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History of Pell’s equation

For a fixed squarefree integer d > 0, the equation

x2 − dy2 = 1 to be solved in x , y ∈ Z

has been studied since at least the ancient Greeks.

Bhaskara II (12th century) gave an algorithm to find non-trivial solutions
of this equation.

Fermat challenged Brouncker and Wallis to solve it for d = 61. The
smallest non-trivial solution is

17663190492 − 61 · 2261539802 = 1.
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The negative Pell equation

The equation

x2 − dy2 = −1 to be solved in x , y ∈ Z

is known as the negative Pell equation and is not always soluble.

Define
D := {d > 0 : d squarefree, p | d ⇒ p 6≡ 3 mod 4}

D− := {d > 0 : d squarefree, negative Pell is soluble}.

By the Hasse-Minkowski Theorem we have D− ⊆ D.

Classical techniques in analytic number theory give a constant C > 0
such that

#{d ≤ X : d ∈ D} ∼ C · X√
logX

.

Question: what is the density of D− inside D?
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Conjectures on the negative Pell equation

Nagell (1930s) conjectured that

lim
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

exists and lies in (0, 1).

Stevenhagen (1995) conjectured that

lim
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

= 1− α,

where

α =
∞∏
j=1

(1 + 2−j)−1 ≈ 0.41942.
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Progress towards Stevenhagen’s conjecture

Fouvry–Klüners (2010) proved that

5α

4
≤ lim inf

X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

≤ lim sup
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

≤ 2

3
.

Chan–K.–Milovic–Pagano improved the lower bound to

α ·
∞∑
n=0

2−n(n+3)/2 ≈ α · 1.28325.

Theorem (K.–Pagano (2022))

We have

lim
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

= 1− α

in accordance with Nagell’s and Stevenhagen’s conjecture.
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Proof sketch

The negative Pell equation is soluble if and only if the natural surjective
map Cl+(Q(

√
d))[2∞]→ Cl(Q(

√
d))[2∞] is an isomorphism.

Theorem (A. Smith (2017))

Let A be a finite, abelian 2-group. Then

lim
X→∞

# {K im. quadr. : |DK | < X , 2Cl(K )[2∞] ∼= A}
# {K im. quadr. : |DK | < X}

=

∏∞
i=1

(
1− 1

2i

)
#Aut(A)

.

There are major obstructions to adapt Smith’s work to the family D
I we work with real quadratic fields instead of imaginary quadratic;

I D has density 0 in the squarefree integers;

I D naturally ends up in the error term in Smith’s proof!

Last part is due to some extra symmetry property in this family. This has
prevented Smith’s techniques from being applied in many other settings.
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New tools

We prove a reciprocity law for C2 o C n
2 -extensions of Q.

For n = 0: this is quadratic reciprocity.
For n = 1: this is Rédei reciprocity (splitting in D4-extensions).

Proof relies on our earlier description of Cl(K )[2] for K multiquadratic.

Another new aspect: appearance of involution spins(
α

σ(α)

)
K

,

where K is multiquadratic, (·/·)K is the Legendre symbol and σ is an
element of Gal(K/Q).

We prove that such an involution spin vanishes under suitable conditions.

Here we make essential use of the fact that all odd prime divisors of D
are 1 modulo 4.
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Future work

Part II
Applications of new techniques
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Chowla’s conjecture

Conjecture (Generalized Riemann hypothesis)

All non-trivial zeroes of L(s, χ) lie on s = 1/2 + it.

Conjecture (Chowla’s conjecture)

We have L( 1
2 , χ) 6= 0 for all primitive Dirichlet characters χ.

Important results towards Chowla’s conjecture are due to Soundararajan
(unconditionally) and Özlük–Snyder (conditionally).

There has also been great interest in the function field case of this
conjecture.
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Function fields

Theorem (W. Li (2018))

Let q be an odd prime power. There are infinitely many monic,
squarefree polynomials D ∈ Fq[t] such that L( 1

2 , χD) = 0.

However, 100% non-vanishing is still expected. This is currently not
known for any single family of L-functions.

