
Chapter 6

Approximation of algebraic

numbers by rationals

Literature:

W.M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer Verlag

1980, Chap.II, §§1,2, Chap. IV, §1
L.J. Mordell, Diophantine Equations, Pure and applied Mathematics series, vol. 30, Academic

Press, 1969. reprint of the 1971 edition.

6.1 Liouville’s Theorem and Roth’s Theorem

We are interested in the problem how well a given real algebraic number can be

approximated by rational numbers.

Recall that the heightH(ξ) of a rational number ξ is given byH(ξ) := max(|x|, |y|),
where x, y are coprime integers such that ξ = x/y. In exercise 3.7, you were asked

to prove the following inequality, which is a small variation on a result of Liouville

from 1844:

Theorem 6.1. Let α be an algebraic number of degree d > 1. Then there is an

effectively computable number c(α) > 0 such that

(6.1) |ξ − α| > c(α)H(ξ)−d for every ξ ∈ Q with ξ 6= α.
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Here we give an alternative proof. Let

Fα(X) = a0X
d + a1X

d−1 + · · ·+ ad = a0(X − α(1)) · · · (X − α(d))

be the primitive minimal polynomial of α, that is, the irreducible polynomial in

Z[X] with a0 > 0 and gcd(a0, . . . , ad) = 1 having α as a zero. Here α(1) = α and

α(2), . . . , α(d) are the conjugates of α. We define the Mahler measure of α by

M(α) := a0

d∏
i=1

max(1, |α(i)|).

We prove Theorem 6.1 with c(α) = 21−dM(α)−1.

Proof. Consider the binary form

F (X, Y ) := Y dFα(X/Y ) = a0X
d+a1X

d−1Y+· · ·+adY d = a0(X−α(1)Y ) · · · (X−α(d)Y ).

Let ξ = x/y where x, y are integers with y > 0, gcd(x, y) = 1. Then

|F (x, y)|
2d−1M(α)H(ξ)d

(6.2)

=
a0
∏d

i=1 |x− α(i)y|
2d−1a0

∏d
i=1

(
max(1, |α(i)|) ·max(|x|, y)

)
=

|x− αy|
max(1, |α|) ·max(|x|, y)

·
d∏
i=2

|x− α(i)y|
2 max(1, |α(i)|) ·max(|x|, y)

6 |α− x/y|.

Here we have used the trivial inequalities

|x− αy|
max(1, |α|) ·max(|x|, y)

6 |α− x/y|, |x− α(i)y|
2 max(1, |α(i)|) ·max(|x|, y)

6 1.

By assumption, either α ∈ Q and x/y 6= α or α has degree d > 2. In both cases,

F (x, y) is a non-zero integer, whence |F (x, y)| > 1. Together with (6.2) this implies

(6.1) with c(α) = 21−dM(α)−1.

Remark. (side comment which is not relevant for what follows) The Mahler mea-

sure M(α) of an algebraic number α of degree d is related to its height H(α) (max-

imum of the absolute values of the coefficients of Fα) as follows:(
d

[d/2]

)−1
H(α) 6M(α) 6

√
d+ 1 ·H(α).

106



The first inequality is an easy exercise, the second involves complex analysis and

Fourier analysis. For this and other properties of the Mahler measure, see for in-

stance Chapter 1 of the monumental volume ’Heights in Diophantine Geometry’ by

E. Bombieri and W. Gubler, Cambridge University Press 2006. The Mahler measure

has in some sense a more regular behaviour than the height. Using exercise 3.6, it

is not hard to prove that M(α) = 1 if and only if α = 0 or a root of unity. A

problem, posed by D.H. Lehmer in the 1930-s, asks whether there is c > 0 such that

M(α) > 1 + c for every algebraic number α that is not equal to 0 or a root of unity.

This has been settled in a few special cases, but the general case is still unsolved. In

1979, Dobrowolski proved that there is c′ > 0 independent of d such that for every

algebraic number α of degree d not equal to 0 or a root of unity one has

M(α) > 1 + c′
( log log 3d

log 3d

)3
.

People have worked on getting as large as possible values for c′, but in terms of d

this has not been improved up to now.

Let α be an algebraic number of degree d > 2. One of the central problems in

Diophantine approximation is, to obtain improvements of (6.1) with in the right-

hand side H(ξ)−κ with κ < d instead of H(ξ)−d. More precisely, the problem is,

whether there exist κ < d and a constant c(α, κ) > 0 depending only on α, κ, such

that

(6.3) |ξ − α| > c(α, κ)H(ξ)−κ for every ξ ∈ Q.

Recall that by Dirichlet’s Theorem, there exist infinitely many pairs of integers

x, y such that
∣∣∣xy − α∣∣∣ 6 |y|−2, y 6= 0. For such solutions we have |x| 6 (|α|+ 1) · |y|.

Hence, writing ξ = x
y

we infer that there is a constant c1(α) > 0 such that

|ξ − α| 6 c1(α)H(ξ)−2 for infinitely many ξ ∈ Q.

This shows that there can not exist an inequality of the shape (6.3) with κ < 2.

In particular, for rational or quadratic algebraic numbers α, Theorem 6.1 gives the

best possible result in terms of the exponent on H(ξ).

Now let α be a real algebraic number of degree d > 3. In 1909, the Norwegian

mathematician A. Thue made an important breakthrough by showing that for every
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κ > d
2

+ 1 there exists a constant c(α, κ) > 0 such that (6.3) holds. In 1921, C.L.

Siegel proved the same for every κ > 2
√
d. In 1949, A.O. Gel’fond and independently

Freeman Dyson (the famous physicist) improved this to κ >
√

2d. Finally, in 1955,

K.F. Roth proved the following result, for which he was awarded the Fields medal.

Theorem 6.2 (Roth, 1955). Let α be a real algebraic number of degree > 3. Then

for every κ > 2 there exists a constant c(α, κ) > 0 such that

(6.3) |ξ − α| > c(α, κ)H(ξ)−κ for every ξ ∈ Q.

