Averages of multiplicative functions over integer sequences

Peter Koymans
(Joint work with Stephanie Chan, Carlo Pagano, Efthymios Sofos)

Chennai Mathematical Insitute

8 January 2024

Overview

Overview

1. For $f: \mathbb{N} \rightarrow[0, \infty)$ and $c_{n} \in \mathbb{N}$ can we estimate

$$
\sum_{n=1}^{N} f\left(c_{n}\right) ?
$$

Overview

1. For $f: \mathbb{N} \rightarrow[0, \infty)$ and $c_{n} \in \mathbb{N}$ can we estimate

$$
\sum_{n=1}^{N} f\left(c_{n}\right) ?
$$

2. Applications to arithmetic geometry?

Overview

1. For $f: \mathbb{N} \rightarrow[0, \infty)$ and $c_{n} \in \mathbb{N}$ can we estimate

$$
\sum_{n=1}^{N} f\left(c_{n}\right) ?
$$

2. Applications to arithmetic geometry?
3. Applications to algebraic number theory?

Class numbers

B/ If p is a small odd prime, the proportion of imaginary quadratic fields whose class number is divisible by p seems to be significantly greater than $1 / \mathrm{p}$ (for instance 43% for $\mathrm{p}=3,23.5 \%$ for $\mathrm{p}=5$).

- Consider $K=\mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- Consider $K=\mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- The ideal class group Cl_{K} :
- Finite abelian group encoding crucial arithmetic information.
- Consider $K=\mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- The ideal class group Cl_{K} :
- Finite abelian group encoding crucial arithmetic information.
- For $n \geq 1, \mathrm{Cl}_{K}[n]$ is the n-torsion subgroup.
- Consider $K=\mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- The ideal class group Cl_{K} :
- Finite abelian group encoding crucial arithmetic information.
- For $n \geq 1, \mathrm{Cl}_{K}[n]$ is the n-torsion subgroup.
- Interesting properties:
- If $\# \mathrm{Cl}_{K}[n]=1$, then $n \nmid \# \mathrm{Cl}_{K}[n]$.
- Average upper bounds: $\# \mathrm{Cl}_{K}[n]=O\left(|D|^{\alpha(n)}\right)$ (Soundararajan, Heath-Brown-Pierce, Frei-Widmer, Koymans-Thorner).
- Consider $K=\mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- The ideal class group Cl_{K} :
- Finite abelian group encoding crucial arithmetic information.
- For $n \geq 1, \mathrm{Cl}_{K}[n]$ is the n-torsion subgroup.
- Interesting properties:
- If $\# \mathrm{Cl}_{K}[n]=1$, then $n \nmid \# \mathrm{Cl}_{K}[n]$.
- Average upper bounds: $\# \mathrm{Cl}_{K}[n]=O\left(|D|^{\alpha(n)}\right)$ (Soundararajan, Heath-Brown-Pierce, Frei-Widmer, Koymans-Thorner).

Conjecture (Cohen \& Lenstra)

- $\# \mathrm{Cl}_{K}[n]$ has constant average when n odd.
- Consider $K=\mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- The ideal class group Cl_{K} :
- Finite abelian group encoding crucial arithmetic information.
- For $n \geq 1, \mathrm{Cl}_{K}[n]$ is the n-torsion subgroup.
- Interesting properties:
- If $\# \mathrm{Cl}_{K}[n]=1$, then $n \nmid \# \mathrm{Cl}_{K}[n]$.
- Average upper bounds: $\# \mathrm{Cl}_{K}[n]=O\left(|D|^{\alpha(n)}\right)$ (Soundararajan, Heath-Brown-Pierce, Frei-Widmer, Koymans-Thorner).

Conjecture (Cohen \& Lenstra)

- $\# \mathrm{Cl}_{K}[n]$ has constant average when n odd.
- $\# \mathrm{Cl}_{K}[n]$ exhibits average of order $\log |D|$ when n even.
- Consider $K=\mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free.
- The ideal class group Cl_{K} :
- Finite abelian group encoding crucial arithmetic information.
- For $n \geq 1, \mathrm{Cl}_{K}[n]$ is the n-torsion subgroup.
- Interesting properties:
- If $\# \mathrm{Cl}_{K}[n]=1$, then $n \nmid \# \mathrm{Cl}_{K}[n]$.
- Average upper bounds: $\# \mathrm{Cl}_{K}[n]=O\left(|D|^{\alpha(n)}\right)$ (Soundararajan, Heath-Brown-Pierce, Frei-Widmer, Koymans-Thorner).

