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Introduction

The aim of arithmetic statistics is to answer statistical questions of
arithmetic objects (e.g. zeta functions, number fields, class groups) with
many applications to other areas of mathematics and cryptography.

We will discuss three leading conjectures in arithmetic statistics in this
talk and my recent work on them.
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The negative Pell equation

Part I
Stevenhagen’s conjecture
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History of Pell’s equation

For a fixed squarefree integer d > 0, the equation

x2 − dy2 = 1 to be solved in x , y ∈ Z

has been studied since at least the ancient Greeks.

Bhaskara II (12th century) gave an algorithm to find non-trivial solutions
of this equation.

Fermat challenged Brouncker and Wallis to solve it for d = 61. The
smallest non-trivial solution is

17663190492 − 61 · 2261539802 = 1.

Pell’s equation plays a prominent role in modern number theory.
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The negative Pell equation

The equation

x2 − dy2 = −1 to be solved in x , y ∈ Z

is known as the negative Pell equation and is not always soluble.

Define
D := {d > 0 : d squarefree, p | d ⇒ p 6≡ 3 mod 4}

D− := {d > 0 : d squarefree, negative Pell is soluble}.

We have D− ⊆ D by checking whether the equation is soluble modulo p.

Classical techniques in analytic number theory give a constant C > 0
such that

#{d ≤ X : d ∈ D} ∼ C · X√
logX

.

Question: what is the density of D− inside D?
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Conjectures on the negative Pell equation

Nagell (1930s) conjectured that

lim
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

exists and lies in (0, 1).

Stevenhagen (1995) conjectured that

lim
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

= 1− α,

where

α =
∞∏
j=1

(1 + 2−j)−1 ≈ 0.41942.
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Progress towards Stevenhagen’s conjecture

Fouvry–Klüners (2010) proved that

5α

4
≤ lim inf

X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

≤ lim sup
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

≤ 2

3
.

Theorem (K.–Pagano (2022))

We have

lim
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

= 1− α

in accordance with Nagell’s and Stevenhagen’s conjecture.

Proof sketch: turn problem into question about Cl(Q(
√
d))[2∞], the

class group of Q(
√
d), and obtain the distribution of the class group.
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Chowla’s conjecture

Part II
Applications of new techniques
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Chowla’s conjecture

Conjecture (Generalized Riemann hypothesis)

All non-trivial zeroes of L(s, χ) lie on s = 1/2 + it.

Conjecture (Chowla’s conjecture)

We have L( 1
2 , χ) 6= 0 for all primitive Dirichlet characters χ.

Important results towards Chowla’s conjecture are due to Soundararajan
(unconditionally) and Özlük–Snyder (conditionally).

There has also been great interest in the function field case of this
conjecture.
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(unconditionally) and Özlük–Snyder (conditionally).

There has also been great interest in the function field case of this
conjecture.

9 / 17



Chowla’s conjecture

Conjecture (Generalized Riemann hypothesis)

All non-trivial zeroes of L(s, χ) lie on s = 1/2 + it.

Conjecture (Chowla’s conjecture)

We have L( 1
2 , χ) 6= 0 for all primitive Dirichlet characters χ.

Important results towards Chowla’s conjecture are due to Soundararajan
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Function fields

Theorem (W. Li (2018))

Let q be an odd prime power. There are infinitely many monic,
squarefree polynomials D ∈ Fq[t] such that L( 1

2 , χD) = 0.

However, 100% non-vanishing is still expected. This is currently not
known for any single family of L-functions.

The Özlük–Snyder result is known unconditionally over function fields
(Bui–Florea).

Many other families have also been studied but no 100% non-vanishing
result is known.

Theorem (K.–Pagano–Shusterman (in progress))

We have L( 1
2 , χD) 6= 0 for 100% of the monic squarefree polynomials D.
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Proof sketch

By a result of Groethendieck we have L( 1
2 , χD) 6= 0 if and only if there

exists an embedding

Q2/Z2 ↪→ Jac(CD)(Fq)[2∞][Frob2
q − q],

where CD is the curve y2 = D.

The Jacobian can be viewed as a function field analogue of the class
group.

A suitable adaptation of our methods for Stevenhagen’s conjecture allow
one to obtain the distribution of this Jacobian, from which the theorem
follows.
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Counting number fields

Part III
Malle’s conjecture
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Number fields

Definition

A number field is a field extension K of Q such that K is finite
dimensional as a vector space over Q.

Number fields provide an incredibly rich source of lattices.

Number fields also play a key role in the currently fastest (general
purpose) algorithm for factoring integers, the number field sieve.

Arithmetic statistics is interested in counting number fields with given
properties, which goes back to Gauss counting squarefree integers.
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The conjecture

Conjecture (Malle’s conjecture)

Let G be a finite, non-trivial group. Then there exist numbers c(G ) > 0,
b(G ) ∈ Z≥0 and a(G ) ∈ Q>0 such that

#{K/Q : DK ≤ X ,Gal(K/Q) ∼= G} ∼ c(G )X a(G)(logX )b(G).

This is a generalization of the inverse Galois problem.

Important known cases: abelian G by Wright (1989), S4,S5 by Bhargava,
Heisenberg extensions by Fouvry–K. (2021).
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Malle’s conjecture by product of ramified primes

Ordering by discriminant has some undesirable features: leading constant
need not be an Euler product and subfields may occur a positive
proportion of the time.

Wood (2010) introduced a class of “fair counting functions”.

Important examples of fair counting functions are the conductor and the
product of ramified primes.

Mäki (1993): Malle’s conjecture for abelian extensions ordered by
conductor.

Wood (2010): Malle’s conjecture for abelian extensions ordered by any
fair counting function.
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Nilpotent groups

Theorem (K.–Pagano (in progress))

Assume GRH. Let G be a nilpotent group with #G odd. Then

#

K/Q :
∏

p:Ip 6={id}

p ≤ X ,Gal(K/Q) ∼= G

 ∼ c ′(G )X (logX )b
′(G).

Remark: any group G with |G | = pn is nilpotent. Also all abelian groups
are nilpotent.

Here c ′(G ) is the expected Euler product and b′(G ) is the näıve analogue
of Malle’s b(G ) in this situation.
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Questions?

Thank you for your attention!
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