As mentioned before, Roth’s Theorem is valid also if α is a rational or quadratic

number (with the proviso that ξ 6= α if α ∈ Q) but then it is weaker than (6.1).

Further, Roth’s Theorem holds true also for complex, non-real algebraic numbers α;

then we have in fact |ξ − α| > |Imα| for ξ ∈ Q, i.e., (6.3) holds even with κ = 0.

Exercise 6.1. Let α be a real algebraic number of degree > 3. Prove that the

following three assertions are equivalent:

(i) for every κ > 2 there is a constant c(α, κ) > 0 with (6.3);

(ii) for every κ > 2, the inequality

(6.4) |ξ − α| 6 H(ξ)−κ in ξ ∈ Q

has only finitely many solutions;

(iii) for every κ > 2, C > 0, the inequality

(6.5) |ξ − α| 6 CH(ξ)−κ in ξ ∈ Q

has only finitely many solutions.

It should be noted that Theorem 6.1 is effective, i.e., the constant c(α) in (6.1)

can be computed. In contrast, the results of Thue, Siegel, Gel’fond, Dyson and Roth

mentioned above are ineffective, i.e., with their methods of proof one can prove only

the existence of a constant c(α, κ) > 0 as in (6.3), but one can not compute such

a constant. Equivalently, the methods of proof of Thue ,. . ., Roth show that the

inequalities (6.4), (6.5) have only finitely many solutions, but they do not provide a

method to determine these solutions.

Thue used his result on the approximation of algebraic numbers stated above, to

prove his famous theorem that if F is a binary form in Z[X, Y ] such that F (X, 1)
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has at least three distinct roots and m is a non-zero integer, then the equation

F (x, y) = m in x, y ∈ Z

has at most finitely many solutions.

We prove a more general result. A binary form F (X, Y ) ∈ Z[X, Y ] is called

square-free if it is not divisible in C[X, Y ] by (αX + βY )2 for some α, β ∈ C, not

both 0.

Theorem 6.3. Let F (X, Y ) ∈ Z[X, Y ] be a square-free binary form of degree d > 3.

Then for every κ > 2 there is a constant c(F, κ) > 0 such that for every pair of

integers (x, y) with F (x, y) 6= 0 we have

(6.6) |F (x, y)| > c(F, κ) max(|x|, |y|)d−κ.

If F is a binary form of degree d 6 2 the theorem holds true as well but then it is

trivial since |F (x, y)| is a positive integer, hence > 1.

Proof. We prove the inequality only for pairs of integers (x, y) with |y| > |x|. Then

the inequality can be deduced for pairs (x, y) with |x| > |y| by interchanging x, y

and repeating the argument below.

Next, we restrict to the case that |y| > |x| and F is not divisible by Y . If F is

divisible by Y we have F = Y · F1 where F1 ∈ Z[X, Y ] is a square-free binary form

of degree d− 1 > 2 which is not divisible by Y . Then if the inequality holds for F1

and with d− 1 instead of d, it follows automatically for F .

So assume that F is a square-free binary form of degree d > 2 that is not divisible

by Y . Then F (X, Y ) = a0X
d + a1X

d−1Y + · · ·+ adY
d with a0 6= 0, and so,

F (X, Y ) = a0(X − α1Y ) · · · (X − αdY ) with α1, . . . , αd distinct.

Let (x, y) be a pair of integers with F (x, y) 6= 0 and |y| > |x|. Then y 6= 0. Let

ξ := x/y. Notice that |y| = max(|x|, |y|) > H(ξ) (with equality if gcd(x, y) = 1).

Let i be the index with

|ξ − αi| = min
j=1,...,d

|ξ − αj|.

Let κ > 2. Theorem 6.2 says that if αi is real algebraic then there is a constant

c(αi, κ) > 0 such that

|ξ − αi| > c(αi, κ)H(ξ)−κ > c(αi, κ) max(|x|, |y|)−κ;
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as has been observed above this is true as well if αi is not real. For j 6= i we have

|αi − αj| 6 |αi − ξ|+ |ξ − αj| 6 2|ξ − αj|,

implying

|ξ − αj| >
1

2
|αi − αj|.

Hence

|F (x, y)| = |y|d · |a0|
d∏
j=1

|ξ − αj| = max(|x|, |y|)d · |a0|
d∏
j=1

|ξ − αj|

> c(αi, κ)|a0|
∏
j 6=i

(
1
2
|αi − αj|

)
·max(|x|, |y|)d−κ.

We deduce Thue’s Theorem.

Corollary 6.4. Let F (X, Y ) be a binary form in Z[X, Y ] such that F (X, 1) has at

least three distinct roots. Further, let m be a non-zero integer. Then the equation

F (x, y) = m in x, y ∈ Z

has at most finitely many solutions.

Proof. We first make a reduction to the case that F (X, Y ) is square-free, by showing

that F is divisible in Z[X, Y ] by a square-free binary form F ∗ ∈ Z[X, Y ] of degree

> 3.

We can factor the polynomial F (X, 1) as cg1(X)k1 · · · gt(X)kt where c is a non-

zero integer and g1(X), . . . , gt(X) are irreducible polynomials in Z[X] none of which

is a constant multiple of the others. Let f ∗(X) := g1(X) · · · gt(X). Then f ∗ ∈
Z[X], and deg f ∗ =: d > 3 since F (X, 1) has at least three zeros in C. We have

F (X, 1) = f ∗(X)g(X) with g ∈ Z[X]. Put F ∗(X, Y ) = Y df(X/Y ) and G(X, Y ) :=

Y degF−dg(X/Y ). Then F = F ∗G with G ∈ Z[X, Y ]. The polynomial f ∗ has degree

d > 3 and d distinct zeros, and it divides F (X, 1) in Z[X]. Hence F ∗ is square-free,

F ∗ has degree d > 3 and F ∗ divides F in Z[X, Y ].

