On Stevenhagen's conjecture

Peter Koymans
University of Michigan

UC Irvine Number Theory Seminar
21 April 2022

History of Pell's equation

For a fixed squarefree integer $d>0$, the equation

$$
x^{2}-d y^{2}=1 \text { to be solved in } x, y \in \mathbb{Z}
$$

has been studied since at least the ancient Greeks.

History of Pell's equation

For a fixed squarefree integer $d>0$, the equation

$$
x^{2}-d y^{2}=1 \text { to be solved in } x, y \in \mathbb{Z}
$$

has been studied since at least the ancient Greeks.
Bhaskara II (12th century) gave an algorithm to find non-trivial solutions of this equation.

History of Pell's equation

For a fixed squarefree integer $d>0$, the equation

$$
x^{2}-d y^{2}=1 \text { to be solved in } x, y \in \mathbb{Z}
$$

has been studied since at least the ancient Greeks.
Bhaskara II (12th century) gave an algorithm to find non-trivial solutions of this equation.

Unbeknownst of Bhaskara's work, Fermat challenged English mathematicians Brouncker and Wallis to solve the notorious case $d=61$.

History of Pell's equation

For a fixed squarefree integer $d>0$, the equation

$$
x^{2}-d y^{2}=1 \text { to be solved in } x, y \in \mathbb{Z}
$$

has been studied since at least the ancient Greeks.
Bhaskara II (12th century) gave an algorithm to find non-trivial solutions of this equation.

Unbeknownst of Bhaskara's work, Fermat challenged English mathematicians Brouncker and Wallis to solve the notorious case $d=61$.

The smallest non-trivial solution is

$$
1766319049^{2}-61 \cdot 226153980^{2}=1
$$

History of Pell's equation

For a fixed squarefree integer $d>0$, the equation

$$
x^{2}-d y^{2}=1 \text { to be solved in } x, y \in \mathbb{Z}
$$

has been studied since at least the ancient Greeks.
Bhaskara II (12th century) gave an algorithm to find non-trivial solutions of this equation.

Unbeknownst of Bhaskara's work, Fermat challenged English mathematicians Brouncker and Wallis to solve the notorious case $d=61$.

The smallest non-trivial solution is

$$
1766319049^{2}-61 \cdot 226153980^{2}=1
$$

Lagrange was the first to give an algorithm with proof of correctness.

A modern interpretation of Pell's equation

In modern terms, we know that

$$
x^{2}-d y^{2}=1
$$

always has a non-trivial solution by Dirichlet's Unit Theorem.

A modern interpretation of Pell's equation

In modern terms, we know that

$$
x^{2}-d y^{2}=1
$$

always has a non-trivial solution by Dirichlet's Unit Theorem.

Indeed, $\mathcal{O}_{K}^{*}=\left\{ \pm \epsilon^{k}\right\}$ for a real quadratic field K.

A modern interpretation of Pell's equation

In modern terms, we know that

$$
x^{2}-d y^{2}=1
$$

always has a non-trivial solution by Dirichlet's Unit Theorem.

Indeed, $\mathcal{O}_{K}^{*}=\left\{ \pm \epsilon^{k}\right\}$ for a real quadratic field K.

The equation

$$
x^{2}-d y^{2}=-1
$$

is known as the negative Pell equation and is not always soluble.

A modern interpretation of Pell's equation

In modern terms, we know that

$$
x^{2}-d y^{2}=1
$$

always has a non-trivial solution by Dirichlet's Unit Theorem.

Indeed, $\mathcal{O}_{K}^{*}=\left\{ \pm \epsilon^{k}\right\}$ for a real quadratic field K.

The equation

$$
x^{2}-d y^{2}=-1
$$

is known as the negative Pell equation and is not always soluble.

Question: as we vary d, how often is the negative Pell equation soluble?

Solubility over the rationals

Define \mathcal{D} to be the set of squarefree integers having as odd prime divisors only primes $p \equiv 1 \bmod 4$ and define \mathcal{D}^{-}to be the set of squarefree integers for which negative Pell is soluble.

Solubility over the rationals

Define \mathcal{D} to be the set of squarefree integers having as odd prime divisors only primes $p \equiv 1 \bmod 4$ and define \mathcal{D}^{-}to be the set of squarefree integers for which negative Pell is soluble.

By the Hasse-Minkowski Theorem we have for all squarefree d

$$
d \in \mathcal{D} \Longleftrightarrow x^{2}-d y^{2}=-1 \text { is soluble with } x, y \in \mathbb{Q}
$$

so in particular \mathcal{D}^{-}is a subset of \mathcal{D}.

Solubility over the rationals

Define \mathcal{D} to be the set of squarefree integers having as odd prime divisors only primes $p \equiv 1 \bmod 4$ and define \mathcal{D}^{-}to be the set of squarefree integers for which negative Pell is soluble.

By the Hasse-Minkowski Theorem we have for all squarefree d

$$
d \in \mathcal{D} \Longleftrightarrow x^{2}-d y^{2}=-1 \text { is soluble with } x, y \in \mathbb{Q},
$$

so in particular \mathcal{D}^{-}is a subset of \mathcal{D}.
Classical techniques in analytic number theory give a constant $C>0$ such that

$$
\#\{d \leq X: d \in \mathcal{D}\} \sim C \cdot \frac{X}{\sqrt{\log X}}
$$

Solubility over the rationals

Define \mathcal{D} to be the set of squarefree integers having as odd prime divisors only primes $p \equiv 1 \bmod 4$ and define \mathcal{D}^{-}to be the set of squarefree integers for which negative Pell is soluble.

By the Hasse-Minkowski Theorem we have for all squarefree d

$$
d \in \mathcal{D} \Longleftrightarrow x^{2}-d y^{2}=-1 \text { is soluble with } x, y \in \mathbb{Q}
$$

so in particular \mathcal{D}^{-}is a subset of \mathcal{D}.
Classical techniques in analytic number theory give a constant $C>0$ such that

$$
\#\{d \leq X: d \in \mathcal{D}\} \sim C \cdot \frac{X}{\sqrt{\log X}}
$$

Refined question: what is the density of \mathcal{D}^{-}inside \mathcal{D} ?