Conjecture (Cohen \& Lenstra)

- $\# \mathrm{Cl}_{K}[n]$ has constant average when n odd.
- $\# \mathrm{Cl}_{K}[n]$ exhibits average of order $\log |D|$ when n even.
- Known cases:
- $n=3$: Davenport-Heilbronn, Bhargava-Shankar-Tsimerman.
- $n=2^{k}$: Fouvry-Klüners, A. Smith.
n-torsion with n divisible by more than one prime?
n-torsion with n divisible by more than one prime?
-know $\# \mathrm{Cl}_{K}[6]=\# \mathrm{Cl}_{K}[2] \cdot \# \mathrm{Cl}_{K}[3]$ but nothing on averages.
n-torsion with n divisible by more than one prime? - know $\# \mathrm{Cl}_{K}[6]=\# \mathrm{Cl}_{K}[2] \cdot \# \mathrm{Cl}_{K}[3]$ but nothing on averages.

$$
\begin{aligned}
& D \asymp-10^{6} \\
& \# \mathrm{Cl}_{K}[2] \\
& \# \mathrm{Cl}_{K}[3]
\end{aligned}
$$

n-torsion with n divisible by more than one prime? -know $\# \mathrm{Cl}_{K}[6]=\# \mathrm{Cl}_{K}[2] \cdot \# \mathrm{Cl}_{K}[3]$ but nothing on averages.

$$
\begin{aligned}
& D \asymp-10^{6} \\
& \# \mathrm{Cl}_{K}[2] \\
& \# \mathrm{Cl}_{K}[3]
\end{aligned}
$$

Theorem (CKPS, 2023) .2- and 3-torsions are independent
n-torsion with n divisible by more than one prime? -know $\# \mathrm{Cl}_{K}[6]=\# \mathrm{Cl}_{K}[2] \cdot \# \mathrm{Cl}_{K}[3]$ but nothing on averages.

$$
\begin{aligned}
& D \asymp-10^{6} \\
& \# \mathrm{Cl}_{K}[2] \\
& \# \mathrm{Cl}_{K}[3]
\end{aligned}
$$

Theorem (CKPS, 2023) .2- and 3-torsions are independent
There are $c, c^{\prime}>0$ such that

$$
c \log X \leq \frac{1}{X} \sum_{0<D<X} \# \mathrm{Cl}_{K}[6] \leq c^{\prime} \log X
$$

n-torsion with n divisible by more than one prime? -know $\# \mathrm{Cl}_{K}[6]=\# \mathrm{Cl}_{K}[2] \cdot \# \mathrm{Cl}_{K}[3]$ but nothing on averages.

$$
\begin{aligned}
& D \asymp-10^{6} \\
& \# \mathrm{Cl}_{K}[2] \\
& \# \mathrm{Cl}_{K}[3]
\end{aligned}
$$

Theorem (CKPS, 2023) .2- and 3-torsions are independent
There are $c, c^{\prime}>0$ such that

$$
c \log X \leq \frac{1}{X} \sum_{0<D<X} \# \mathrm{Cl}_{K}[6] \leq c^{\prime} \log X
$$

n-torsion with n divisible by more than one prime? -know $\# \mathrm{Cl}_{K}[6]=\# \mathrm{Cl}_{K}[2] \cdot \# \mathrm{Cl}_{K}[3]$ but nothing on averages.

$$
\begin{aligned}
& D \asymp-10^{6} \\
& \# \mathrm{Cl}_{K}[2] \\
& \# \mathrm{Cl}_{K}[3]
\end{aligned}
$$

Theorem (CKPS, 2023) .2- and 3-torsions are independent
There are $c, c^{\prime}>0$ such that

$$
c \log X \leq \frac{1}{X} \sum_{0<D<X} \# \mathrm{Cl}_{K}[6] \leq c^{\prime} \log X
$$

- First "independence" result for Cohen-Lenstra
n-torsion with n divisible by more than one prime? -know $\# \mathrm{Cl}_{K}[6]=\# \mathrm{Cl}_{K}[2] \cdot \# \mathrm{Cl}_{K}[3]$ but nothing on averages.

$$
D \asymp-10^{6}
$$

$$
\# \mathrm{Cl}_{K}[2]
$$

$$
\# \mathrm{Cl}_{K}[3]
$$

Theorem (CKPS, 2023) .2- and 3-torsions are independent
There are $c, c^{\prime}>0$ such that

$$
c \log X \leq \frac{1}{X} \sum_{0<D<X} \# \mathrm{Cl}_{K}[6] \leq c^{\prime} \log X
$$

- First "independence" result for Cohen-Lenstra
- same for negative discriminants
- MIXED MOMENTS:

$$
\forall s>0 \sum_{D<X} \# \mathrm{Cl}_{K}[2]^{s} \# \mathrm{Cl}_{K}[3] \asymp X(\log X)^{2^{s}-1} .
$$

Multiplicative functions over integer sequences

$$
\text { ON THE SUM } \sum_{k=1}^{x} d(f(k))
$$

P. Erdös*.

1. Let $d(n)$ denote the number of divisors of a positive integer n, and let $f(k)$ be an irreducible polynomial of degree l with integral coefficients. We shall suppose for simplicity that $f(k)>0$ for $k=1,2, \ldots$. In the present paper we prove the following result.