Let x, y be integers with F (x, y) = m. Then F ∗(x, y) divides m. Take κ with

2 < κ < d. Then by Theorem 6.3,

|m| > |F ∗(x, y)| > c(F ∗, κ) max(|x|, |y|)d−κ,
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implying that |x|, |y| are bounded.

In one of the exercises in the exercise section you will be asked to apply Theorem

6.3 to another class of Diophantine equations.

As mentioned before, the proof of Roth’s Theorem is ineffective, and an effective

proof of Roth’s Theorem seems to be very far away. There are however effective

improvements of Liouville’s inequality, i.e., inequalities of the shape

|ξ − α| > c(α, κ)H(ξ)−κ for ξ ∈ Q

where α is algebraic of degree d > 3 and κ < d (but very close to d) and with

some explicit expression for c(α, κ). We mention the following result of the Russian

mathematician Fel’dman, obtained using lower bounds for linear forms in logarithms.

Theorem 6.5 (Fel’dman, 1971). Let α be a real algebraic number of degree d > 3.

Then there exist effectively computable numbers c1(α), c2(α) > 0 depending on α

such that

(6.7) |ξ − α| > c1(α)H(ξ)−d+c2(α) for ξ ∈ Q .

The proof is too complicated to be given here, but we can give a brief sketch.

The hard core is the following effective result on Thue equations which we state

without proof, given by Fel’dman. The proof is by making explicit the arguments

in the previous chapter.

Theorem 6.6. Let F ∈ Z[X, Y ] be a binary form such that F (X, 1) has at least

three zeros in C. Then there are effectively computable numbers A,B depending

only on F , such that for every non-zero integer m and every solution (x, y) ∈ Z2 of

F (x, y) = m we have

max(|x|, |y|) 6 A|m|B.

Proof of Theorem 6.5 (assuming Theorem 6.6). Let Fα(X) be the primitive mini-

mal polynomial of α and F (X, Y ) := Y dFα(X/Y ). Further, let ξ = x/y with

x, y ∈ Z coprime and y > 0. Then Fα(ξ) 6= 0 and this implies m := F (x, y) 6= 0. By

Theorem 6.6 we have

(6.8) |F (x, y)| = |m| >
(

max(|x|, |y|)/A
)1/B

=
(
H(ξ)/A

)1/B
,
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where A,B are effectively computable positive numbers depending on F , hence α.

By combining this with inequality (6.2) proved in the course of our alternative proof

of Theorem 6.1 we get

|ξ − α| >
(
H(ξ)/A

)1/B
2d−1M(α)H(ξ)d

= A−1/B21−dM(α)−1H(ξ)−d+(1/B),

which proves Theorem 6.5.

The quantities c1(α), c2(α) are very small numbers for which one can find an

explicit expression by going through the proof. For instance, Bugeaud proved in

1998, that (6.7) holds with

c1(α) = exp
(
− 1027dd16dHd−1( log(edH)

)d−1)
,

c2(α) =
(

1027dd16dHd−1( log(edH)
)d−1)−1

where d is the degree of α and H = H(α) its height.

One can obtain better results for certain special classes of algebraic numbers us-

ing other methods. M. Bennett obtained good effective improvements of Liouville’s

inequality for various numbers of the shape m
√
a where m is a positive integer and a

a positive rational number. For instance he showed that

(6.9)
∣∣∣ξ − 3

√
2
∣∣∣ > 1

4
H(ξ)−2.45 for ξ ∈ Q.

The techniques used by Thue,. . ., Roth cannot be used in general to solve Dio-

phantine equations, but together with suitable refinements, they allow to give ex-

plicit upper bounds for the number of solutions of Diophantine equations. For

instance we have:

Theorem 6.7 (Bombieri, Schmidt, 1986). Let F (X, Y ) be a binary form in Z[X, Y ]

such that F (X, 1) has precisely d > 3 distinct roots. Then the equation

F (x, y) = 1 in x, y ∈ Z

has at most c · d solutions where c is a positive constant not depending on d or F .
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The importance of the result is that the bound is uniform, i.e. for all binary

forms F as in the theorem, we get the upper bound cd. It is possible to compute c

explicitly. Bombieri and Schmidt showed that for binary forms F that are irreducible

over Q and for which d is sufficiently large, the constant c can be taken equal to 430.

Probably the constant c can be improved, but the dependence on d is optimal. For

instance, let F (X, Y ) = (X − a1Y ) · · · (X − adY ) +Y d, where a1, . . . , ad are distinct

integers. Then the equation F (x, y) = 1 has the d solutions (a1, 1), . . . , (ad, 1).

M. Bennett proved the following remarkable result:

Theorem 6.8 (Bennett, 2002). Let d be an integer with d > 3 and let a, b be positive

integers. Then the equation

|axd − byd| = 1

has at most one solution in positive integers x, y.

For instance, the equation (a + 1)xd − ayd = 1 has (1, 1) as its only solution in

positive integers. In his proof, Bennett uses various techniques (good lower bounds

for linear forms in two logarithms, Diophantine approximation techniques based on

so-called hypergeometric functions, and heavy computations).

6.2 Connections with the abc-conjecture

In the 1980-s, first in a weaker form Oesterlé and shortly later in a more precise

form Masser formulated a conjecture which turned out to be of central importance,

the so-called abc-conjecture.

The radical rad(N) of a non-zero integer N is the product of the primes dividing

N . For instance, rad(±2357118) = 2 · 5 · 11.

abc-conjecture (Masser, Oesterlé, 1985). For every ε > 0 there is a constant

C(ε) > 0 such that for all positive integers a, b, c with a+ b = c, gcd(a, b, c) = 1 we

have

c 6 C(ε)rad(abc)1+ε.

The abc-conjecture has many striking consequences. As an example we deduce

a consequence for the equation

(6.10) Axn +Byn = Czn in integers x, y, z, n
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where A,B,C are fixed, posiitve integers. By Andrew Wiles’ celebrated work, for

A = B = C = 1 this equation is known to have no solutions with x, y, z > 2 and

n > 3. For arbitrary A,B,C this equation may have solutions.

