may clearly assume that $B>0$, and after permuting u, v, w and changing their signs if necessary, that $B=b_{t}$. Then using $-(u / v)-1=-(w / v)$ we obtain

$$
0<\left| \pm p_{1}^{b_{1}} \cdots p_{r}^{b_{r}} p_{r+1}^{-b_{r+1}} \cdots p_{s}^{-b_{s}}-1\right|_{p_{t}}=|w / v|_{p_{t}}=p_{t}^{-b_{t}}=p_{t}^{-B}
$$

From Theorem 5.16 we obtain that $|\cdots|_{p_{t}} \geqslant(e B)^{-C}$, where C is effectively computable in terms of p_{1}, \ldots, p_{t}. Hence

$$
(e B)^{-C} \leqslant p_{t}^{-B} .
$$

So indeed, B is bounded above by an effectively computable number depending on p_{1}, \ldots, p_{t}.

Remark. In his PhD-thesis from 1988, de Weger gave a practical algorithm, based on strong linear forms in logarithms estimates and the LLL-basis reduction algorithm, to solve equations of the type (5.10). As a consequence, he showed that the equation $x+y=1$ has precisely 545 solutions in positive integers $x, y \in U_{S}$ with $0<x \leqslant y$, where $S=\{2,3,5,7,11,13\}$.

Let K be an algebraic number field and let Γ be a finitely generated, multiplicative subgroup of K^{*}, i.e., there are $\gamma_{1}, \ldots, \gamma_{t} \in \Gamma$ such that every element of Γ can be expressed as

$$
\zeta \gamma_{1}^{z_{1}} \cdots \gamma_{t}^{z_{t}}
$$

where ζ is a root of unity in K, and z_{1}, \ldots, z_{t} are integers. Further, let a, b be non-zero elements from K and consider the equation

$$
\begin{equation*}
a x+b y=1 \quad \text { in } x, y \in \Gamma . \tag{5.12}
\end{equation*}
$$

The following result is a common generalization of both Theorems 5.12 and 5.17.

Theorem 5.18 (Győry, 1979). Equation (5.12) has only finitely many solutions, and these can be determined effectively in terms of $K, \gamma_{1}, \ldots, \gamma_{t}$.

In 1960, Lang gave an ineffective proof of this result, by combining earlier work of Siegel (1921), Mahler (1933) and Parry (1950). Győry's proof is based on Corollary 5.3 and a generalization of Theorem 5.16 for algebraic numbers.

5.5 Exercises

Exercise 5.1. A binary recurrence sequence in \mathbb{Z} is a sequence $U=\left\{u_{n}\right\}_{n=0}^{\infty}$ given by

- a binary recurrence relation $u_{n}=A u_{n-1}+B u_{n-2}(n \geqslant 2)$ with $A, B \in \mathbb{Z}, B \neq 0$;
- initial values $u_{0}, u_{1} \in \mathbb{Z}$, not both equal to 0 ;

Example. The Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$ where $F_{n}=F_{n-1}+F_{n-2}$ for $n \geqslant 2$, $F_{0}=0, F_{1}=1$.

The companion polynomial of U is given by $F_{U}(X):=X^{2}-A X-B$.
The sequence U is called simple if $A^{2}+4 B \neq 0$, i.e., if $F_{U}(X)=(X-\alpha)(X-\beta)$ with distinct algebraic numbers α, β.
In the exercises below, U is a simple, binary recurrence sequence in \mathbb{Z}.
(i) Prove that there are $\gamma_{1}, \gamma_{2} \in \mathbb{C}$ such that $u_{n}=\gamma_{1} \alpha^{n}+\gamma_{2} \beta^{n}$ for $n \geqslant 0$.
(ii) Assume that $A^{2}+4 B>0$ (i.e., $\alpha, \beta \in \mathbb{R}$) and that $\alpha \neq \pm \beta$. Assume further that in (i) we have $\gamma_{1} \gamma_{2} \neq 0$. Prove that there are effectively computable numbers $c>0, n_{0}$ such that $\left|u_{n}\right| \geqslant c \max (|\alpha|,|\beta|)^{n}$ for $n \geqslant n_{0}$.
(iii) Assume that $A^{2}+4 B<0$ (i.e., $\alpha, \beta \in \mathbb{C} \backslash \mathbb{R}$ and $\beta=\bar{\alpha}$) and that β / α is not a root of unity. Assume again that $\gamma_{1} \gamma_{2} \neq 0$.
Prove that there are effectively computable numbers $n_{0}, c_{1}, c_{2}>0$ such that

$$
u_{n} \neq 0, \quad\left|u_{n}\right| \geqslant \frac{\max (|\alpha|,|\beta|)^{n}}{c_{1} n^{c_{2}}} \text { for } n \geqslant n_{0}
$$

