Vinogradov's method and class groups

Peter Koymans
Universiteit Leiden

Bonn 2018
ELAZ

Vinogradov's method

Theorem 1 (Vinogradov's theorem, 1930s)

Every sufficiently large odd integer can be written as the sum of three prime numbers.

Need to estimate

$$
\sum_{p \leq x} e^{2 \pi i \alpha p}
$$

for $\alpha \in \mathbb{R}$.

Vinogradov's idea: a new method to deal with sums over primes.
Friedlander and Iwaniec expanded on the ideas of Vinogradov, and used them to prove their famous result that $X^{2}+Y^{4}$ is prime infinitely often.

Class groups

Let p be a prime number and let $h(-p)$ be the class number of $\mathbb{Q}(\sqrt{-p})$.
By Gauss genus theory, the 2-part of $\mathrm{Cl}(\mathbb{Q}(\sqrt{-p}))$ is cyclic.
Hence the 2-adic valuation of $h(-p)$ determines the group structure of $\operatorname{Cl}(\mathbb{Q}(\sqrt{-p}))\left[2^{\infty}\right]$. We have
$2 \mid h(-p) \Leftrightarrow p$ splits completely in $\mathbb{Q}(i)$
$4 \mid h(-p) \Leftrightarrow p$ splits completely in $\mathbb{Q}\left(\zeta_{8}\right)$
$8 \mid h(-p) \Leftrightarrow p$ splits completely in $\mathbb{Q}\left(\zeta_{8}, \sqrt{1+i}\right)$.
This allows one to use the Chebotarev density theorem to prove density results for the divisibility of $h(-p)$ by 2^{k} for $k=1,2,3$.

No such field is known for $16 \mid h(-p)$.

Density result

Observation due to Milovic: criteria in the literature for $16 \mid h(-p)$ are very similar to the symbols appearing in the work of Friedlander and Iwaniec on $X^{2}+Y^{4}$.

Use Vinogradov's method!

Theorem 2 (K.)

The natural density of prime numbers p for which 16 divides $h(-p)$ is $\frac{1}{16}$.
This is an improvement of earlier work of Koymans and Milovic, who proved the same result under the assumption of a short character sum conjecture.