Corollary. (under assumption of the abc-conjecture) Equation (6.10) has only

finitely many solutions with x, y, z > 2, gcd(x, y, z) = 1 and n > 4.

Proof. Pick a solution x, y, z, n of (6.10) with x, y, z > 2, gcd(x, y, z) = 1 and n > 4.

Let d := gcd(Axn, Byn, Czn). Notice that d 6 ABC. Take

a := Axn/d, b := Byn/d, c := Czn/d.

Since all primes occurring in the factorization of abc divide ABCxyz we have

rad(abc) 6 ABCxyz. By the abc-conjecture, we have for every ε > 0, that

Czn/d 6 C(ε)(ABCxyz)1+ε, hence Czn 6 d · C(ε)(ABCxyz)1+ε

and since Czn > Axn, Byn, this implies

ABC(xyz)n 6 d3 · C(ε)3(ABCxyz)3+3ε 6 (ABC)3 · C(ε)3(ABCxyz)3+3ε.

Therefore,

(xyz)n−3−3ε 6 (ABC)5+3ε · C(ε)3.

Taking ε < 1
3 , we see that x, y, z, n are bounded.

In one of the exercises you will be asked to apply the abc-conjecture to the

Fermat-Catalan equation xm + yn = zk.

Granville and Langevin proved independently that the abc-conjecture is equiva-

lent to the following:

Granville-Langevin conjecture. Let F (X, Y ) ∈ Z[X, Y ] be a square-free binary

form of degree d > 3. Then for every κ > 2 there is a constant C(F, κ) > 0 such

that

rad(F (x, y)) > C(F, κ) max(|x|, |y|)d−κ for every x, y ∈ Z
with gcd(x, y) = 1, F (x, y) 6= 0.
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Exercise 6.2. (i) Prove that the Granville-Langevin conjecture implies the abc-

conjecture (the converse is also true but this is much harder to prove).

(ii) Prove that the Granville-Langevin conjecture implies Roth’s Theorem.

It should be mentioned here that the argument with which the Granville-Langevin

conjecture is deduced from the abc-conjecture, is constructive. That is, any effec-

tive version of the abc-conjecture, with the constant C(ε) effectively computable in

terms of ε, would imply an effective version of the Granville-Langevin conjecture,

with C(F, κ) effectively computable in terms of F and κ, and thus by Exercise 6.2

(ii), an effective version of Roth’s theorem.

In 2012, the Japanese mathematician Shinichi Mochizuki published four papers,

together consisting of about 500 pages, easily traceable on internet, in which he de-

veloped a new theory based on totally new mathematics, “Interuniversal Teichmüller

theory,” and as a consequence of this, in the last of the four papers, deduced the

abc-conjecture. At present, some people are still working through these papers and

trying to understand them, but up to now there is no general agreement whether they

contain a correct proof of the abc-conjecture or not. While most mathematicians

do not know what to think about this matter, some people believe that Mochizuki’s

proof is correct, whereas on the other hand, two very serious mathematicians, namely

2018 Fields medal winner Peter Scholze and another specialist in the field in which

Mochizuki has been working, Jakob Stix, believe that there is a serious gap in one

of the crucial lemmas in Mochizuki’s work and therefore consider the abc-conjecture

as not being proved. They intensively discussed this matter with Mochizuki, but

Mochizuki remains convinced that his proof is correct.

6.3 Thue’s approximation theorem

We intend to prove the following result of Thue:

Theorem 6.9. Let α be a real algebraic number of degree d > 3 and κ > d
2

+ 1.

Then the inequality

(6.11) |ξ − α| 6 H(ξ)−κ in ξ ∈ Q

has only finitely many solutions.
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Our basic tool will be Siegel’s Lemma, i.e., Theorem 3.20 in Chapter 3 which we

recall here. We consider systems of linear equations

(6.12)

a11x1 + · · · + a1NxN = 0
...

...

aM1x1 + · · · + aMNxN = 0

with coefficients aij from the ring of integers OK of a number field K.

Siegel’s Lemma. Let K be an algebraic number field of degree d, let M,N be

integers with N > dM > 0, let A be a real > 1, and suppose that

aij ∈ OK , aij 6 A for i = 1, . . . ,M, j = 1, . . . , N.

Then (6.12) has a non-zero solution x = (x1, . . . , xN) ∈ ZN such that

(6.13) max
16i6N

|xi| 6 (3NA)dM/(N−dM).

We introduce some notation. The norm of a polynomial P =
∑D

i=0 piX
i ∈ C[X]

is given by

‖P‖ :=
D∑
i=0

|pi|.

It is not difficult to check that

|P (α)| 6 ‖P‖ ·max(1, |α|)degP for P ∈ C[X], α ∈ C,(6.14)

‖P +Q‖ 6 ‖P‖+ ‖Q‖, ‖PQ‖ 6 ‖P‖ · ‖Q‖ for P,Q ∈ C[X].(6.15)

From these properties it can be deduced that if P ∈ C[X], α ∈ C, then for the

polynomial P̃ (X) := P (X + α) we have

(6.16) ‖P̃‖ 6 ‖P‖ · (1 + |α|)degP .

Exercise 6.3. Prove (6.14)–(6.16).

The k-th divided derivative of a polynomial P ∈ C[X] is defined by P ((k)) :=

P (k)/k!. Thus, if P =
∑D

i=0 piX
i, then

P ((k)) =
D∑
i=0

(
i
k

)
piX

i−k with
(
a
b

)
:= 0 if b > a.
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Notice that if P ∈ Z[X] then also P ((k)) ∈ Z[X]. Further, since each binomial

coefficient
(
i
k

)
can be estimated from above by 2i 6 2degP , we have

(6.17) ‖P ((k))‖ 6 2degP‖P‖.

Lastly, we have the product rule

(6.18) (PQ)((k)) =
k∑
j=0

P ((k−j))Q((j)) for P,Q ∈ C[X].