The Özlük–Snyder result is known unconditionally over function fields
(Bui–Florea), and many other families have also been studied.

Theorem (K.–Pagano–Shusterman (in progress))

We have L( 1
2 , χD) 6= 0 for 100% of the monic squarefree polynomials D.
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Proof sketch

By a result of Groethendieck we have L( 1
2 , χD) 6= 0 if and only if there

exists an embedding

Q2/Z2 ↪→ Jac(CD)(Fq)[2∞][Frob2
q − q],

where CD is the curve y2 = D.

We now consider the Bloch–Kato Selmer groups H1(Fq(t),M), where
M = Z2[x ]/(x2 − q).

Bloch–Kato Selmer groups naturally come with a (sequence of)
generalized Cassels–Tate pairings.

We prove equidistribution of this pairing using the techniques from
Stevenhagen’s conjecture.

Critically, the first Bloch–Kato Selmer group satisfies some additional
symmetry pairings.
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Greenberg’s conjecture

There is also a number field analogue, where one replaces Frobq by a
generator of the unique Z2-extension of Q.

In this way one obtains non-vanishing results for p-adic L-functions.

The next conjecture is one of the central conjectures in Iwasawa theory.

Conjecture (Greenberg’s conjecture)

Let K be a real quadratic field. Then the p-part of the class group of KL
is finite, where L is the cyclotomic Zp-extension.

One may consider a statistical version of this conjecture for p = 2, i.e. a
100% result. In the first layer we have:

Theorem (K.–Morgan–Smit (2021))

We have rk4Cl(Q(
√
n,
√

2)) = ω3,5(n)− 2 for 100% of the squarefree
integers n.
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Counting number fields

Part III
Malle’s conjecture
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The conjecture

Conjecture (Malle’s conjecture)

Let G be a non-trivial group. Then there exist numbers c(G ) > 0,
b(G ) ∈ Z≥0 and a(G ) ∈ Q>0 such that

#{K/Q : DK ≤ X ,Gal(K/Q) ∼= G} ∼ c(G )X a(G)(logX )b(G).

This is a generalization of the inverse Galois problem.
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Known cases

Malle’s conjecture is known in a limited number of cases.

I abelian G by Wright;

I S3 by Davenport–Heilbronn;

I S4,S5 by Bhargava;

I sextic S3 by Bhargava–Wood;

I quartic D4 by Cohen–Diaz y Diaz–Olivier;

I generalized quaternion groups by Klüners;

I any nilpotent group G such that all elements of order p are central,
where p is the smallest prime dividing #G , by K.–Pagano;

I direct products Sn×A for n ∈ {3, 4, 5} and A abelian by Wang (with
#A coprime to some values) and later by Masri–Thorne–Tsai–Wang;

I nonic Heisenberg extensions by K.–Fouvry.
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Malle’s conjecture by product of ramified primes

Ordering by discriminant has some undesirable features: leading constant
need not be an Euler product and subfields may occur a positive
proportion of the time.

Wood introduced a class of “fair counting functions”.

Important examples of fair counting functions are the conductor and the
product of ramified primes.

Mäki (1993): Malle’s conjecture for abelian extensions ordered by
conductor.

Wood (2010): Malle’s conjecture for abelian extensions ordered by any
fair counting function.

Altug–Shankar–Varma–Wilson count D4-extensions by (Artin) conductor.
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Nilpotent groups

Theorem (K.–Pagano (in progress))

Assume GRH. Let G be a nilpotent group with #G odd. Then

#

K/Q :
∏

p:Ip 6={id}

p ≤ X ,Gal(K/Q) ∼= G ,K ∩Q(ζ|G |∞) = Q


is asymptotic to c ′(G )X (logX )b

′(G).

Here c ′(G ) is the expected Euler product and b′(G ) is the näıve analogue
of Malle’s b(G ) in this situation.

Surprisingly, the exponent b′(G ) need no longer be correct if the
condition K ∩Q(ζ|G |∞) = Q is dropped.
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Questions?

Thank you for your attention!
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