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The goal of this article is to analyze an equation that arises naturally in the study of the
generalized Catalan equation in positive characteristic, see [I].

Setup
Let K be a finitely generated field over [F, with ¢ a power of some prime p > 0. We assume
that IF, is algebraically closed in K. Fix o,y € K* and consider the equation

ag™ =" (1)

with £ € K* and m,t € Z>o. We say that t € Z>( is m-admissible if there is { € K* such
that (£, m,t) is a solution of ([I)). Define

= {a,)
to be the multiplicative group generated by « and ~.

Theorem 1. Suppose that rk(I') = 2. Then there are only finitely many possibilities for m.
Furthermore, for each fixed m the set of m- admissible t is empty or an arithmetic progression.

Proof. Define
I:={x € K*: 3m > 0 such that 2™ € T'}.

Because K and T' are finitely generated, it follows that I is finitely generated too. Recall
that F, was algebraically closed in K. It follows that I'*** = ' N F} and that I = F}.
Hence we get that

r/(rniy,) < P’/IF;‘,

where T” /IFZ; is a finitely generated free abelian group. So we can find a basis v1,...,7, of
I /F; such that

F//F; = (V5o )

« dys
T/(TNTF) = (v, )

T

for some ' <r, dy|...|dy.
Then, using the definition of I" and our assumption that rk(I') = 2, it follows that
r =1’ = 2. We conclude that

F,/FZ = (71,72)-

So we can write uniquely

F/ = {CmO/YInergLQ 1mg € {O,,Q* 2}7m1,m2 € Z}
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with ¢ a primitive element of Fy. Observe that § € I, so we can write

ai . a2

o= CaO’Yl Yo
v = (O
§= ("1

with ag.co,zo € {0,...,q—2} and a;,¢;, z; € Z for i = 1,2. Then (£, m,t) is a solution to (/1))
if and only if

ao +mxo = p'cy mod (¢ — 1)
a1 +maz = ple (2)

¢
a2 +mxo = pca.

Our assumption rk(T') = 2 tells us that ajco # ager. Write m = p*m/ with p { m’. We claim
that there are only finitely many options for s and m’, hence for m. But indeed

m(aszy — a172) = p'(azer — arca),

so m' | agey — ajey. Since agep — ajey # 0, this gives finitely many possibilities for m/.

Now we are going to bound s and for this we note that a; # 0 or as # 0, again by
the fact that ajco # agci. Suppose without loss of generality that a; # 0. The equation
a1 + mx1 = pte; implies

pmin(s,t) | ai,

so min(s, t) is bounded. On the other hand recall that

m | p'(azcr — ajez),

which implies that s <t + ordp(a201 —aycg). This shows that s is bounded, which completes
the proof of the first part of Theorem [T}

So from now on we assume that m’; s and hence m are fixed. If (£,¢) is a solution to (2),
then ¢ satisfies

ap = p'coy mod ged(m,q— 1)
al = ptcl mod m (3)

as = ptCQ mod m.

Reversely, if ¢ satisfies , then (§,t) satisfies for a uniquely determined £. Therefore it
suffices to analyze (3]). By the Chinese remainder theorem is the same as

ap = p'co mod ged(m,q— 1)

al = ptcl mod m’

as = ples mod m’ (4)
a1 = p'e;  mod p*

as = plca mod p°.

First we look at the first three equations of . If there is no solution ¢ € Zx>(, then the
set of m-admissible ¢ is empty. So for the remainder of this article we assume that there is
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a solution ¢t € Z>(. Let ¢y be the smallest solution and let ¢ be any solution. Then the first
three equations can be rewritten as

plcog = p'°cy mod ged(m,q — 1)

ptcl = ptocl mod m’

ples = plocy mod m/,
which is equivalent to

t—to — 1 mod ng(m’ q— 1)

P - ng(maq - 1760)
/
t—to — 1 q___m
p o ged(ep,m’) %)
!
=t =1 d S C— .
P mo ged(cg, m’)

Define

-1 *
O := order of p in <Z/ ged(m, g — 1) )Z>

ng(mv q— 17 o
m

P *
Oy := order of p in <Z/ng(C1,m’)Z>

. m :
03 := order Ofp m <Z/WZ> .

Then t satisfies the first equation of if and only if
t = tg +nO;

for some n € Z>( and similarly for the second and third equation. Hence t satisfies if and
only if
t =1ty + nlcm(Ol, 09, 03)

for some n € Zx>g.
We still need to study the last two equations of , i.e.

a1 =ple; mod p? (©)
as = ples mod p°.
We distinguish two cases. If a; = a2 = 0 mod p®, then t satisfies @ if and only if ¢t >
s—ordp(c2). We conclude that in this case t satisfies (4]) if and only if ¢ = to+nlcm(O1, Oz, O3)
for some n € Z>¢ and t > s — ordp(c2). Clearly, the t € Z>( satisfying these two conditions
form an arithmetic progression as desired.
Suppose instead without loss of generality that a; 0 mod p®. Then the equation

a1 =ple; mod p?

can have at most one solution ¢ € Z>o. Hence has either a single or no solution. Again
we reach the desired conclusion, which completes the proof of Theorem O
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Discussion
The case rk(I') = 1 leads to slightly different behavior. It is easy to see that the first part of
Theorem 1 no longer holds. Indeed, take K = Fj(u) over [F,. Choose av = v = u, then we

have

t_ t
w-uP =P

for all t € Z>o.

Define ¢ to be admissible if it is m-admissible for some m > 2. Then t is admissible if and
only if there is m € Zs>9 such that m | p'c; — a3 and ged(m,q — 1) = 1. Then, using results
on S-unit equations (see Mahler), one can show that ¢ is admissible for all sufficiently large ¢.
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