The advantage of using divided derivatives over derivatives is that their coefficients

are much smaller, while the coefficients of the divided derivatives of a polynomial

with integer coefficients are still integral.

A brief outline of the proof of Theorem 6.9. We give a brief, informal outline of the

proof, ignoring technicalities. More details and explanation are given later. We

follow the usual procedure to assume that (6.11) has infinitely many solutions, and

to construct a non-zero integer of absolute value < 1.

The first step of the proof is to take, for any positive integer r, non-zero poly-

nomials Pr, Qr ∈ Z[X] of degree as small as possible such that Pr − αQr is divisible

by (X − α)r. Using Siegel’s Lemma, one can prove the existence of such Pr, Qr of

degree at most m := [(1
2
d+ ε)r] for any ε > 0, where [x] denotes the largest integer

6 x.

To see this, view the coefficients of Pr, Qr as a system of 2m+ 2 unknowns. The

condition Pr −αQr divisible by (X −α)r is equivalent to α being a zero of the k-th

(divided) derivative of Pr − αQr, for k = 0, . . . , r − 1, i.e.,

P ((k))
r (α)− αQ((k))

r (α) = 0 for k = 0, . . . , r − 1.

By expanding this, we get a system of r linear equations with coefficients in K :=

Q(α) in the 2m+2 unknown coefficients of Pr, Qr. Now [K : Q] = d and 2m+2 > dr,

hence by Siegel’s Lemma, this system has a non-trivial solution in integers.

In the second step, we take two solutions of (6.11), say ξ1 = x1/y1, ξ2 = x2/y2
with xi, yi ∈ Z, gcd(xi, yi) = 1, yi > 0 for i = 1, 2. Since Pr, Qr are polynomials with

integer coeficients of degrees at most m = [(1
2

+ε)dr], the quantity Pr(ξ1)− ξ2Qr(ξ1)

is a rational number with denominator dividing ym1 y2, hence the number

Ar := ym1 y2(Pr(ξ1)− ξ2Qr(ξ1)) = y
[(
1
2
+ε)dr]

1 y2(Pr(ξ1)− ξ2Qr(ξ1))
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is a rational integer. We want to show that we can choose solutions ξ1, ξ2 and r such

that Ar 6= 0 and |Ar| < 1, thus obtaining a contradiction. There is a reasonable

hope for this. For first ξ2 is very close to α, hence Pr(ξ1)− ξ2Qr(ξ1) is very close to

Pr(ξ1)− αQr(ξ1), and this last quantity is very small because Pr − αQr is divisible

by (X − α)r, and |ξ1 − α| is very small.

To prove |Ar| < 1, we write

Pr − αQr = Vr · (X − α)r with Vr ∈ C[X]

and obtain

Ar = y
[(
1
2
+ε)dr]

1 y2

(
Vr(ξ1)(ξ1 − α)r − (ξ2 − α)Qr(ξ1)

)
.

To keep our discussion informal, we ignore ε and the terms |Vr(ξ1)|, |Qr(ξ1)| and are

sloppy with constants. We choose r = logH(ξ2)/ logH(ξ1) (being again sloppy and

assuming that the latter is an integer). Then y1 6 H(ξ1), y2 6 H(ξ1)
r, |ξ1 − α| 6

H(ξ1)
−κ, |ξ2 − α| 6 H(ξ1)

−κr. This leads to the ’estimate’

|Ar| ′6′ H(ξ1)
(dr/2)+r−κr = H(ξ1)

r((d/2)+1−κ).

Since the exponent on H(ξ1) is negative we get |Ar| ′<′ 1. Of course, we do have

to take into account ε and estimates for |Vr(ξ1)|, |Qr(ξ1)|. Further, the quantity

logH(ξ2)/ logH(ξ1) need not be an integer and thus, in general we can not choose r

equal to this quantity but only close to it. But with some modifications in the above

argument, we can deduce in a correct manner that |Ar| < 1, provided we assume

that H(ξ1) and logH(ξ2)/ logH(ξ1) are sufficiently large. This is allowed thanks to

our assumption that (6.11) has infinitely many solutions.

What remains is to show that Ar 6= 0. Unfortunately, it is not all clear how to

do this. In fact, r depends on ξ1 and ξ2 and we may have the bad luck that with our

particular choice of r, the quantity Ar just becomes 0. Instead, we prove that for

any two distinct solutions ξ1, ξ2 of (6.11) and any positive integer r, there is a not

too large value k0 = k0(r, ε) depending on r and ε but independent of ξ1, ξ2, such

that P
((k))
r (ξ1) 6= ξ2Q

((k))
r (ξ1) for some k 6 k0. Then

Ar,k := y
[(
1
2
+ε)dr]

1 y2
(
P ((k))
r (ξ1)− ξ2Q((k))

r (ξ1)
)

is a non-zero integer. Similarly as above we prove that ifH(ξ1) and logH(ξ2)/ logH(ξ1)

are sufficiently large, then |Ar,k| < 1 for all k 6 k0 and obtain a contradiction.
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The precise proof of Theorem 6.9. We need a parameter ε with 0 < ε < 1
2
. Later, ε

will be chosen depending on d, κ. Further, r will be a positive integer, to be chosen

later.

We start with the construction of the polynomials Pr, Qr.

Lemma 6.10. For every positive integer r there exist polynomials Pr, Qr ∈ Z[X] of

degree at most [(1
2

+ ε)dr], not both equal to 0, with the following properties:

Pr − αQr is divisible by (X − α)r,(6.19)

‖Pr‖ 6 Cr
1 , ‖Qr‖ 6 Cr

1 ,(6.20)

where C1 is an effectively computable number, depending only on α, ε.

Proof. Let K = Q(α). Put m := [(1
2

+ ε)dr]. Write

Pr =
m∑
i=0

piX
i, Qr =

m∑
i=0

qiX
i,

where pi, qi are unknowns, taken from the integers. The condition to be satisfied is

P ((k))
r (α)− αQ((k))

r (α) = 0 (k = 0, . . . , r − 1).