Conjectures on the negative Pell equation

Nagell (1930s) conjectured that

$$
\lim _{X \rightarrow \infty} \frac{\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\}}{\#\{d \leq X: d \in \mathcal{D}\}}
$$

exists and lies in $(0,1)$.

Conjectures on the negative Pell equation

Nagell (1930s) conjectured that

$$
\lim _{X \rightarrow \infty} \frac{\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\}}{\#\{d \leq X: d \in \mathcal{D}\}}
$$

exists and lies in $(0,1)$.
Stevenhagen (1995) conjectured that

$$
\lim _{X \rightarrow \infty} \frac{\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\}}{\#\{d \leq X: d \in \mathcal{D}\}}=1-\alpha,
$$

where

$$
\alpha=\prod_{j=1}^{\infty}\left(1+2^{-j}\right)^{-1} \approx 0.41942
$$

Progress towards Stevenhagen's conjecture

Dirichlet showed that all primes $p \equiv 1 \bmod 4$ are in \mathcal{D}^{-}.

Progress towards Stevenhagen's conjecture

Dirichlet showed that all primes $p \equiv 1 \bmod 4$ are in \mathcal{D}^{-}.
Blomer showed that

$$
\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\} \gg \frac{X}{(\log X)^{0.62}}
$$

Progress towards Stevenhagen's conjecture

Dirichlet showed that all primes $p \equiv 1 \bmod 4$ are in \mathcal{D}^{-}.
Blomer showed that

$$
\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\} \gg \frac{X}{(\log X)^{0.62}}
$$

Fouvry and Klüners (2010) proved that

$$
\frac{5 \alpha}{4} \leq \liminf _{X \rightarrow \infty} \frac{\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\}}{\#\{d \leq X: d \in \mathcal{D}\}} \leq \limsup _{X \rightarrow \infty} \frac{\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\}}{\#\{d \leq X: d \in \mathcal{D}\}} \leq \frac{2}{3}
$$

Progress towards Stevenhagen's conjecture

Dirichlet showed that all primes $p \equiv 1 \bmod 4$ are in \mathcal{D}^{-}.
Blomer showed that

$$
\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\} \gg \frac{X}{(\log X)^{0.62}}
$$

Fouvry and Klüners (2010) proved that

$$
\frac{5 \alpha}{4} \leq \liminf _{X \rightarrow \infty} \frac{\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\}}{\#\{d \leq X: d \in \mathcal{D}\}} \leq \limsup _{X \rightarrow \infty} \frac{\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\}}{\#\{d \leq X: d \in \mathcal{D}\}} \leq \frac{2}{3}
$$

CKMP (2019) improved the lower bound to

$$
\alpha \cdot \sum_{n=0}^{\infty} 2^{-n(n+3) / 2} \approx \alpha \cdot 1.28325
$$

Stevenhagen's conjecture is true

Theorem 1 (K., Pagano (2021))

We have

$$
\lim _{X \rightarrow \infty} \frac{\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\}}{\#\{d \leq X: d \in \mathcal{D}\}}=1-\alpha
$$

in accordance with Stevenhagen's conjecture.

Stevenhagen's conjecture is true

Theorem 1 (K., Pagano (2021))

We have

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\}}{\#\{d \leq X: d \in \mathcal{D}\}}=1-\alpha
$$

in accordance with Stevenhagen's conjecture.
Corollary 2
We have

$$
\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\} \sim C \cdot(1-\alpha) \cdot \frac{X}{\sqrt{\log X}}
$$

A criterion for solubility

Recall that the narrow class group $\mathrm{Cl}^{+}(K)$ is defined as the quotient of the ideal group I_{K} by the principal ideals P_{K}^{+}admitting a totally positive generator, while the class group is the quotient by the principal ideals P_{K}.

A criterion for solubility

Recall that the narrow class group $\mathrm{Cl}^{+}(K)$ is defined as the quotient of the ideal group I_{K} by the principal ideals P_{K}^{+}admitting a totally positive generator, while the class group is the quotient by the principal ideals P_{K}.

We have
$x^{2}-d y^{2}=-1$ is soluble \Longleftrightarrow fundamental unit ϵ has negative norm $\Longleftrightarrow(\sqrt{d})$ is trivial in $\mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))$.

A criterion for solubility

Recall that the narrow class group $\mathrm{Cl}^{+}(K)$ is defined as the quotient of the ideal group I_{K} by the principal ideals P_{K}^{+}admitting a totally positive generator, while the class group is the quotient by the principal ideals P_{K}.

We have

$$
x^{2}-d y^{2}=-1 \text { is soluble } \Longleftrightarrow \text { fundamental unit } \epsilon \text { has negative norm }
$$ $\Longleftrightarrow(\sqrt{d})$ is trivial in $\mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))$.

There is a fundamental exact sequence

$$
1 \rightarrow \frac{P_{K}}{P_{K}^{+}} \rightarrow \mathrm{Cl}^{+}(K) \rightarrow \mathrm{Cl}(K) \rightarrow 1
$$

with $\# \frac{P_{K}}{P_{K}^{+}} \in\{1,2\}$ and $\frac{P_{\kappa}}{P_{K}^{+}}$generated by (\sqrt{d}).

A criterion for solubility

Recall that the narrow class group $\mathrm{Cl}^{+}(K)$ is defined as the quotient of the ideal group I_{K} by the principal ideals P_{K}^{+}admitting a totally positive generator, while the class group is the quotient by the principal ideals P_{K}.

We have

$$
x^{2}-d y^{2}=-1 \text { is soluble } \Longleftrightarrow \text { fundamental unit } \epsilon \text { has negative norm }
$$ $\Longleftrightarrow(\sqrt{d})$ is trivial in $\mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))$.

