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Basic arithmetic

The fundamental theorem of arithmetic, which dates back to Euclid,
states that every positive integer can uniquely be factored into primes.

This talk we will consider factorization properties of more general
mathematical structures that we call rings.

A ring is a set where one can add, subtract and multiply the elements.

Some example of rings are: the integers Z, the rational numbers Q, the
real numbers R and { a

b
: a, b ∈ Z, 2 - b

}
.
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The Gaussian integers

In 1832 Gauss introduced the Gaussian integers
Z[i ] := {a + bi : a, b ∈ Z}.

We can add Gaussian integers

(1 + i) + (−3− 2i) = −2− i

and multiply Gaussian integers by expanding
brackets and using the rule i2 = −1

(2 + 5i) · (3− 4i) = 6 + 15i − 8i − 20i2 = 26 + 7i .

We will now study factorization properties of the Gaussian integers.
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Units

Definition 1

If R is a ring, we say that x ∈ R is a unit if there is y ∈ R such that
xy = 1.

Example 1

The units of Z are ±1, while the units of Q are Q \ {0}.

To compute the units of Z[i ], we define a function N : Z[i ]→ Z by

N(a + bi) = a2 + b2.

If we view Z[i ] as a subset of the complex numbers C we have

N(a + bi) = |a + bi |2,

where | · | is the absolute value on C. We have the fundamental property

N((a + bi) · (c + di)) = N(a + bi) · N(c + di).
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Computing the unit group

Now suppose that a + bi ∈ Z[i ] is a unit. Then, by definition, there is
c + di ∈ Z[i ] such that

(a + bi) · (c + di) = 1,

which implies that N(a + bi) · N(c + di) = 1.

Then we deduce N(a + bi) = ±1. But N(a + bi) = a2 + b2, so

a2 + b2 = 1⇒ (a, b) ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}.

We conclude that the units of Z[i ] are {1,−1, i ,−i}.
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Primes and irreducibles

Definition 2

Let R be a ring. We say that a ∈ R \ {0} is irreducible if it is not the
product of two non-units.

Definition 3

Let R be a ring. An element a ∈ R, that is non-zero and not a unit, is
called prime if for all b, c ∈ R we have a | bc implies a | b or a | c .

Every prime element is irreducible. The converse does not hold in general.

Example 2

For the integers, prime and irreducible are the same notion. The prime
elements are exactly ±p, where p is a prime number. This property is the
key behind unique factorization!
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Unique factorization again

If π is a prime in R and u is a unit, then π · u is prime.

Theorem 1 (Gauss)

Every non-zero Gaussian integer a + bi can uniquely be factored into a
unit and primes. This factorization is unique up to reordering the factors
and multiplying primes by units.

Example 3

We have that

−3 + 9i = i · 3 · (1 + i) · (2− i) = 3i · (−1 + i) · (−1− 2i),

where 3, 1 + i and 2− i are all irreducible and prime. In fact: irreducible
and prime are the same notion in Z[i ].
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Failure of unique factorization

In the ring Z[
√
−6] := {a + b

√
−6 : a, b ∈ Z} we have

6 = 2 · 3 = −1 ·
√
−6 ·

√
−6. (1)

Define N : Z[
√
−6]→ Z

N(a + b
√
−6) = a2 + 6b2.

Once more we have the property

N((a + b
√
−6) · (c + d

√
−6)) = N(a + b

√
−6) · N(c + d

√
−6).

With a similar computation as for Z[i ], it follows that the units of
Z[
√
−6] are ±1. We will show on the next slide that 2, 3,

√
−6 are

irreducible. So we have two different factorizations of 6 in equation (1).
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2 is irreducible in Z[
√
−6]

Suppose that we have

(a + b
√
−6)(c + d

√
−6) = 2.

If we apply our function N we see that

(a2 + 6b2)(c2 + 6d2) = N(2) = 4.

and surely b = d = 0.

We conclude that a2c2 = 4, so ac = ±2. Then a = ±1 or c = ±1. If
a = ±1, we get that a + b

√
−6 = ±1 is a unit!

This shows that 2 is irreducible, and similarly for 3 and
√
−6.
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My work

For an integer d we define

Z[
√
d ] = {a + b

√
d : a, b ∈ Z}.

We have seen that unique factorization holds for d = 1 and d = −1, but
not for d = −6.

Attached to an integer d , we can define an abelian group Cl(d) that
measures the failure of unique factorization in Z[

√
d ]. We have

Cl(d) = {id} ⇐⇒ Z[
√
d ] has unique factorization.

Given d there is an algorithm that computes Cl(d).
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My work II

There are many open questions about the behavior of Cl(d) as d changes.

For example, a very famous problem going back to Gauss asks if there are
infinitely many d with Cl(d) = {id}, i.e. if there are infinitely many d

such that Z[
√
d ] has unique factorization.

We have a solid heuristic framework to answer such questions, but we
have been able to prove these only in very few instances.

Together with Djordjo Milovic and Carlo Pagano I have been able to
answer some of these questions.
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Questions