Let b be a denominator of α, i.e., b ∈ Z>0, bα ∈ OK . By expanding the above

expressions and multiplying with bm we obtain

m∑
i=0

(
i
k

)
bmαipi −

m∑
i=0

(
i
k

)
bmαi+1qi = 0 (k = 0, . . . , r − 1),

which is a system of r linear equations in 2m + 2 > (1 + 2ε)dr unknowns with

coefficients in OK . Thus, the number of unknowns is larger than [K : Q] times

the number of equations, and the condition of Siegel’s Lemma is satisfied. As a

consequence, the above system has a non-trivial solution (p0, . . . , pm, q0, . . . , qm) ∈
Z2m+2 such that

max(max
i
|pi|,max

i
|qi|) 6 (3(2m+ 2)A)

dr
2m+2−dr 6 (3(2 + 2ε)drA)1/2ε,

where (with 0 6 i 6 m, 0 6 k 6 r),

A = max
(

max
i,k

(
i
k

)
bm α i, max

k,i

(
i
k

)
bm α i+1

)
6 2mbm max(1, α )m+1 6

(
2bmax(1, α )

)(2+2ε)dr
.
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Then using 3(2 + 2ε)dr 6 3(2+2ε)dr, we see that Lemma 6.10 holds with

C1 =
(
6b ·max(1, α )

)d(1+ε−1)
.

We now take two solutions ξ1, ξ2 of (6.11) and show that for every r there is a

not too large k such that P
((k))
r (ξ1)−ξ2Q((k))

r (ξ1) 6= 0. We start with a simple lemma.

Lemma 6.11. Let F ∈ Q[X], let β be an algebraic number such that (X − β)m

divides F , and let f ∈ Q[X] be the minimal polynomial of β. Then fm divides F .

Proof. Recall that if g ∈ Q[X] is a polynomial with g(β) = 0 then f divides g. In

particular, f divides F . Since β is a zero of f of multiplicity 1, F/f is divisible by

(X − β)m−1, and so F/f is divisible by f . By repeating this argument it follows

that fm divides F .

Lemma 6.12. Let ξ1, ξ2 be two rational numbers, and r a positive integer. Then

there is k 6 d(2εr + 1) such that P
((k))
r (ξ1) 6= ξ2Q

((k))
r (ξ1).

Proof. The proof rests upon an analysis of the polynomial

F := PrQ
′
r − P ′rQr.

We first show that F is not identically 0. Assume the contrary. At least one of

Pr, Qr, say Qr, is not identically 0. Then (Pr/Qr)
′ = 0 hence Pr/Qr is identically

equal to some constant c ∈ Q. But then, Qr = (c− α)−1
(
Pr − αQr

)
is divisible by

(X − α)r and so, in view of Lemma 6.11, by f r, where f is the minimal polynomial

of α. But this is impossible, since by our assumption ε < 1
2

we have r deg f = rd >

(1
2

+ ε)dr > degQr.

We now prove our lemma. Assume that there exists an integer t > 1 such that

P ((k))
r (ξ1) = ξ2Q

((k))
r (ξ1) for k = 0, . . . , t

(if not, we are done). By eliminating ξ2 we obtain

P ((k))
r (ξ1)Q

((l))
r (ξ1)− P ((l))

r (ξ1)Q
((k))
r (ξ1) = 0 for k, l 6 t.

For each k > 0, F ((k)) is a linear combination of P
((l))
r Q

((m))
r −P ((m))

r Q
((l))
r , 0 6 l,m 6

k + 1. Hence F ((k))(ξ1) = 0 for k 6 t− 1, and therefore, F is divisible by (X − ξ1)t.
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By construction, Pr − αQr is divisible by (X − α)r, hence P ′r − αQ′r is divisible

by (X − α)r−1. So, using

F = Pr(Q
′
r − αP ′r)− P ′r(Qr − αPr)

we see that F is divisible by (X − α)r−1. But F ∈ Q[X] hence by Lemma 6.11 it is

divisible by f r−1. So F is in fact divisible by (X − ξ1)tf r−1. Since

degF 6 max(degPr + degQ′r, degP ′r + degQr) 6 (1 + 2ε)dr − 1, deg f = d,

it follows that

t 6 (1 + 2ε)dr − 1− d(r − 1) = d(2εr + 1)− 1.

This proves our lemma.

Take two solutions ξ1, ξ2 of (6.11). Write ξi = xi/yi with xi, yi ∈ Z, gcd(xi, yi) =

1 and yi > 0 for i = 1, 2. For integers r > 0, k > 0 consider the number

Ar,k := y
[(
1
2
+ε)dr]

1 y2

(
P ((k))
r (ξ1)− ξ2Q((k))

r (ξ1)
)
.

This is clearly an integer, and by Lemma 6.12 there is k < d(2εr + 1) such that

Ar,k 6= 0. We proceed to prove that |Ar,k| < 1 for appropriate ξ1, ξ2 and r.

We note that the polynomial P
((k))
r − αQ((k))

r is divisible by (X − α)r−k, that is,

P ((k))
r − αQ((k))

r = Vr · (X − α)r−k with Vr ∈ C[X].

This gives for Ar,k the expression

(6.21) Ar,k = y
[(
1
2
+ε)dr]

1 y2

(
Vr(ξ1)(ξ1 − α)r−k − (ξ2 − α)Q((k))

r (ξ1)
)
.

We first estimate Vr(ξ1) and Q
((k))
r (ξ1).

Lemma 6.13. There is an effectively computable number C2 depending only on α,

κ and ε such that

|Vr(ξ1)| 6 Cr
2 , |Q((k))

r |(ξ1)| 6 Cr
2 .
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Proof. Define P̃ (X) := P
((k))
r (X + α), Q̃(X) := Q

((k))
r (X + α), Ṽ (X) := Vr(X + α)

and ξ̃ := ξ1 − α. Then

P ((k))
r (ξ1) = P̃ (ξ̃), Q((k))

r (ξ1) = Q̃(ξ̃), P̃ − αQ̃ = Xr−kṼ .