There is a fundamental exact sequence

$$
1 \rightarrow \frac{P_{K}}{P_{K}^{+}} \rightarrow \mathrm{Cl}^{+}(K) \rightarrow \mathrm{Cl}(K) \rightarrow 1
$$

with $\# \frac{P_{\kappa}}{P_{K}^{+}} \in\{1,2\}$ and $\frac{P_{\kappa}}{P_{K}^{ \pm}}$generated by (\sqrt{d}).
Goal: study joint distribution of $\left(\mathrm{Cl}^{+}(K)\left[2^{\infty}\right], \mathrm{Cl}(K)\left[2^{\infty}\right]\right)$.

Genus theory

The group $\mathrm{Cl}^{+}(K)[2]$ has a very predictable behavior unlike $\mathrm{Cl}^{+}(K)[p]$ for podd.

Genus theory

The group $\mathrm{Cl}^{+}(K)[2]$ has a very predictable behavior unlike $\mathrm{Cl}^{+}(K)[p]$ for p odd.

The description of $\mathrm{Cl}^{+}(K)[2]$ is due to Gauss and is known as genus theory. We have that

$$
\# \mathrm{Cl}^{+}(K)[2]=2^{\omega\left(D_{K}\right)-1}
$$

and $\mathrm{Cl}^{+}(K)[2]$ is generated by the ramified prime ideals of \mathcal{O}_{K}.

Genus theory

The group $\mathrm{Cl}^{+}(K)[2]$ has a very predictable behavior unlike $\mathrm{Cl}^{+}(K)[p]$ for p odd.

The description of $\mathrm{Cl}^{+}(K)[2]$ is due to Gauss and is known as genus theory. We have that

$$
\# \mathrm{Cl}^{+}(K)[2]=2^{\omega\left(D_{K}\right)-1}
$$

and $\mathrm{Cl}^{+}(K)[2]$ is generated by the ramified prime ideals of \mathcal{O}_{K}.
If p divides the discriminant of $\mathbb{Q}(\sqrt{d})$, then p ramifies, so

There is precisely one relation between the ramified primes.

Cohen-Lenstra-Gerth

Let p be an odd prime. The group $\mathrm{Cl}(K)\left[p^{\infty}\right]$ is believed to behave as a random finite, abelian p-group.

Cohen-Lenstra-Gerth

Let p be an odd prime. The group $\mathrm{Cl}(K)\left[p^{\infty}\right]$ is believed to behave as a random finite, abelian p-group.

More formally, Cohen and Lenstra conjectured that

$$
\lim _{X \rightarrow \infty} \frac{\#\left\{K \text { im. quadr. }:\left|D_{K}\right|<X \text { and } \mathrm{Cl}(K)\left[p^{\infty}\right] \cong A\right\}}{\#\left\{K \mathrm{im} . \text { quadr. }:\left|D_{K}\right|<X\right\}}=\frac{\prod_{i=1}^{\infty}\left(1-\frac{1}{p^{\prime}}\right)}{\# \operatorname{Aut}(A)}
$$

for every finite, abelian p-group A.

Gerth's adaptation

Gerth adapted the conjecture of Cohen and Lenstra to $p=2$

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{K \text { im. quadr. : }\left|D_{K}\right|<X, 2 \mathrm{Cl}(K)\left[2^{\infty}\right] \cong A\right\}}{\#\left\{K \text { im. quadr. }:\left|D_{K}\right|<X\right\}}=\frac{\prod_{i=1}^{\infty}\left(1-\frac{1}{2^{\prime}}\right)}{\# \operatorname{Aut}(A)}
$$

for every finite, abelian 2-group A.

Gerth's adaptation

Gerth adapted the conjecture of Cohen and Lenstra to $p=2$

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{K \text { im. quadr. }:\left|D_{K}\right|<X, 2 \mathrm{Cl}(K)\left[2^{\infty}\right] \cong A\right\}}{\#\left\{K \text { im. quadr. }:\left|D_{K}\right|<X\right\}}=\frac{\prod_{i=1}^{\infty}\left(1-\frac{1}{2^{i}}\right)}{\# \operatorname{Aut}(A)}
$$

for every finite, abelian 2-group A.

Theorem 3 (Alexander Smith (2017))

Gerth's conjecture is true.

Gerth's adaptation

Gerth adapted the conjecture of Cohen and Lenstra to $p=2$

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{K \text { im. quadr. }:\left|D_{K}\right|<X, 2 \mathrm{Cl}(K)\left[2^{\infty}\right] \cong A\right\}}{\#\left\{K \text { im. quadr. }:\left|D_{K}\right|<X\right\}}=\frac{\prod_{i=1}^{\infty}\left(1-\frac{1}{2^{i}}\right)}{\# \operatorname{Aut}(A)}
$$

for every finite, abelian 2-group A.

Theorem 3 (Alexander Smith (2017))

Gerth's conjecture is true.
Strategy: adapt Smith's method to the family \mathcal{D}.

Gerth's adaptation

Gerth adapted the conjecture of Cohen and Lenstra to $p=2$

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{K \text { im. quadr. }:\left|D_{K}\right|<X, 2 \mathrm{Cl}(K)\left[2^{\infty}\right] \cong A\right\}}{\#\left\{K \text { im. quadr. }:\left|D_{K}\right|<X\right\}}=\frac{\prod_{i=1}^{\infty}\left(1-\frac{1}{2^{i}}\right)}{\# \operatorname{Aut}(A)}
$$

for every finite, abelian 2-group A.

Theorem 3 (Alexander Smith (2017))

Gerth's conjecture is true.
Strategy: adapt Smith's method to the family \mathcal{D}.
Two major difficulties: \mathcal{D} has density 0 in the squarefree integers, and \mathcal{D} naturally ends up in the error term in Smith's proof!