Theorem. There exist positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
c_{1} x \log x<\sum_{k=1}^{x} d(f(k))<c_{2} x \log x \tag{1}
\end{equation*}
$$

for $x \geqslant 2$.

- $d(n)=\#\{$ positive integer divisors of $n\}$
- $d(n)=\#\{$ positive integer divisors of $n\}$
- multiplicative: $d(a b)=d(a) d(b)$ for coprime a, b
- $d(n)=\#\{$ positive integer divisors of $n\}$
- multiplicative: $d(a b)=d(a) d(b)$ for coprime a, b
- Gauss' genus theory, $\# \mathrm{Cl}_{K}[2]$ is essentially $d(|D|)$.
- $d(n)=\#\{$ positive integer divisors of $n\}$
- multiplicative: $d(a b)=d(a) d(b)$ for coprime a, b
- Gauss' genus theory, $\# \mathrm{Cl}_{K}[2]$ is essentially $d(|D|)$.
- 3-torsion parametrized by polynomials $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

$$
\sum_{0<D<X} \# \mathrm{Cl}_{K}[2] \# \mathrm{Cl}_{K}[3] \leadsto \sum_{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{Z}^{4} \cap \mathcal{A}(X)} d\left(F\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right)
$$

- $d(n)=\#\{$ positive integer divisors of $n\}$
- multiplicative: $d(a b)=d(a) d(b)$ for coprime a, b
- Gauss' genus theory, $\# \mathrm{Cl}_{K}[2]$ is essentially $d(|D|)$.
- 3-torsion parametrized by polynomials $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

$$
\sum_{0<D<X} \# \mathrm{Cl}_{K}[2] \# \mathrm{Cl}_{K}[3] \leadsto \sum_{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{Z}^{4} \cap \mathcal{A}(X)} d\left(F\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right)
$$

Goal

For "nice" integer sequences c_{a}, estimate

$$
\sum_{a \in \mathcal{A}} w_{X}(a) f\left(c_{a}\right) \quad \text { for } X \geq 1
$$

- A countable set,
- $d(n)=\#\{$ positive integer divisors of $n\}$
- multiplicative: $d(a b)=d(a) d(b)$ for coprime a, b
- Gauss' genus theory, $\# \mathrm{Cl}_{K}[2]$ is essentially $d(|D|)$.
- 3-torsion parametrized by polynomials $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

$$
\sum_{0<D<X} \# \mathrm{Cl}_{K}[2] \# \mathrm{Cl}_{K}[3] \leadsto \sum_{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{Z}^{4} \cap \mathcal{A}(X)} d\left(F\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right)
$$

Goal

For "nice" integer sequences c_{a}, estimate

$$
\sum_{a \in \mathcal{A}} w_{X}(a) f\left(c_{a}\right) \quad \text { for } X \geq 1
$$

- A countable set,
- f multiplicative and $0 \leq f \leq d^{s}$,
- $d(n)=\#\{$ positive integer divisors of $n\}$
- multiplicative: $d(a b)=d(a) d(b)$ for coprime a, b
- Gauss' genus theory, $\# \mathrm{Cl}_{K}[2]$ is essentially $d(|D|)$.
- 3-torsion parametrized by polynomials $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

$$
\sum_{0<D<X} \# \mathrm{Cl}_{K}[2] \# \mathrm{Cl}_{K}[3] \leadsto \sum_{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{Z}^{4} \cap \mathcal{A}(X)} d\left(F\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right)
$$

Goal

For "nice" integer sequences c_{a}, estimate

$$
\sum_{a \in \mathcal{A}} w_{X}(a) f\left(c_{a}\right) \quad \text { for } X \geq 1
$$