Using (6.14)–(6.17), we get

‖P̃‖ 6 ‖P ((k))‖(1 + |α|)(
1
2
+ε)dr 6

(
2(1 + |α|)

)( 1
2
+ε)dr‖P‖

6
(
2(1 + |α|)

)( 1
2
+ε)dr

Cr
1

and likewise ‖Q̃‖ 6
(
2(1 + |α|)

)( 1
2
+ε)dr

Cr
1 . Since P̃ − αQ̃ = Xr−kṼ , the polynomial

Ṽ has the same coefficients as P̃ − αQ̃, and thus,

‖Ṽ ‖ 6 ‖P̃‖+ |α| · ‖Q̃‖ 6 (1 + |α|)
(
2(1 + |α|)

)( 1
2
+ε)dr

Cr
1 .

Since |ξ̃| = |ξ1 − α| 6 1, this leads to

|Q((k))
r (ξ1)| = |Q̃(ξ̃)| 6 ‖Q̃‖ 6 Cr

2 , |V (ξ1)| = |Ṽ (ξ̃)| 6 ‖Ṽ ‖ 6 Cr
2 ,

with C2 := 2(
1
2
+ε)d(1 + |α|)1+(

1
2
+ε)dC1.

Proof of Theorem 6.9. Let ξ1, ξ2 be two solutions of (6.11) with H(ξ2) > e ·H(ξ1)

and define the integer r by

r 6
logH(ξ2)

logH(ξ1)
< r + 1.

Then r > 1. Let k be an integer with 0 6 k < d(2εr + 1). We show below that for

appropriate choices for ε, ξ1, ξ2 we have |Ar,k| < 1, whatever the choice of k from

the range indicated. On the other hand, by Lemma 6.12, among these k there is at

least one for which Ar,k is a non-zero integer. This leads to a contradiction.

We estimate |Ar,k|. Notice that with our choice of r we have

y1 6 H(ξ1), y2 6 H(ξ1)
r+1, |ξ1 − α| 6 H(ξ1)

−κ, |ξ2 − α| 6 H(ξ1)
−κr.

By inserting these inequalities together with those from Lemma 6.13 into the ex-

pression (6.21) for Ar,k, we deduce

|Ar,k| 6 |y
[(
1
2
+ε)dr]

1 y2| ·
(
|Vr(ξ1)| · |ξ1 − α|r−k + |Q{k}r (ξ1)| · |ξ2 − α|

)
6 Cr

2 ·
(
|y

(
1
2
+ε)dr

1 y2| · |ξ1 − α|r−k + |y
(
1
2
+ε)dr

1 y2| · |ξ2 − α|
)

6 Cr
2(H(ξ1)

u +H(ξ1)
v)
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where

u = (1
2

+ ε)dr + r + 1− κ(r − k), v = (1
2

+ ε)dr + r + 1− κr.

Using k < d(2εr + 1) and grouping the terms containing r together, we obtain

u < r((1
2

+ ε)d+ 1− κ+ 2κεd) + 1 + κd, v = r((1
2

+ ε)d+ 1− κ) + 1.

To obtain simple upper bounds for u and v, we choose ε such that

(1
2

+ ε)d+ 1− κ+ 2κεd = −εd,

that is,

ε =
κ− 1− 1

2
d

(2κ+ 2)d
,

which is not in contradiction with our earlier assumption 0 < ε < 1
2
. Thus we

deduce for u and v the upper bounds

u 6 −εdr + 1 + κd, v 6 −εdr + 1,

so altogether,

|Ar,k| 6 2Cr
2 ·H(ξ1)

−εdr+1+κd.

The right-hand side becomes smaller than 1 if H(ξ1) and r are sufficiently large,

and for the latter we have to assume that logH(ξ2)/ logH(ξ1) is sufficiently large.

In fact, we choose r large enough such that the exponent on H(ξ1) is smaller or

equal than −εdr/2 and choose ξ1 with H(ξ1) large enough to make |Ar,k| < 1. More

precisely, we choose solutions ξ1, ξ2 of (6.11) such that

(6.22) H(ξ1) > (2C2)
2/εd,

logH(ξ2)

logH(ξ1)
> 1 +

2(1 + κd)

dε
;

this is possible since we assumed that (6.11) has infinitely many solutions. The sec-

ond inequality is not in contradiction with our earlier assumption H(ξ2) > eH(ξ1).

With this choice we have

r >
2(1 + κd)

dε

and so indeed −εdr + 1 + κd 6 −1
2
εdr. Then thanks to our assumption for H(ξ1)

we obtain

|Ar,k| 6 2Cr
2H(ξ1)

−εdr/2 < 1,

as required. This holds for each k < d(2εr+ 1). On the other hand, in Lemma 6.12

we have shown that there is k < d(2εr+1) such that Ar,k is a non-zero integer. This

gives the contradiction we want. So (6.11) cannot have infinitely many solutions.
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Remark. To obtain a contradiction, we did not need the assumption that (6.11)

has infinitely many solutions, but merely that there are solutions ξ1, ξ2 of (6.11) that

satisfy (6.22). In other words, solutions ξ1, ξ2 of (6.11) satisfying (6.22) cannot exist.

The constant C2 is effectively computable. So in fact we can prove the following

sharpening of Theorem 6.9:

Theorem 6.14. Let α be an algebraic number of degree d and κ > 1
2
d + 1. There

are effectively computable positive numbers C, λ depending on α, κ, such that if ξ1 is

a solution of

(6.11) |ξ − α| 6 H(ξ)−κ in ξ ∈ Q

with H(ξ1) > C, then for any other solution ξ of (6.11) we have H(ξ) 6 H(ξ1)
λ.