Strategy for Stevenhagen's conjecture

Example 1 (Definition of 2^{k}-rank)
Take

$$
A=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}
$$

Then $\mathrm{rk}_{2} A=3, \mathrm{rk}_{4} A=\mathrm{rk}_{8} A=1, \mathrm{rk}_{2^{k}} A=0$ for $k>3$.

Strategy for Stevenhagen's conjecture

Example 1 (Definition of 2^{k}-rank)

Take

$$
A=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \quad\left(\mathrm{rk}_{2^{k}} A:=\operatorname{dim}_{\mathbb{F}_{2}} 2^{k-1} A / 2^{k} A\right)
$$

Then $\mathrm{rk}_{2} A=3, \mathrm{rk}_{4} A=\mathrm{rk}_{8} A=1, \mathrm{rk}_{2^{k}} A=0$ for $k>3$.
Find for every integer $m \geq 1$, the density of $d \in \mathcal{D}$ for which

$$
\begin{aligned}
& \mathrm{rk}_{2^{k}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=\mathrm{rk}_{2^{k}} \mathrm{Cl}(\mathbb{Q}(\sqrt{d}))>0 \text { for } 1 \leq k \leq m \text { and } \\
& \mathrm{rk}_{2^{m+1}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=0
\end{aligned}
$$

This gives better and better lower bounds for negative Pell.

Strategy for Stevenhagen's conjecture

Example 1 (Definition of 2^{k}-rank)

Take

$$
A=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \quad\left(\mathrm{rk}_{2^{k}} A:=\operatorname{dim}_{\mathbb{F}_{2}} 2^{k-1} A / 2^{k} A\right)
$$

Then $\mathrm{rk}_{2} A=3, \mathrm{rk}_{4} A=\mathrm{rk}_{8} A=1, \mathrm{rk}_{2^{k}} A=0$ for $k>3$.
Find for every integer $m \geq 1$, the density of $d \in \mathcal{D}$ for which

$$
\begin{aligned}
& \mathrm{rk}_{2^{k}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=\mathrm{rk}_{2^{k}} \mathrm{Cl}(\mathbb{Q}(\sqrt{d}))>0 \text { for } 1 \leq k \leq m \text { and } \\
& \mathrm{rk}_{2^{m+1}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=0 .
\end{aligned}
$$

This gives better and better lower bounds for negative Pell. Similarly, find for every integer $m \geq 1$, the density of $d \in \mathcal{D}$ for which

$$
\begin{aligned}
& \mathrm{rk}_{2^{k}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=\mathrm{rk}_{2^{k}} \mathrm{Cl}(\mathbb{Q}(\sqrt{d}))>0 \text { for } 1 \leq k \leq m \text { and } \\
& \mathrm{rk}_{2^{m+1}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=\mathrm{rk}_{2^{m+1}} \mathrm{Cl}(\mathbb{Q}(\sqrt{d}))+1 .
\end{aligned}
$$

This gives better and better upper bounds for negative Pell.

Strategy for Stevenhagen's conjecture

Example 1 (Definition of 2^{k}-rank)

Take

$$
A=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \quad\left(\mathrm{rk}_{2^{k}} A:=\operatorname{dim}_{\mathbb{F}_{2}} 2^{k-1} A / 2^{k} A\right)
$$

Then $\mathrm{rk}_{2} A=3, \mathrm{rk}_{4} A=\mathrm{rk}_{8} A=1, \mathrm{rk}_{2^{k}} A=0$ for $k>3$.
Find for every integer $m \geq 1$, the density of $d \in \mathcal{D}$ for which

$$
\begin{aligned}
& \operatorname{rk}_{2^{k}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=\mathrm{rk}_{2^{k}} \mathrm{Cl}(\mathbb{Q}(\sqrt{d}))>0 \text { for } 1 \leq k \leq m \text { and } \\
& \operatorname{rk}_{2^{m+1}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=0
\end{aligned}
$$

This gives better and better lower bounds for negative Pell. Similarly, find for every integer $m \geq 1$, the density of $d \in \mathcal{D}$ for which

$$
\begin{aligned}
& \mathrm{rk}_{2^{k}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=\mathrm{rk}_{2^{k}} \mathrm{Cl}(\mathbb{Q}(\sqrt{d}))>0 \text { for } 1 \leq k \leq m \text { and } \\
& \mathrm{rk}_{2^{m+1}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=\mathrm{rk}_{2^{m+1}} \mathrm{Cl}(\mathbb{Q}(\sqrt{d}))+1
\end{aligned}
$$

This gives better and better upper bounds for negative Pell.

Strategy: adapt Smith's ideas to compute these densities.

Strategy for Stevenhagen's conjecture

Example 1 (Definition of 2^{k}-rank)

Take

$$
A=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \quad\left(\mathrm{rk}_{2^{k}} A:=\operatorname{dim}_{\mathbb{F}_{2}} 2^{k-1} A / 2^{k} A\right)
$$

Then $\mathrm{rk}_{2} A=3, \mathrm{rk}_{4} A=\mathrm{rk}_{8} A=1, \mathrm{rk}_{2^{k}} A=0$ for $k>3$.
Find for every integer $m \geq 1$, the density of $d \in \mathcal{D}$ for which

$$
\begin{aligned}
& \operatorname{rk}_{2^{k}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=\mathrm{rk}_{2^{k}} \mathrm{Cl}(\mathbb{Q}(\sqrt{d}))>0 \text { for } 1 \leq k \leq m \text { and } \\
& \operatorname{rk}_{2^{m+1}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=0
\end{aligned}
$$

This gives better and better lower bounds for negative Pell. Similarly, find for every integer $m \geq 1$, the density of $d \in \mathcal{D}$ for which

$$
\begin{aligned}
& \mathrm{rk}_{2^{k}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=\mathrm{rk}_{2^{k}} \mathrm{Cl}(\mathbb{Q}(\sqrt{d}))>0 \text { for } 1 \leq k \leq m \text { and } \\
& \mathrm{rk}_{2^{m+1}} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=\mathrm{rk}_{2^{m+1}} \mathrm{Cl}(\mathbb{Q}(\sqrt{d}))+1
\end{aligned}
$$

This gives better and better upper bounds for negative Pell.