Hint. Divide by $\gamma_{2} \beta^{n}$ and use a suitable lower bound for linear forms in logarithms.
Exercise 5.2. Let A, B, C be integers such that $X^{3}-A X^{2}-B X-C$ is irreducible over \mathbb{Q} and

$$
X^{3}-A X^{2}-B X-C=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)\left(X-\alpha_{3}\right)
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{C}$ are such that none of the quotients $\alpha_{i} / \alpha_{j}(1 \leqslant i<j \leqslant 3)$ is a root of unity. Consider the third order linear recurrence sequence $U=\left\{u_{n}\right\}_{n=0}^{\infty}$, given by

$$
u_{n}=A u_{n-1}+B u_{n-2}+C u_{n-3} \quad(n \geqslant 3)
$$

and initial values $u_{0}, u_{1}, u_{2} \in \mathbb{Z}$, not all zero.
(i) Prove that there exist algebraic numbers $\gamma_{1}, \gamma_{2}, \gamma_{3}$ such that

$$
u_{n}=\gamma_{1} \alpha_{1}^{n}+\gamma_{2} \alpha_{2}^{n}+\gamma_{3} \alpha_{3}^{n} \quad \text { for } n \geqslant 0
$$

(ii) Prove that $\left|\alpha_{1}\right|=\left|\alpha_{2}\right|=\left|\alpha_{3}\right|$ cannot hold.
(iii) Prove that there exists an effectively computable number N, depending on A, B, C and on u_{0}, u_{1}, u_{2}, such that if n is a non-negative integer with $u_{n}=0$ then $n<N$.
Hint. Assume that $\left|\alpha_{1}\right|<\left|\alpha_{3}\right|$ as may be done, and consider $\left(-\gamma_{2} / \gamma_{3}\right)\left(\alpha_{2} / \alpha_{3}\right)^{n}-1$.
Exercise 5.3. Let $p_{1}, \ldots, p_{s}, p_{s+1}, \ldots, p_{t}$ be distinct prime numbers. Let A be the set of positive integers composed of primes from p_{1}, \ldots, p_{s}, and B the set of positive integers composed of primes from p_{s+1}, \ldots, p_{t}.
Prove that there exist positive numbers c_{1}, c_{2}, effectively computable in terms of p_{1}, \ldots, p_{t} such that for every $x \in A, y \in B$ we have

$$
|x-y| \geqslant \frac{\max (x, y)}{c_{1}(\log \max (x, y))^{c_{2}}}
$$

Exercise 5.4. In 1995, Laurent, Mignotte and Nesterenko proved the following explicit estimate for linear forms in two logarithms. Let a_{1}, a_{2} be two positive rational numbers $\neq 1$. Further, let b_{1}, b_{2} be non-zero integers. Suppose that $\Lambda:=$ $b_{1} \log a_{1}-b_{2} \log a_{2} \neq 0$. Then

$$
\begin{aligned}
& \log |\Lambda| \geqslant \\
& -24.34\left(\max \left\{\log \left(\frac{\left|b_{1}\right|}{\log H\left(a_{2}\right)}+\frac{\left|b_{2}\right|}{\log H\left(a_{1}\right)}\right)+0.14,21\right\}\right)^{2} \log H\left(a_{1}\right) \log H\left(a_{2}\right) .
\end{aligned}
$$

Using this estimate, compute an upper bound C, such that for all positive integers m, n with $97^{m}-89^{n}=8$ we have $m, n \leqslant C$.
Hint. Use $|\log (1+z)| \leqslant 2|z|$ if $|z| \leqslant \frac{1}{2}$.

Exercise 5.5. Let $F(X, Y) \in \mathbb{Z}[X, Y]$ be a positive definite binary form of degree $d \geqslant 3$, i.e., the coefficient of X^{d} is >0 and the zeros of $F(X, 1)$ are all in $\mathbb{C} \backslash \mathbb{R}$. Prove, without using lower bounds for linear forms in logarithms, that for each positive integer m the equation $F(x, y)=m$ has only finitely many solutions in $x, y \in \mathbb{Z}$. Describe a method to determine these solutions (in principle, it does't have to be practical).