- A countable set,
- f multiplicative and $0 \leq f \leq d^{s}$,
- $w_{X}: \mathcal{A} \rightarrow[0, \infty)$ finite support function or more general.
- $d(n)=\#\{$ positive integer divisors of $n\}$
- multiplicative: $d(a b)=d(a) d(b)$ for coprime a, b
- Gauss' genus theory, $\# \mathrm{Cl}_{K}[2]$ is essentially $d(|D|)$.
- 3-torsion parametrized by polynomials $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

$$
\sum_{0<D<X} \# \mathrm{Cl}_{K}[2] \# \mathrm{Cl}_{K}[3] \leadsto \sum_{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{Z}^{4} \cap \mathcal{A}(X)} d\left(F\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right)
$$

Goal

For "nice" integer sequences c_{a}, estimate

$$
\sum_{a \in \mathcal{A}} w_{X}(a) f\left(c_{a}\right) \quad \text { for } X \geq 1
$$

- A countable set,
- f multiplicative and $0 \leq f \leq d^{s}$,
- $w_{X}: \mathcal{A} \rightarrow[0, \infty)$ finite support function or more general.

Asymptotics are very open: ∞ Square-Free values of $t^{4}+2$ open.

- $d(n)=\#\{$ positive integer divisors of $n\}$
- multiplicative: $d(a b)=d(a) d(b)$ for coprime a, b
- Gauss' genus theory, $\# \mathrm{Cl}_{K}[2]$ is essentially $d(|D|)$.
- 3-torsion parametrized by polynomials $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

$$
\sum_{0<D<X} \# \mathrm{Cl}_{K}[2] \# \mathrm{Cl}_{K}[3] \leadsto \sum_{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{Z}^{4} \cap \mathcal{A}(X)} d\left(F\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right)
$$

Goal

For "nice" integer sequences c_{a}, estimate

$$
\sum_{a \in \mathcal{A}} w_{X}(a) f\left(c_{a}\right) \quad \text { for } X \geq 1
$$

- A countable set,
- f multiplicative and $0 \leq f \leq d^{s}$,
- $w_{X}: \mathcal{A} \rightarrow[0, \infty)$ finite support function or more general.

Asymptotics are very open: ∞ Square-Free values of $t^{4}+2$ open.

- Happy with "correct" bounds
- Erdős (1952), Wolke (1971) special cases

Assumption: sequence "equidistributed" in progressions

$\exists M=M(X), \epsilon, \epsilon^{\prime}>0:$ for all $d \leq M^{\epsilon}$

$$
\sum_{\substack{a \in \mathcal{F} \\ \equiv=0(\bmod d)}} w_{X}(a)=h(d) M\left(1+O\left(\log ^{-2 \kappa} M\right)\right)+O\left(M^{1-\epsilon^{\prime}}\right)
$$

Assumption: sequence "equidistributed" in progressions

$\exists M=M(X), \epsilon, \epsilon^{\prime}>0$: for all $d \leq M^{\epsilon}$

$$
\sum_{\substack{a \in \mathcal{F} \\ c_{a} \equiv 0(\bmod d)}} w_{X}(a)=h(d) M\left(1+O\left(\log ^{-2 \kappa} M\right)\right)+O\left(M^{1-\epsilon^{\prime}}\right) .
$$

- h multiplicative
- $h(p)$ looks like κ / p over the primes
- $h\left(p^{t}\right)=O_{p}\left(1 / p^{\delta t}\right)$ for some $\delta>0$

Assumption: sequence "equidistributed" in progressions

$\exists M=M(X), \epsilon, \epsilon^{\prime}>0:$ for all $d \leq M^{\epsilon}$

$$
\sum_{\substack{a \in \mathcal{F} \\ c_{a} \equiv 0(\bmod d)}} w_{X}(a)=h(d) M\left(1+O\left(\log ^{-2 \kappa} M\right)\right)+O\left(M^{1-\epsilon^{\prime}}\right) .
$$

- h multiplicative
- $h(p)$ looks like κ / p over the primes
- $h\left(p^{t}\right)=O_{p}\left(1 / p^{\delta t}\right)$ for some $\delta>0$

Theorem (CKPS, 2023) The main tool

Assumption: sequence "equidistributed" in progressions

$\exists M=M(X), \epsilon, \epsilon^{\prime}>0$: for all $d \leq M^{\epsilon}$

$$
\sum_{\substack{a \in \mathcal{F} \\ c_{a} \equiv 0(\bmod d)}} w_{X}(a)=h(d) M\left(1+O\left(\log ^{-2 \kappa} M\right)\right)+O\left(M^{1-\epsilon^{\prime}}\right) .
$$

- h multiplicative
- $h(p)$ looks like κ / p over the primes
- $h\left(p^{t}\right)=O_{p}\left(1 / p^{\delta t}\right)$ for some $\delta>0$

Theorem (CKPS, 2023) The main too!