It should be noted that Theorem 6.14 would give an effective proof of Thue’s

Theorem in case we were extremely lucky and knew a solution ξ1 of (6.11) with

H(ξ1) > C. However, to find such a solution seems quite hopeless, since the constant

C is very large. It is very likely that such a solution ξ1 does not even exist. However,

there are variations on Thue’s method, which work only for special algebraic numbers

α of the shape d
√
a with a ∈ Q, where the constant C is much smaller and where a

solution ξ1 of (6.11) with H(ξ1) > C is known. For such α one can derive very strong

effective approximation results, for instance Bennett’s estimate (6.9) mentioned in

Section 6.1.

On the other hand Theorem 6.14 can be used to estimate the number of solutions

of (6.11). You are asked to work this out in one of the exercises in the exercise

section.

6.4 Exercises

Exercise 6.4. Prove that the following statement is equivalent to Roth’s theorem:

let α1, . . . , αm be distinct real algebraic numbers of degree > 3. Then for every κ > 2

there is a constant c > 0 such that
m∏
i=1

|αi − ξ| > cH(ξ)−κ for ξ ∈ Q .

Exercise 6.5. Let b be an integer > 2. Deduce from Roth’s theorem that
∑∞

k=1 b
−3k

is transcendental.
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The total degree of a polynomial G =
∑

i aiX
i1
1 · · ·X ir

r , notation totdegG, is the

maximum of all quantities i1 + · · · + ir, taken over all tuples i = (i1, . . . , ir) with

ai 6= 0. For instance, 3X7
1X

5
2X

2
3 − 2X1X

12
2 X

2
3 has total degree 15.

Exercise 6.6. Let F ∈ Z[X, Y ] be a square-free binary form of degree d > 4, and

let G ∈ Z[X, Y ] be a polynomial of total degree 6 d − 3. Prove that there are only

finitely many pairs (x, y) ∈ Z2 with F (x, y) = G(x, y) and F (x, y) 6= 0.

Exercise 6.7. Using Bennett’s result (6.9), compute explicit constants A,B such

that the following holds:

for any solution x, y ∈ Z of x3 − 2y3 = m we have max(|x|, |y|) 6 A|m|B.

Hint. Go through the proof of Theorem 6.3 and compute a constant c > 0 such that

|x3 − 2y3| > cmax(|x|, |y|)3−2.45 for all x, y ∈ Z. Note that you may have |x| > |y|.
Then distinguish between the pairs (x, y) ∈ Z2 with |x| > |y|, |x3− 2y3| 6 c′|x|3 and

those with |x| > |y|, |x3 − 2y3| > c′|x|3, where you may choose c′ yourself.

Exercise 6.8. (i) Assuming the abc-conjecture, prove that the Fermat-Catalan equa-

tion

xm + yn = zk

has only finitely many solutions in positive integers x, y, z,m, n, k with x > 1, y >

1, z > 1, gcd(x, y, z) = 1 and 1
m + 1

n + 1
k < 1.

(ii) Does this assertion remain true if we drop the condition gcd(x, y, z) = 1?

(iii) Determine the triples of positive integers (m,n, k) such that 1
m + 1

n + 1
k > 1.

Remark. At the moment, 10 solutions of the Fermat-Catalan equation are known

(see the Wikipedia page on the Fermat-Catalan equation), and of each of which at

least one of m,n, k equals 2. Beal offered $106 for a correct proof that the Fermat-

Catalan equation has no solutions in integers x, y, z,m, n, k with x, y, z > 1 and

m,n, k > 2.

Exercise 6.9. Assuming the abc-conjecture, prove that for every ε > 0, the inequal-

ity

|xm − yn| 6
(

max(xm, yn)
) 1

m
+ 1

n
−ε

has only finitely many solutions in integers x, y,m, n with x > 1, y > 1, gcd(x, y) = 1

and m > 3, n > 2.
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An integer n 6= 0 is called powerful if every prime in the prime factorization of n

occurs with exponent at least 2. In other words, n is powerful if it can be expressed

as ±a2b3 for certain positive integers a, b not both equal to 1.

Exercise 6.10. (i) Let F (X, Y ) ∈ Z[X, Y ] be a square-free binary form of degree

at least 5. Assuming the Granville-Langevin conjecture, prove that there are only

finitely many pairs of integers x, y with gcd(x, y) = 1 such that F (x, y) is powerful.

(ii) Assuming the Granville-Langevin conjecture, prove the following. Let f(X) ∈
Z[X] be a polynomial of degree d > 2 with d distinct zeros in C. Then for every

ε > 0 there is a constant C ′(f, ε) > 0 such that

rad(f(x)) > C ′(f, ε)|x|d−1−ε for all x ∈ Z with f(x) 6= 0.

Hint. Construct from f a binary form F of degree d+ 1.

(iii) Deduce the following conjecture of Schinzel: if f is any square-free polynomial

in Z[X] of degree > 3, then there are only finitely many integers x such that f(x) is

powerful.

Exercise 6.11. (i) Let ξ1, ξ2 be distinct rational numbers. Prove that

|ξ1 − ξ2| >
(
H(ξ1)H(ξ2)

)−1
.

(ii) Let α be a real number, and κ > 2, and consider the inequality

(6.23) |ξ − α| 6 H(ξ)−κ in ξ ∈ Q with ξ > α.

Prove that if ξ1, ξ2 are two distinct solutions of (6.23) with H(ξ2) > H(ξ1), then

H(ξ2) > H(ξ1)
κ−1.

(So there are large gaps between the solutions of (6.23); we call such an inequality

a gap principle.)

Hint. Estimate from above |ξ1 − ξ2|.
(iii) Let A > 2, c > 1. Prove that the number of solutions ξ of (6.23) with A 6
H(ξ) < Ac is bounded above by 1 + log c

log(κ−1) .

(iv) Let α be a real algebraic number of degree d > 3 and κ > d
2

+ 1. Compute an

explicit upper bound for the number of solutions of (6.23) in terms of the constants

C and λ from Theorem 6.14.
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