Strategy: adapt Smith's ideas to compute these densities.

Duality of abelian groups

For a finite abelian group A, define

$$
A^{\vee}:=\operatorname{Hom}\left(A, \mathbb{C}^{*}\right)
$$

There is a natural pairing

$$
\operatorname{Art}_{1}: A[2] \times A^{\vee}[2] \rightarrow\{ \pm 1\}, \quad(a, \chi) \mapsto \chi(a)
$$

Left kernel of Art $_{1}$ is $2 A[4]$ and right kernel is $2 A^{\vee}[4]$.

Duality of abelian groups

For a finite abelian group A, define

$$
A^{\vee}:=\operatorname{Hom}\left(A, \mathbb{C}^{*}\right)
$$

There is a natural pairing

$$
\operatorname{Art}_{1}: A[2] \times A^{\vee}[2] \rightarrow\{ \pm 1\}, \quad(a, \chi) \mapsto \chi(a)
$$

Left kernel of Art $_{1}$ is $2 A[4]$ and right kernel is $2 A^{\vee}[4]$.
So 4-rank is determined by the pairing Art $_{1}$. We start by describing $\mathrm{Cl}^{+, \mathrm{V}}(K)[2]$.

The dual class group

Theorem 4 (Class field theory)

We have an isomorphism

$$
\mathrm{Cl}^{+}(K) \cong \operatorname{Gal}\left(H^{+}(K) / K\right)
$$

given by sending a prime ideal \mathfrak{p} to $\operatorname{Art}(\mathfrak{p})$. Furthermore, if K is Galois, this isomorphism respects the natural Galois action of $\mathrm{Gal}(K / \mathbb{Q})$ on both sides.

The dual class group

Theorem 4 (Class field theory)

We have an isomorphism

$$
\mathrm{Cl}^{+}(K) \cong \operatorname{Gal}\left(H^{+}(K) / K\right)
$$

given by sending a prime ideal \mathfrak{p} to $\operatorname{Art}(\mathfrak{p})$. Furthermore, if K is Galois, this isomorphism respects the natural Galois action of $\mathrm{Gal}(K / \mathbb{Q})$ on both sides.

From this we get a bijection

$$
\mathrm{Cl}^{+, \vee}(K)[2] \leftrightarrow\{\text { quadratic unramified extensions of } K\} .
$$

The dual class group

Theorem 4 (Class field theory)

We have an isomorphism

$$
\mathrm{Cl}^{+}(K) \cong \operatorname{Gal}\left(H^{+}(K) / K\right)
$$

given by sending a prime ideal \mathfrak{p} to $\operatorname{Art}(\mathfrak{p})$. Furthermore, if K is Galois, this isomorphism respects the natural Galois action of $\mathrm{Gal}(K / \mathbb{Q})$ on both sides.

From this we get a bijection

$$
\mathrm{Cl}^{+, \vee}(K)[2] \leftrightarrow\{\text { quadratic unramified extensions of } K\} .
$$

If K is quadratic with odd discriminant, then $\mathrm{Cl}^{+, \vee}(K)[2]$ is generated by the quadratic characters $\chi_{p^{*}}$, where p^{*} satisfies $\left|p^{*}\right|=|p|$ and $p^{*} \equiv 1 \bmod 4$.

The dual class group

Theorem 4 (Class field theory)

We have an isomorphism

$$
\mathrm{Cl}^{+}(K) \cong \operatorname{Gal}\left(H^{+}(K) / K\right)
$$

given by sending a prime ideal \mathfrak{p} to $\operatorname{Art}(\mathfrak{p})$. Furthermore, if K is Galois, this isomorphism respects the natural Galois action of $\mathrm{Gal}(K / \mathbb{Q})$ on both sides.

From this we get a bijection

$$
\mathrm{Cl}^{+, \vee}(K)[2] \leftrightarrow\{\text { quadratic unramified extensions of } K\} .
$$

If K is quadratic with odd discriminant, then $\mathrm{Cl}^{+, v}(K)[2]$ is generated by the quadratic characters $\chi_{p^{*}}$, where p^{*} satisfies $\left|p^{*}\right|=|p|$ and $p^{*} \equiv 1 \bmod 4 . \operatorname{In}$ particular
$d \in \mathcal{D} \Longleftrightarrow \mathrm{rk}_{2} \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))=\mathrm{rk}_{2} \mathrm{Cl}(\mathbb{Q}(\sqrt{d})) \Longleftrightarrow(\sqrt{d}) \in 2 \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))[4]$.

The Artin pairing

Under the earlier identifications, we have that

$$
\operatorname{Art}_{1}: \mathrm{Cl}^{+}(K)[2] \times \mathrm{Cl}^{+, v}(K)[2] \rightarrow\{ \pm 1\}, \quad(\mathfrak{p}, \chi) \mapsto \chi(\operatorname{Art} \mathfrak{p}) .
$$

The Artin pairing

Under the earlier identifications, we have that

$$
\operatorname{Art}_{1}: \mathrm{Cl}^{+}(K)[2] \times \mathrm{Cl}^{+, v}(K)[2] \rightarrow\{ \pm 1\}, \quad(\mathfrak{p}, \chi) \mapsto \chi(\operatorname{Art} \mathfrak{p}) .
$$

Let p_{1}, \ldots, p_{t} be the prime divisors of d. The Rédei matrix is

$$
\begin{array}{ccccc}
& \chi_{p_{1}^{*}} & \chi_{p_{2}^{*}} & \cdots & \chi_{p_{t}^{*}} \\
p_{1} & * & \left(\frac{p_{2}^{*}}{p_{1}}\right) & \cdots & \left(\frac{p_{t}^{*}}{p_{1}}\right) \\
p_{2} & \left(\frac{p_{1}^{*}}{p_{2}}\right) & * & \cdots & \left(\frac{p_{t}^{*}}{p_{2}}\right) . \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_{t} & \left(\frac{p_{1}^{*}}{p_{t}}\right) & \left(\frac{p_{2}^{*}}{p_{t}}\right) & \cdots & *
\end{array}
$$