Fix $s>0$, multiplicative $0 \leq f \leq d^{s}$, equidistributed c_{a}.

Assumption: sequence "equidistributed" in progressions

$\exists M=M(X), \epsilon, \epsilon^{\prime}>0$: for all $d \leq M^{\epsilon}$

$$
\sum_{\substack{a \in \mathcal{A} \\ c_{a} \equiv 0(\bmod d)}} w_{X}(a)=h(d) M\left(1+O\left(\log ^{-2 \kappa} M\right)\right)+O\left(M^{1-\epsilon^{\prime}}\right)
$$

- h multiplicative
- $h(p)$ looks like κ / p over the primes
- $h\left(p^{t}\right)=O_{p}\left(1 / p^{\delta t}\right)$ for some $\delta>0$

Theorem (CKPS, 2023) The main too!

Fix $s>0$, multiplicative $0 \leq f \leq d^{s}$, equidistributed c_{a}. Then

$$
\sum_{a \in \mathcal{A}} w_{X}(a) f\left(c_{a}\right)=O\left(M \prod_{p \leq M}(1+(f(p)-1) h(p))\right)
$$

Assumption: sequence "equidistributed" in progressions

$\exists M=M(X), \epsilon, \epsilon^{\prime}>0$: for all $d \leq M^{\epsilon}$

$$
\sum_{\substack{a \in \mathcal{A} \\ c_{a} \equiv 0(\bmod d)}} w_{X}(a)=h(d) M\left(1+O\left(\log ^{-2 \kappa} M\right)\right)+O\left(M^{1-\epsilon^{\prime}}\right)
$$

- h multiplicative
- $h(p)$ looks like κ / p over the primes
- $h\left(p^{t}\right)=O_{p}\left(1 / p^{\delta t}\right)$ for some $\delta>0$

Theorem (CKPS, 2023) The main too!

Fix $s>0$, multiplicative $0 \leq f \leq d^{s}$, equidistributed c_{a}. Then

$$
\sum_{a \in \mathcal{A}} w_{X}(a) f\left(c_{a}\right)=O\left(M \prod_{p \leq M}(1+(f(p)-1) h(p))\right)
$$

- $\prod_{p \leq M}$ gives the expected logarithms.

Assumption: sequence "equidistributed" in progressions

$\exists M=M(X), \epsilon, \epsilon^{\prime}>0$: for all $d \leq M^{\epsilon}$

$$
\sum_{\substack{a \in \mathcal{A} \\ c_{a} \equiv 0(\bmod d)}} w_{X}(a)=h(d) M\left(1+O\left(\log ^{-2 \kappa} M\right)\right)+O\left(M^{1-\epsilon^{\prime}}\right)
$$

- h multiplicative
- $h(p)$ looks like κ / p over the primes
- $h\left(p^{t}\right)=O_{p}\left(1 / p^{\delta t}\right)$ for some $\delta>0$

Theorem (CKPS, 2023) The main too!

Fix $s>0$, multiplicative $0 \leq f \leq d^{s}$, equidistributed c_{a}. Then

$$
\sum_{a \in \mathcal{A}} w_{X}(a) f\left(c_{a}\right)=O\left(M \prod_{p \leq M}(1+(f(p)-1) h(p))\right)
$$

- $\prod_{p \leq M}$ gives the expected logarithms.
- 6-torsion: Belabas \& Bhargava-Shankar-Tsimerman.

Remarks

- Proved it for more general f (submultiplicative).

Remarks

- Proved it for more general f (submultiplicative).
- Obtained matching lower bound if $f\left(p^{t}\right)>g(t)$ for some $g>0$.

Remarks

- Proved it for more general f (submultiplicative).
- Obtained matching lower bound if $f\left(p^{t}\right)>g(t)$ for some $g>0$.
- Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.

Remarks

- Proved it for more general f (submultiplicative).
- Obtained matching lower bound if $f\left(p^{t}\right)>g(t)$ for some $g>0$.
- Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.
- Wolke:

Remarks

- Proved it for more general f (submultiplicative).
- Obtained matching lower bound if $f\left(p^{t}\right)>g(t)$ for some $g>0$.
- Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.
- Wolke:
- didn't allow twists $w\left(w_{X}(D)=\# \mathrm{Cl}_{K}[3] \mathbf{1}(|D|<X)\right.$ in 6-torsion $)$

Remarks

- Proved it for more general f (submultiplicative).
- Obtained matching lower bound if $f\left(p^{t}\right)>g(t)$ for some $g>0$.
- Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.
- Wolke:
- didn't allow twists $w\left(w_{X}(D)=\# \mathrm{Cl}_{K}[3] \mathbf{1}(|D|<X)\right.$ in 6-torsion $)$
- assumed polynomial saving; we assume logarithmic

