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History of Pell’s equation

For a fixed squarefree integer d > 0, the equation

x2 − dy2 = 1 to be solved in x , y ∈ Z

has been studied since at least the ancient Greeks.

Bhaskara II (12th century) gave an algorithm to find solutions of this
equation.

Unbeknownst, Fermat challenged English mathematicians Brouncker and
Wallis to solve the notorious case d = 61. The smallest non-trivial
solution is

17663190492 − 61 · 2261539802 = 1.

Lagrange was the first to give an algorithm with proof of correctness.
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A variant of Pell’s equation

Fix a prime number ` ≡ 3 mod 4. Define for squarefree d > 0

Nd(x , y) =

{
x2 + xy − d−1

4 y2 if d ≡ 1 mod 4
x2 − dy2 otherwise.

In this talk we study the equation

Nd(x , y) = ` in x , y ∈ Z. (1)

We would like to know how often equation (1) is soluble as we vary d
over squarefree integers.

Equivalently, ` has residue field degree 1 in the narrow Hilbert class field
of Q(

√
d), denoted H(Q(

√
d)).

Currently, the typical behavior of H(Q(
√
d)) is poorly understood.
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The Cohen-Lenstra heuristics

Let p be an odd prime. The group Cl(K )[p∞] is believed to behave as a
random finite, abelian p-group.

More formally, Cohen and Lenstra conjectured that

lim
X→∞

|{K im. quadr. : |DK | < X and Cl(K )[p∞] ∼= A}|
|{K im. quadr. : |DK | < X}|

=

∏∞
i=1

(
1− 1

pi

)
|Aut(A)|

for every finite, abelian p-group A.

For real quadratic fields

lim
X→∞

|{K re. quadr. : |DK | < X and Cl(K )[p∞] ∼= A}|
|{K re. quadr. : |DK | < X}|

=

∏∞
i=2

(
1− 1

pi

)
|A||Aut(A)|

,

where Cl(K )[p∞] is now the quotient of a random abelian group.
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Genus theory

Why is p = 2 excluded from the Cohen–Lenstra heuristics?

The group Cl(K )[2] has a predictable behavior unlike Cl(K )[p] for p odd.

The description of Cl(K )[2] is due to Gauss and is known as genus
theory. We have that

|Cl(K )[2]| = 2ω(DK )−1

and Cl(K )[2] is generated by the ramified prime ideals of OK .

Indeed, if p divides the discriminant of Q(
√
d), then p ramifies, so

Q(
√
d) p p2 = (p).

Q p

There is precisely one relation between the ramified primes.
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Gerth’s modification

Instead of Cl(K )[2∞], it is the group 2Cl(K )[2∞] that behaves randomly.

To be precise, Gerth conjectured the following

lim
X→∞

|{K im. quadr. : |DK | < X , 2Cl(K )[2∞] ∼= A}|
|{K im. quadr. : |DK | < X}|

=

∏∞
i=1

(
1− 1

2i

)
|Aut(A)|

for every finite, abelian 2-group A, and similarly for real quadratics.

Fouvry and Klüners dealt with the distribution of 2Cl(K )[4].

Theorem 1 (Smith, 2017)

Gerth’s conjecture is true.
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Fouvry and Klüners dealt with the distribution of 2Cl(K )[4].

Theorem 1 (Smith, 2017)

Gerth’s conjecture is true.



19/62

Gerth’s modification

Instead of Cl(K )[2∞], it is the group 2Cl(K )[2∞] that behaves randomly.

To be precise, Gerth conjectured the following

lim
X→∞

|{K im. quadr. : |DK | < X , 2Cl(K )[2∞] ∼= A}|
|{K im. quadr. : |DK | < X}|

=

∏∞
i=1

(
1− 1

2i

)
|Aut(A)|

for every finite, abelian 2-group A, and similarly for real quadratics.

Fouvry and Klüners dealt with the distribution of 2Cl(K )[4].

Theorem 1 (Smith, 2017)

Gerth’s conjecture is true.



20/62

Back to our equation

We now consider the equation

Nd(x , y) = ` in x , y ∈ Z, (2)

where d only varies over squarefree integers divisible by `.

Equivalently, the unique ideal l above ` splits completely in H2(Q(
√
d)).

For a ring R, write SR,X ,` for the set of squarefree integers 0 < d < X
that are divisibly by ` and equation (2) is soluble with x , y ∈ R.

By classical techniques in analytic number theory

|SQ,X ,`| ∼ c`
X√

logX
.
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Our results

Define

ηk :=
k∏

j=1

(1− 2−j) with k ∈ Z≥0 ∪ {∞}, γ :=
∞∑
j=0

2−j
2

η∞η
−2
j

2j+1 − 1
.