The Artin pairing

Under the earlier identifications, we have that

$$
\operatorname{Art}_{1}: \mathrm{Cl}^{+}(K)[2] \times \mathrm{Cl}^{+, v}(K)[2] \rightarrow\{ \pm 1\}, \quad(\mathfrak{p}, \chi) \mapsto \chi(\operatorname{Art} \mathfrak{p}) .
$$

Let p_{1}, \ldots, p_{t} be the prime divisors of d. The Rédei matrix is

$$
\begin{array}{ccccc}
& \chi_{p_{1}^{*}} & \chi_{p_{2}^{*}} & \cdots & \chi_{p_{t}^{*}} \\
p_{1} & * & \left(\frac{p_{2}^{*}}{p_{1}}\right) & \cdots & \left(\frac{p_{t}^{*}}{p_{1}}\right) \\
p_{2} & \left(\frac{p_{1}^{*}}{p_{2}}\right) & * & \cdots & \left(\frac{p_{t}^{*}}{p_{2}}\right) . \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_{t} & \left(\frac{p_{1}^{*}}{p_{t}}\right) & \left(\frac{p_{2}^{*}}{p_{t}}\right) & \cdots & *
\end{array}
$$

Left kernel surjects on $2 \mathrm{Cl}^{+}(K)[4]$ with 1-dimensional kernel.

Interlude: Stevenhagen's conjecture

For $d \in \mathcal{D}$, recall that $(\sqrt{d}) \in 2 \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))[4]$.

Interlude: Stevenhagen's conjecture

For $d \in \mathcal{D}$, recall that $(\sqrt{d}) \in 2 \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))[4]$.
Heuristic assumption: every non-zero element in the left kernel of the Rédei matrix is equally likely to be trivial.

Interlude: Stevenhagen's conjecture

For $d \in \mathcal{D}$, recall that $(\sqrt{d}) \in 2 \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))[4]$.
Heuristic assumption: every non-zero element in the left kernel of the Rédei matrix is equally likely to be trivial.

Conjecture 1 (Stevenhagen's conjecture)

We have

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\}}{\#\{d \leq X: d \in \mathcal{D}\}}=\sum_{j=0}^{\infty} \frac{\mathbb{P}(4 \text {-rank of } d \in \mathcal{D} \text { equals } j)}{2^{j+1}-1}
$$

Interlude: Stevenhagen's conjecture

For $d \in \mathcal{D}$, recall that $(\sqrt{d}) \in 2 \mathrm{Cl}^{+}(\mathbb{Q}(\sqrt{d}))[4]$.
Heuristic assumption: every non-zero element in the left kernel of the Rédei matrix is equally likely to be trivial.

Conjecture 1 (Stevenhagen's conjecture)

We have

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{d \leq X: d \in \mathcal{D}^{-}\right\}}{\#\{d \leq X: d \in \mathcal{D}\}}=\sum_{j=0}^{\infty} \frac{\mathbb{P}(4 \text {-rank of } d \in \mathcal{D} \text { equals } j)}{2^{j+1}-1}
$$

Furthermore,
$\mathbb{P}(4$-rank of $d \in \mathcal{D}$ equals $j)=\lim _{t \rightarrow \infty} \mathbb{P}(t \times t$ sym. matrix has ker. of $\operatorname{dim} . j)$.

The second Artin pairing

There is a natural pairing

$$
\text { Art }_{2}: 2 A[4] \times 2 A^{\vee}[4] \rightarrow\{ \pm 1\}, \quad(a, \chi) \mapsto \psi(a), 2 \psi=\chi
$$

Left kernel is $4 A[8]$ and right kernel is $4 A^{\vee}[8]$.

The second Artin pairing

There is a natural pairing

$$
\text { Art }_{2}: 2 A[4] \times 2 A^{\vee}[4] \rightarrow\{ \pm 1\}, \quad(a, \chi) \mapsto \psi(a), 2 \psi=\chi .
$$

Left kernel is $4 A[8]$ and right kernel is $4 A^{\vee}[8]$.
As before, class field theory gives that this pairing becomes

$$
(\mathfrak{p}, \chi) \mapsto \psi(\text { Art } \mathfrak{p}), 2 \psi=\chi .
$$

First goal: understand cyclic degree 4 unramified extensions of $\mathbb{Q}(\sqrt{d})$.

The second Artin pairing

There is a natural pairing

$$
\text { Art }_{2}: 2 A[4] \times 2 A^{\vee}[4] \rightarrow\{ \pm 1\}, \quad(a, \chi) \mapsto \psi(a), 2 \psi=\chi
$$

Left kernel is $4 A[8]$ and right kernel is $4 A^{\vee}[8]$.
As before, class field theory gives that this pairing becomes

$$
(\mathfrak{p}, \chi) \mapsto \psi(\text { Art } \mathfrak{p}), 2 \psi=\chi
$$

First goal: understand cyclic degree 4 unramified extensions of $\mathbb{Q}(\sqrt{d})$.
Fact: a degree 4 unramified, abelian extension of $\mathbb{Q}(\sqrt{d})$ is Galois over \mathbb{Q} with Galois group D_{4}.