Remarks

- Proved it for more general f (submultiplicative).
- Obtained matching lower bound if $f\left(p^{t}\right)>g(t)$ for some $g>0$.
- Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.
- Wolke:
- didn't allow twists $w\left(w_{X}(D)=\# \mathrm{Cl}_{K}[3] \mathbf{1}(|D|<X)\right.$ in 6-torsion $)$
- assumed polynomial saving; we assume logarithmic
- assumed $h\left(p^{t}\right)=O\left(1 / p^{t}\right)$
$O\left(1 / p^{\delta t}\right)$ crucial applications with singular polynomials:

Remarks

- Proved it for more general f (submultiplicative).
- Obtained matching lower bound if $f\left(p^{t}\right)>g(t)$ for some $g>0$.
- Proof: Rosser-Iwaniec sieve + Wolke + Nair-Tenenbaum.
- Wolke:
- didn't allow twists $w\left(w_{X}(D)=\# \mathrm{Cl}_{K}[3] \mathbf{1}(|D|<X)\right.$ in 6-torsion $)$
- assumed polynomial saving; we assume logarithmic
- assumed $h\left(p^{t}\right)=O\left(1 / p^{t}\right)$
$O\left(1 / p^{\delta t}\right)$ crucial applications with singular polynomials: e.g. for the sequence $\left(y^{2}+x^{3}\right)_{x, y \in \mathbb{N}}$ and $t \equiv 0(\bmod 6)$:

$$
h\left(p^{t}\right)=\frac{\#\left\{y, x \in \mathbb{Z} / p^{t} \mathbb{Z}: y^{2} \equiv-x^{3}\left(\bmod p^{t}\right)\right\}}{p^{2 t}} \geq \frac{p^{t / 2+2 t / 3}}{p^{2 t}}=\frac{1}{p^{5 t / 6}}
$$

Sums of three squares

Y. Linnik

$$
x^{2}+y^{2}+z^{2}=1000003
$$

Goal

Let $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ polynomial. Count integer solutions of $F=0$ in expanding box centered at origin.

Goal

Let $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ polynomial. Count integer solutions of $F=0$ in expanding box centered at origin.

Goal

Let $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ polynomial. Count integer solutions of $F=0$ in expanding box centered at origin.

- $\frac{n}{\operatorname{deg}(F)}>2^{\operatorname{deg}(F)}$ OK by circle method
- $\frac{n}{\operatorname{deg}(F)}<2$ circle method "sub-convex" situation

Goal

Let $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ polynomial. Count integer solutions of $F=0$ in expanding box centered at origin.

- $\frac{n}{\operatorname{deg}(F)}>2^{\operatorname{deg}(F)}$ OK by circle method
- $\frac{n}{\operatorname{deg}(F)}<2$ circle method "sub-convex" situation
- $1 \leq \frac{n}{\operatorname{deg}(F)}<2$ Manin's conjecture for cubic surfaces,
dynamics for Markoff-Hurwitz equations

Goal

Let $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ polynomial. Count integer solutions of $F=0$ in expanding box centered at origin.

- $\frac{n}{\operatorname{deg}(F)}>2^{\operatorname{deg}(F)}$ OK by circle method
- $\frac{n}{\operatorname{deg}(F)}<2$ circle method "sub-convex" situation
- $1 \leq \frac{n}{\operatorname{deg}(F)}<2$ Manin's conjecture for cubic surfaces,
dynamics for Markoff-Hurwitz equations
- $\frac{n}{\operatorname{deg}(F)}<1$ Fermat-Wiles regime: solutions rare

Goal

Let $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ polynomial. Count integer solutions of $F=0$ in expanding box centered at origin.

dynamics for Markoff-Hurwitz equations

- $\frac{n}{\operatorname{deg}(F)}<1$ Fermat-Wiles regime: solutions rare
- $\frac{n}{\operatorname{deg}(F)}<\frac{1}{2}$ Very few examples known:
singular planar curves (by determinant method: Bombieri-Pila and Heath-Brown-Salberger)

For $N \in \mathbb{N}: L\left(1, \chi_{-N}\right)=\sum_{m=1}^{\infty}\left(\frac{-N}{m}\right) \frac{1}{m}$

For $N \in \mathbb{N}: L(1, \chi-N)=\sum_{m=1}^{\infty}\left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N)=\prod_{\substack{p \text { prime } \\ p \mid N}}\left(1+\left(\frac{-1}{p}\right) \frac{1}{p}\right)$