Theorem 2 (K.-Pagano)

Let ` be an integer such that |`| is a prime 3 modulo 4. Then we have

lim
X→∞

|SZ,X ,`|
|SQ,X ,`|

= γ.
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An application to the Hasse Unit Index

For a biquadratic field Q(
√
a,
√
b), the Hasse Unit Index is defined to be

Ha,b :=
[
O∗Q(

√
a,
√
b)

: O∗Q(
√
a)O
∗
Q(
√
b)
O∗Q(

√
ab)

]
.

If the biquadratic field is totally complex, then Ha,b ∈ {1, 2}.

Corollary 3 (K.-Pagano)

Let ` > 3 be a prime 3 modulo 4. Then we have

|{0 < d < X squarefree : H−`,d = 2}| ∼ |SZ,X ,`|+ |SZ,X ,−`|

∼ γ · (c` + c−`) ·
X√

logX
.
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A heuristical interpretation of γ

One can show that

x2 − dy2 = ` is soluble with x , y ∈ Q⇐⇒ l ∈ 2Cl(Q(
√
d))[4]

and we recall that

γ :=
∞∑
j=0

2−j
2

η∞η
−2
j

2j+1 − 1
.

We have

lim
X→∞

|{d ∈ SQ,X ,` : dimF2 2Cl(Q(
√
d))[4] = j}|

|SQ,X ,`|
= 2−j

2

η∞η
−2
j .

From Gauss genus theory, we get a generating set for 2Cl(Q(
√
d))[4] of

dimension 1 + dimF2 2Cl(Q(
√
d))[4].

Heuristic: every non-zero element in this generating set is equally likely
to be trivial in Cl(Q(

√
d)).
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Reflection principles

In the literature there are many known results that compare different
class groups. For example, we have

dimF3Cl(Q(
√
d)) ≤ dimF3Cl(Q(

√
−3d)) ≤ 1 + dimF3Cl(Q(

√
d)),

which is known as Scholz’s reflection principle.

The main algebraic result in Smith’s work is in fact a reflection principle
that compares the 2m-torsion of 2m quadratic fields.

How can we find such reflection principles?
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Intersections of Hilbert class fields

Smith’s idea is to look for situations where the compositum of various
Hilbert class fields is in some sense small.

From Gauss genus theory we see that the quadratic unramified extensions
of Q(

√
d) are of the shape Q(

√
d ,
√
a) with a | d .

Fact: a degree 4 unramified, abelian extension of Q(
√
d) is Galois over Q

with Galois group D4.

Such extensions are of the shape Q(
√
d ,
√
a,
√
α), where

x2 = ay2 +
d

a
z2 with x , y , z ∈ Z and gcd(x , y , z) = 1, α := x + y

√
a.
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Intersections of Hilbert class fields II

Take primes p1, p2, q1, q2. Now suppose that we have a degree 4
unramified, abelian extension of each Q(

√
dpiqj), all lifting

√
a.

Recall that we then get αi,j ∈ Q(
√
a) with

Norm(αi,j) =
dpiqj
a

z2i,j .

Then we see that α1,1α1,2α2,1α2,2 has norm a square.

In other words, part of H2(Q(
√
dp2q2)) is contained in the other

H2(Q(
√
dpiqj)).



40/62

Intersections of Hilbert class fields II

Take primes p1, p2, q1, q2. Now suppose that we have a degree 4
unramified, abelian extension of each Q(

√
dpiqj), all lifting

√
a.

Recall that we then get αi,j ∈ Q(
√
a) with

Norm(αi,j) =
dpiqj
a

z2i,j .

Then we see that α1,1α1,2α2,1α2,2 has norm a square.

In other words, part of H2(Q(
√
dp2q2)) is contained in the other

H2(Q(
√
dpiqj)).



41/62

Intersections of Hilbert class fields II

Take primes p1, p2, q1, q2. Now suppose that we have a degree 4
unramified, abelian extension of each Q(

√
dpiqj), all lifting

√
a.

Recall that we then get αi,j ∈ Q(
√
a) with

Norm(αi,j) =
dpiqj
a

z2i,j .

Then we see that α1,1α1,2α2,1α2,2 has norm a square.

In other words, part of H2(Q(
√
dp2q2)) is contained in the other

H2(Q(
√
dpiqj)).



42/62

Intersections of Hilbert class fields II

Take primes p1, p2, q1, q2. Now suppose that we have a degree 4
unramified, abelian extension of each Q(

√
dpiqj), all lifting

√
a.