The second Artin pairing

There is a natural pairing

$$
\text { Art }_{2}: 2 A[4] \times 2 A^{\vee}[4] \rightarrow\{ \pm 1\}, \quad(a, \chi) \mapsto \psi(a), 2 \psi=\chi
$$

Left kernel is $4 A[8]$ and right kernel is $4 A^{\vee}[8]$.
As before, class field theory gives that this pairing becomes

$$
(\mathfrak{p}, \chi) \mapsto \psi(\text { Art } \mathfrak{p}), 2 \psi=\chi
$$

First goal: understand cyclic degree 4 unramified extensions of $\mathbb{Q}(\sqrt{d})$.
Fact: a degree 4 unramified, abelian extension of $\mathbb{Q}(\sqrt{d})$ is Galois over \mathbb{Q} with Galois group D_{4}.

Such extensions are of the shape $\mathbb{Q}(\sqrt{d}, \sqrt{a}, \sqrt{\alpha})$, where

$$
x^{2}=a y^{2}+\frac{d}{a} z^{2} \text { with } x, y, z \in \mathbb{Z} \text { and } \operatorname{gcd}(x, y, z)=1, \quad \alpha:=x+y \sqrt{a} .
$$

Reflection principles

In the literature there are many known results that compare different class groups. For example, we have

$$
\mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{d})) \leq \mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{-3 d})) \leq 1+\mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{d})),
$$

which is known as Scholz's reflection principle.

Reflection principles

In the literature there are many known results that compare different class groups. For example, we have

$$
\mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{d})) \leq \mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{-3 d})) \leq 1+\mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{d})),
$$

which is known as Scholz's reflection principle.
The main algebraic result in Smith's work is in fact a reflection principle that compares Art_{m} of 2^{m} quadratic fields.

Reflection principles

In the literature there are many known results that compare different class groups. For example, we have

$$
\mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{d})) \leq \mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{-3 d})) \leq 1+\mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{d})),
$$

which is known as Scholz's reflection principle.
The main algebraic result in Smith's work is in fact a reflection principle that compares Art_{m} of 2^{m} quadratic fields.

How can we find such reflection principles?

Reflection principles

In the literature there are many known results that compare different class groups. For example, we have

$$
\mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{d})) \leq \mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{-3 d})) \leq 1+\mathrm{rk}_{3} \mathrm{Cl}(\mathbb{Q}(\sqrt{d})),
$$

which is known as Scholz's reflection principle.
The main algebraic result in Smith's work is in fact a reflection principle that compares Art_{m} of 2^{m} quadratic fields.

How can we find such reflection principles?
Smith's idea is to look for situations where the compositum of various Hilbert class fields is in some sense small.

Intersections of Hilbert class fields

Take primes $p_{1}, p_{2}, q_{1}, q_{2}$. Now suppose that we have a degree 4 unramified, abelian extension of $\mathbb{Q}\left(\sqrt{d p_{i} q_{j}}\right)$ each lifting the character χ_{a}.

Intersections of Hilbert class fields

Take primes $p_{1}, p_{2}, q_{1}, q_{2}$. Now suppose that we have a degree 4 unramified, abelian extension of $\mathbb{Q}\left(\sqrt{d p_{i} q_{j}}\right)$ each lifting the character χ_{a}.

Recall that we then get $\alpha_{i, j} \in \mathbb{Q}(\sqrt{a})$ with

$$
\operatorname{Norm}_{\mathbb{Q}(\sqrt{a}) / \mathbb{Q}}\left(\alpha_{i, j}\right)=\frac{d p_{i} q_{j}}{a} z_{i, j}^{2}
$$

Intersections of Hilbert class fields

Take primes $p_{1}, p_{2}, q_{1}, q_{2}$. Now suppose that we have a degree 4 unramified, abelian extension of $\mathbb{Q}\left(\sqrt{d p_{i} q_{j}}\right)$ each lifting the character χ_{a}.

Recall that we then get $\alpha_{i, j} \in \mathbb{Q}(\sqrt{a})$ with

$$
\operatorname{Norm}_{\mathbb{Q}(\sqrt{a}) / \mathbb{Q}}\left(\alpha_{i, j}\right)=\frac{d p_{i} q_{j}}{a} z_{i, j}^{2}
$$

Then we see that the norm of $\alpha_{1,1} \alpha_{1,2} \alpha_{2,1} \alpha_{2,2}$ is a square.

Intersections of Hilbert class fields

Take primes $p_{1}, p_{2}, q_{1}, q_{2}$. Now suppose that we have a degree 4 unramified, abelian extension of $\mathbb{Q}\left(\sqrt{d p_{i} q_{j}}\right)$ each lifting the character χ_{a}.

Recall that we then get $\alpha_{i, j} \in \mathbb{Q}(\sqrt{a})$ with

$$
\operatorname{Norm}_{\mathbb{Q}(\sqrt{a}) / \mathbb{Q}}\left(\alpha_{i, j}\right)=\frac{d p_{i} q_{j}}{a} z_{i, j}^{2}
$$

Then we see that the norm of $\alpha_{1,1} \alpha_{1,2} \alpha_{2,1} \alpha_{2,2}$ is a square.
In other words, part of $H_{2}\left(\mathbb{Q}\left(\sqrt{d p_{2} q_{2}}\right)\right)$ is contained in the other $H_{2}\left(\mathbb{Q}\left(\sqrt{d p_{i} q_{j}}\right)\right)$.

Intersections of Hilbert class fields

Take primes $p_{1}, p_{2}, q_{1}, q_{2}$. Now suppose that we have a degree 4 unramified, abelian extension of $\mathbb{Q}\left(\sqrt{d p_{i} q_{j}}\right)$ each lifting the character χ_{a}.