For $N \in \mathbb{N}: L(1, \chi-N)=\sum_{m=1}^{\infty}\left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N)=\prod_{\substack{p \text { prime } \\ p \mid N}}\left(1+\left(\frac{-1}{p}\right) \frac{1}{p}\right)$
Theorem (CKPS, 2023).
For square-free $N \equiv 3(\bmod 8)$ the number of sol's of

$$
x^{2}+y^{2}+z^{2} w^{2}=N
$$

is

$$
\asymp c(N) L(1, \chi-N) N^{\frac{1}{2}} \log N .
$$

For $N \in \mathbb{N}: L(1, \chi-N)=\sum_{m=1}^{\infty}\left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N)=\prod_{\substack{p \text { prime } \\ p \mid N}}\left(1+\left(\frac{-1}{p}\right) \frac{1}{p}\right)$

Theorem (CKPS, 2023).

For square-free $N \equiv 3(\bmod 8)$ the number of sol's of

$$
x^{2}+y^{2}+z^{2} w^{2}=N
$$

is

$$
\asymp c(N) L(1, \chi-N) N^{\frac{1}{2}} \log N .
$$

- \asymp means $\leq c_{0}$ and $\geq c_{1}$ for absolute constants c_{i}.

For $N \in \mathbb{N}: L(1, \chi-N)=\sum_{m=1}^{\infty}\left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N)=\prod_{\substack{p \text { prime } \\ p \mid N}}\left(1+\left(\frac{-1}{p}\right) \frac{1}{p}\right)$

Theorem (CKPS, 2023).

For square-free $N \equiv 3(\bmod 8)$ the number of sol's of

$$
x^{2}+y^{2}+z^{2} w^{2}=N
$$

is

$$
\asymp c(N) L(1, \chi-N) N^{\frac{1}{2}} \log N .
$$

- \asymp means $\leq c_{0}$ and $\geq c_{1}$ for absolute constants c_{i}.
- Gauss: $L(1, \chi-N) N^{\frac{1}{2}}=\#$ solutions of $x^{2}+y^{2}+z^{2}=N$.

For $N \in \mathbb{N}: L(1, \chi-N)=\sum_{m=1}^{\infty}\left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N)=\prod_{\substack{p \text { prime } \\ p \mid N}}\left(1+\left(\frac{-1}{p}\right) \frac{1}{p}\right)$

Theorem (CKPS, 2023).

For square-free $N \equiv 3(\bmod 8)$ the number of sol's of

$$
x^{2}+y^{2}+z^{2} w^{2}=N
$$

is

$$
\asymp c(N) L(1, \chi-N) N^{\frac{1}{2}} \log N .
$$

- \asymp means $\leq c_{0}$ and $\geq c_{1}$ for absolute constants c_{i}.
- Gauss: $L(1, \chi-N) N^{\frac{1}{2}}=\#$ solutions of $x^{2}+y^{2}+z^{2}=N$.
- Proof: $\sum_{x, y, z} d(z)$, sum over $x^{2}+y^{2}+z^{2}=N$.

For $N \in \mathbb{N}: L(1, \chi-N)=\sum_{m=1}^{\infty}\left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N)=\prod_{\substack{p \text { prime } \\ p \mid N}}\left(1+\left(\frac{-1}{p}\right) \frac{1}{p}\right)$

Theorem (CKPS, 2023).

For square-free $N \equiv 3(\bmod 8)$ the number of sol's of

$$
x^{2}+y^{2}+z^{2} w^{2}=N
$$

is

$$
\asymp c(N) L(1, \chi-N) N^{\frac{1}{2}} \log N .
$$

- \asymp means $\leq c_{0}$ and $\geq c_{1}$ for absolute constants c_{i}.
- Gauss: $L(1, \chi-N) N^{\frac{1}{2}}=\#$ solutions of $x^{2}+y^{2}+z^{2}=N$.
- Proof: $\sum_{x, y, z} d(z)$, sum over $x^{2}+y^{2}+z^{2}=N$.
- Duke's work on cusp forms for equidistribution in progressions

For $N \in \mathbb{N}: L(1, \chi-N)=\sum_{m=1}^{\infty}\left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N)=\prod_{\substack{p \text { prime } \\ p \mid N}}\left(1+\left(\frac{-1}{p}\right) \frac{1}{p}\right)$

Theorem (CKPS, 2023).