Exercise 5.6. Let $a_{i}, b_{i}, c_{i}(i=1,2)$ be integers with

$$
a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{1} b_{2}-a_{2} b_{1}, b_{1} c_{2}-b_{2} c_{1} \neq 0
$$

Prove that there are only finitely many triples $(x, y, z) \in \mathbb{Z}^{3}$ satisfying the system of equations

$$
\begin{equation*}
a_{1} x^{2}-b_{1} z^{2}=c_{1}, \quad a_{2} y^{2}-b_{2} z^{2}=c_{2} \tag{5.13}
\end{equation*}
$$

Hint. Let $K=\mathbb{Q}\left(\sqrt{a_{1}}, \sqrt{b_{1}}, \sqrt{a_{2}}, \sqrt{b_{2}}\right)$. Apply Theorem 5.12 and the ideas in the proof of Theorem 5.13 to the identities

$$
\begin{aligned}
& \sqrt{b_{2}}\left(x \sqrt{a_{1}}+z \sqrt{b_{1}}\right)-\sqrt{b_{1}}\left(y \sqrt{a_{2}}+z \sqrt{b_{2}}\right)=x \sqrt{a_{1} b_{2}}-y \sqrt{a_{2} b_{1}}, \\
& \sqrt{b_{2}}\left(x \sqrt{a_{1}}-z \sqrt{b_{1}}\right)-\sqrt{b_{1}}\left(y \sqrt{a_{2}}-z \sqrt{b_{2}}\right)=x \sqrt{a_{1} b_{2}}-y \sqrt{a_{2} b_{1}} .
\end{aligned}
$$

Then conclude that if (x, y, z) runs through the solutions of (5.13) then $\left(x \sqrt{a_{1}}+z \sqrt{b_{1}}\right) /\left(x \sqrt{a_{1}}-z \sqrt{b_{1}}\right)$ runs through a finite set.

Exercise 5.7. Use Exercise 5.6 to prove that the equation

$$
y^{2}=x(2 x-3)(4 x-5) \quad \text { in } x, y \in \mathbb{Z}
$$

has only finitely many solutions.
Exercise 5.8. (i) Prove that the equation

$$
x^{n}-2 y^{n}=1 \quad \text { in } x, y \in \mathbb{Z} \text { with } x \geqslant 2, y \geqslant 2
$$

has no solutions if $n>15000$.
Hint. Applying the estimate of Laurent-Mignotte-Nesterenko from Exercise 5.4 to an appropriate linear form in two logarithms you will get a lower estimate depending on n and x, y. But you can derive also an upper estimate which depends on n, x, y. By comparing the two estimates, the dependencies on x, y will cancel out and one
obtains an upper bound for n independent of x, y.
(ii) Let a, b, c be positive integers. Prove that there is a number C, effectively computable in terms of a, b, c, such that the equation

$$
a x^{n}-b y^{n}=c
$$

has no solutions if $n>C$. In the case $a=b$ you may give an elementary proof, without using the result of Laurent-Mignotte-Nesterenko.
(iii) Prove that the equation

$$
y^{z}=\binom{x}{3} \text { in } x, y, z \in \mathbb{Z} \text { with } x \geqslant 4, y \geqslant 2, z \geqslant 3
$$

has only finitely many solutions.
Exercise 5.9. In this exercise, you are asked to prove a very simple case of Theorem 5.16 and to apply this to certain Diophantine equations.
(i) Let a be an integer, and p a prime, such that $|a|_{p} \leqslant p^{-1}$ if $p>2$ and $|a|_{2} \leqslant 2^{-2}$ if $p=2$. Prove that for any positive integer b we have

$$
\left|(1+a)^{b}-1\right|_{p}=|a b|_{p} \geqslant 1 / a b .
$$

Hint. You may either prove that $\left.\left\lvert\, \begin{array}{l}b \\ k\end{array}\right.\right)\left.a^{k}\right|_{p}<|a b|_{p}$ for $k \geqslant 2$ or write $b=u p^{t}$ where u is an integer not divisible by p and t a non-negative integer, and use induction on t.
(ii) Let p be a prime $\geqslant 5$. Using (i), prove that the equation $p^{x}-2^{y}=1$ has no solutions in integers $x \geqslant 2, y \geqslant 2$. Prove also that the equation $2^{x}-p^{y}=1$ has no solutions in integers $x \geq 2, y \geq 2$.

[^0]: ${ }^{1}$ Much of basic algebraic number theory can be made constructive. With this constructive algebraic number theory one can in particular compute a system of fundamental units for K once K is given in some explicit way that it can serve as input for an algorithm. It would go too far here to discuss the details.

