Vinogradov's method and class groups

Peter Koymans Universiteit Leiden

Bonn 2018 *ELAZ*

Theorem 1 (Vinogradov's theorem, 1930s)

Every sufficiently large odd integer can be written as the sum of three prime numbers.

Need to estimate

$$\sum_{p \le X} e^{2\pi i \alpha p}$$

for $\alpha \in \mathbb{R}$.

Vinogradov's idea: a new method to deal with sums over primes.

Friedlander and Iwaniec expanded on the ideas of Vinogradov, and used them to prove their famous result that $X^2 + Y^4$ is prime infinitely often.

Let p be a prime number and let h(-p) be the class number of $\mathbb{Q}(\sqrt{-p})$.

By Gauss genus theory, the 2-part of $Cl(\mathbb{Q}(\sqrt{-p}))$ is cyclic.

Hence the 2-adic valuation of h(-p) determines the group structure of $Cl(\mathbb{Q}(\sqrt{-p}))[2^{\infty}]$. We have

2 | $h(-p) \Leftrightarrow p$ splits completely in $\mathbb{Q}(i)$ 4 | $h(-p) \Leftrightarrow p$ splits completely in $\mathbb{Q}(\zeta_8)$ 8 | $h(-p) \Leftrightarrow p$ splits completely in $\mathbb{Q}(\zeta_8, \sqrt{1+i})$.

This allows one to use the Chebotarev density theorem to prove density results for the divisibility of h(-p) by 2^k for k = 1, 2, 3.

No such field is known for $16 \mid h(-p)$.

Observation due to Milovic: criteria in the literature for $16 \mid h(-p)$ are very similar to the symbols appearing in the work of Friedlander and Iwaniec on $X^2 + Y^4$.

Use Vinogradov's method!

Theorem 2 (K.)

The natural density of prime numbers p for which 16 divides h(-p) is $\frac{1}{16}$.

This is an improvement of earlier work of Koymans and Milovic, who proved the same result under the assumption of a short character sum conjecture.