For square-free $N \equiv 3(\bmod 8)$ the number of sol's of

$$
x^{2}+y^{2}+z^{2} w^{2}=N
$$

is

$$
\asymp c(N) L(1, \chi-N) N^{\frac{1}{2}} \log N .
$$

- \asymp means $\leq c_{0}$ and $\geq c_{1}$ for absolute constants c_{i}.
- Gauss: $L(1, \chi-N) N^{\frac{1}{2}}=\#$ solutions of $x^{2}+y^{2}+z^{2}=N$.
- Proof: $\sum_{x, y, z} d(z)$, sum over $x^{2}+y^{2}+z^{2}=N$.
- Duke's work on cusp forms for equidistribution in progressions
- Friedlander-Iwaniec: $\sum_{x, y, z} \Lambda(x)$ on Elliot-Halberstam \& GRH

For $N \in \mathbb{N}: L(1, \chi-N)=\sum_{m=1}^{\infty}\left(\frac{-N}{m}\right) \frac{1}{m}$ and $c(N)=\prod_{\substack{p \text { prime } \\ p \mid N}}\left(1+\left(\frac{-1}{p}\right) \frac{1}{p}\right)$

Theorem (CKPS, 2023).

For square-free $N \equiv 3(\bmod 8)$ the number of sol's of

$$
x^{2}+y^{2}+z^{2} w^{2}=N
$$

is

$$
\asymp c(N) L(1, \chi-N) N^{\frac{1}{2}} \log N .
$$

- \asymp means $\leq c_{0}$ and $\geq c_{1}$ for absolute constants c_{i}.
- Gauss: $L(1, \chi-N) N^{\frac{1}{2}}=\#$ solutions of $x^{2}+y^{2}+z^{2}=N$.
- Proof: $\sum_{x, y, z} d(z)$, sum over $x^{2}+y^{2}+z^{2}=N$.
- Duke's work on cusp forms for equidistribution in progressions
- Friedlander-Iwaniec: $\sum_{x, y, z} \Lambda(x)$ on Elliot-Halberstam \& GRH
- also $\left(x_{1} \cdots x_{k}\right)^{2}+x_{k+1}^{2}+x_{k+2}^{2}=N($ where $n / \operatorname{deg}(F) \rightarrow 1 / 2)$, and $\left(x_{1} \cdots x_{k}\right)^{2}+\left(x_{k+1} \cdots x_{2 k}\right)^{2}+x_{2 k+1}^{2}=N$ e.t.c.

$(x, y, z) \in \mathbb{N}^{3}$ with $x^{2}+y^{2}+z^{2}=N$

$N=1716099$
$N=1707035$
Color intensity analogous to the size of $\tau(x) \tau(y) \tau(z)$.

$(x, y, z) \in \mathbb{N}^{3}$ with $x^{2}+y^{2}+z^{2}=N$

$N=1716099$
$N=1707035$
Color intensity analogous to the size of $\tau(x) \tau(y) \tau(z)$.

- 960 solutions in first image, 936 solutions in second!

$(x, y, z) \in \mathbb{N}^{3}$ with $x^{2}+y^{2}+z^{2}=N$

$N=1716099$

Color intensity analogous to the size of $\tau(x) \tau(y) \tau(z)$.

- 960 solutions in first image, 936 solutions in second!
- $1716099=3 \cdot 7 \cdot 11 \cdot 17 \cdot 19 \cdot 23 \quad($ all except 17 are $3 \bmod 4)$

$(x, y, z) \in \mathbb{N}^{3}$ with $x^{2}+y^{2}+z^{2}=N$

$N=1716099$

Color intensity analogous to the size of $\tau(x) \tau(y) \tau(z)$.

- 960 solutions in first image, 936 solutions in second!
- $1716099=3 \cdot 7 \cdot 11 \cdot 17 \cdot 19 \cdot 23 \quad($ all except 17 are $3 \bmod 4)$ $1707035=5 \cdot 11 \cdot 41 \cdot 757$ (only 11 is $3 \bmod 4$)

$(x, y, z) \in \mathbb{N}^{3}$ with $x^{2}+y^{2}+z^{2}=N$

$N=1716099$

Color intensity analogous to the size of $\tau(x) \tau(y) \tau(z)$.

- 960 solutions in first image, 936 solutions in second!
- $1716099=3 \cdot 7 \cdot 11 \cdot 17 \cdot 19 \cdot 23 \quad($ all except 17 are $3 \bmod 4)$ $1707035=5 \cdot 11 \cdot 41 \cdot 757$ (only 11 is 3 mod 4$)$
- prefactor $c(N)$ biased against primes $3 \bmod 4$

Summary

1. Tool for general averages.
2. Independent Cohen-Lenstra.
3. Count solutions in few variables.