Recall that we then get αi,j ∈ Q(
√
a) with

Norm(αi,j) =
dpiqj
a

z2i,j .

Then we see that α1,1α1,2α2,1α2,2 has norm a square.

In other words, part of H2(Q(
√
dp2q2)) is contained in the other

H2(Q(
√
dpiqj)).



43/62

The Artin pairing

From class field theory and duality of abelian groups we get a natural
pairing

Artm,d : 2m−1Cl(Q(
√
d))[2m]× 2m−1Gal(H(Q(

√
d))/Q(

√
d))∨[2m]→ F2

that sends (p, χ) 7→ ψ(Frob p) with 2m−1ψ = χ.

The left kernel of Artm,d is 2mCl(Q(
√
d))[2m+1], so knowing all the Artin

pairings gives Cl(Q(
√
d))[2∞].

Idea: relation between the ψ will give a relation between the Artin
pairings. Previous slide then becomes

Art2,dp1q1(b, a) + Art2,dp1q2(b, a) + Art2,dp2q1(b, a) + Art2,dp2q2(b, a) = 0.

This is not enough for equidistribution!
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Intersections of Hilbert class fields again

Take primes p1, p2, q1, q2. Now suppose that we have a degree 4
unramified, abelian extension of each Q(

√
dpiqj), all lifting

√
api .

From the conics

x2 = ap1y
2 +

dq1
a

z2, x2 = ap1y
2 +

dq2
a

z2

we get a solution to x2 = ap1y
2 + q1q2z

2. Doing this one more time
gives a solution to

x2 = p1p2y
2 + q1q2z

2.

In this case we get that

Art2,dp1q1(b, ap1) + Art2,dp1q2(b, ap1)+

Art2,dp2q1(b, ap2) + Art2,dp2q2(b, ap2) = Kp1p2,q1q2(Frob b),

where Kp1p2,q1q2 is a certain D4-extension containing Q(
√
p1p2,

√
q1q2).
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Sketch: equidistribution of Art2

Pick some small primes {p1, . . . , pM} and {q1, . . . , qM} with M also
small. For 1 ≤ i , j , k , l ≤ M, we get linear equations for Art2 of the shape

Art2,dpiqk (b, api ) + Art2,dpiql (b, api )+

Art2,dpjqk (b, ap2) + Art2,dpjql (b, api ) = Kpipj ,qkql (Frob b).

We now vary b and apply the Chebotarev Density Theorem to the
compositum of the Kpipj ,qkql . Then the RHS of the linear system appears
equally often.

The key combinatorial result is then that for almost all choices of the
RHS, any function F from {p1, . . . , pM} × {q1, . . . , qM} → F2 satisfying
the equations

F (pi , qk) + F (pi , ql) + F (pj , qk) + F (pj , ql) = RHS ,

is such that F is 0 roughly 50% of the time (hence also 1 roughly 50% of
the time).
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Dealing with Artm

Proceed similarly: sum 2m Artin pairings to get

Kp1,1p1,2,...,pm,1pm,2(Frob b),

where Kp1,1p1,2,...,pm,1pm,2 is a multiquadratic unramified extension of

Q(
√
p1,1p1,2, . . . ,

√
pm,1pm,2).

This is a rough description of Smith’s strategy. What happens if we try
to apply it to our family?
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The ideal l

Recall that l ∈ 2Cl(Q(
√
d))[4].

We need to compute Artm(l , a). The reflection principle gives

Kp1,1p1,2,...,pm,1pm,2(Frob `).

Since ` is fixed, Chebotarev does no longer work.

How do we prove equidistribution of Kp1,1p1,2,...,pm,1pm,2(Frob `)?
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Higher Rédei Reciprocity

The key new ingredient in the paper is a new reciprocity law.

This reciprocity law is a generalization of Rédei reciprocity (in turn a
generalization of quadratic reciprocity).

The reciprocity law yields that under favorable circumstances

Kp1,1p1,2,...,pm,1pm,2(Frob `) = Kp1,1p1,2,...,pm−1,1pm−1,2,`(Frob pm,1pm,2).

We can now apply Chebotarev again.

We prove the reciprocity law by an application of Hilbert reciprocity in
the field Q(

√
p1,1p1,2, . . . ,

√
pm−1,1pm−1,2).
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Higher Rédei Reciprocity

The key new ingredient in the paper is a new reciprocity law.

This reciprocity law is a generalization of Rédei reciprocity (in turn a
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That’s it!

Thank you for your attention!