Recall that we then get $\alpha_{i, j} \in \mathbb{Q}(\sqrt{a})$ with

$$
\operatorname{Norm}_{\mathbb{Q}(\sqrt{a}) / \mathbb{Q}}\left(\alpha_{i, j}\right)=\frac{d p_{i} q_{j}}{a} z_{i, j}^{2}
$$

Then we see that the norm of $\alpha_{1,1} \alpha_{1,2} \alpha_{2,1} \alpha_{2,2}$ is a square.
In other words, part of $H_{2}\left(\mathbb{Q}\left(\sqrt{d p_{2} q_{2}}\right)\right)$ is contained in the other $H_{2}\left(\mathbb{Q}\left(\sqrt{d p_{i} q_{j}}\right)\right)$. This implies
$\operatorname{Art}_{2, d p_{1} q_{1}}\left(b, \chi_{a}\right)+\operatorname{Art}_{2, d p_{1} q_{2}}\left(b, \chi_{a}\right)+\operatorname{Art}_{2, d p_{2} q_{1}}\left(b, \chi_{a}\right)+\operatorname{Art}_{2, d p_{2} q_{2}}\left(b, \chi_{a}\right)=0$ for $b \in 2 \mathrm{Cl}\left(\mathbb{Q}\left(\sqrt{d p_{i} q_{j}}\right)\right)[4]$ a fixed divisor of d.

Another reflection principle

With similar techniques, Smith proves another reflection principle

$$
\begin{aligned}
& \operatorname{Art}_{2, d p_{1} q_{1}}\left(b, \chi_{a p_{1}}\right)+\operatorname{Art}_{2, d p_{1} q_{2}}\left(b, \chi_{a p_{1}}\right)+ \\
& \quad \operatorname{Art}_{2, d p_{2} q_{1}}\left(b, \chi_{a p_{2}}\right)+\operatorname{Art}_{2, d p_{2} q_{2}}\left(b, \chi_{a p_{2}}\right)=\sum_{r \mid b} \operatorname{Frob}_{K_{p_{1} p_{2}, q_{1} q_{2}} / \mathbb{Q}}(r) .
\end{aligned}
$$

Another reflection principle

With similar techniques, Smith proves another reflection principle

$$
\begin{aligned}
& \operatorname{Art}_{2, d p_{1} q_{1}}\left(b, \chi_{a p_{1}}\right)+\operatorname{Art}_{2, d p_{1} q_{2}}\left(b, \chi_{a p_{1}}\right)+ \\
& \quad \operatorname{Art}_{2, d p_{2} q_{1}}\left(b, \chi_{a p_{2}}\right)+\operatorname{Art}_{2, d p_{2} q_{2}}\left(b, \chi_{a p_{2}}\right)=\sum_{r \mid b} \operatorname{Frob}_{{p_{1} p_{2}, q_{1} q_{2}} / \mathbb{Q}(r) .} .
\end{aligned}
$$

However, in the Pell setting, the first Rédei matrix is symmetric.

Another reflection principle

With similar techniques, Smith proves another reflection principle

$$
\begin{aligned}
& \operatorname{Art}_{2, d p_{1} q_{1}}\left(b, \chi_{a p_{1}}\right)+\operatorname{Art}_{2, d p_{1} q_{2}}\left(b, \chi_{a p_{1}}\right)+ \\
& \quad \operatorname{Art}_{2, d p_{2} q_{1}}\left(b, \chi_{a p_{2}}\right)+\operatorname{Art}_{2, d p_{2} q_{2}}\left(b, \chi_{a p_{2}}\right)=\sum_{r \mid b} \operatorname{Frob}_{{p_{1} p_{2}, q_{1} q_{2}} / \mathbb{Q}(r) .} .
\end{aligned}
$$

However, in the Pell setting, the first Rédei matrix is symmetric.

That means we have to compute the Artin pairing between a and χ_{a}.

Another reflection principle

With similar techniques, Smith proves another reflection principle

$$
\begin{aligned}
& \operatorname{Art}_{2, d p_{1} q_{1}}\left(b, \chi_{a p_{1}}\right)+\operatorname{Art}_{2, d p_{1} q_{2}}\left(b, \chi_{a p_{1}}\right)+ \\
& \quad \operatorname{Art}_{2, d p_{2} q_{1}}\left(b, \chi_{a p_{2}}\right)+\operatorname{Art}_{2, d p_{2} q_{2}}\left(b, \chi_{a p_{2}}\right)=\sum_{r \mid b} \operatorname{Frob}_{{R_{1} p_{2}, q_{1} q_{2}} / \mathbb{Q}(r) .} .
\end{aligned}
$$

However, in the Pell setting, the first Rédei matrix is symmetric.
That means we have to compute the Artin pairing between a and χ_{a}.
We also have to compute the Artin pairing between $d p_{i} q_{j}$ and χ_{a}.

Another reflection principle

With similar techniques, Smith proves another reflection principle

$$
\begin{aligned}
& \operatorname{Art}_{2, d p_{1} q_{1}}\left(b, \chi_{a p_{1}}\right)+\operatorname{Art}_{2, d p_{1} q_{2}}\left(b, \chi_{a p_{1}}\right)+ \\
& \quad \operatorname{Art}_{2, d p_{2} q_{1}}\left(b, \chi_{a p_{2}}\right)+\operatorname{Art}_{2, d p_{2} q_{2}}\left(b, \chi_{a p_{2}}\right)=\sum_{r \mid b} \operatorname{Frob}_{{R_{1} p_{2}, q_{1} q_{2}} / \mathbb{Q}(r) .} .
\end{aligned}
$$

However, in the Pell setting, the first Rédei matrix is symmetric.
That means we have to compute the Artin pairing between a and χ_{a}.
We also have to compute the Artin pairing between $d p_{i} q_{j}$ and χ_{a}.
The above reflection principle is useless in both cases.

Another reflection principle

With similar techniques, Smith proves another reflection principle

$$
\begin{aligned}
& \operatorname{Art}_{2, d p_{1} q_{1}}\left(b, \chi_{a p_{1}}\right)+\operatorname{Art}_{2, d p_{1} q_{2}}\left(b, \chi_{a p_{1}}\right)+ \\
& \quad \operatorname{Art}_{2, d p_{2} q_{1}}\left(b, \chi_{a p_{2}}\right)+\operatorname{Art}_{2, d p_{2} q_{2}}\left(b, \chi_{a p_{2}}\right)=\sum_{r \mid b} \operatorname{Frob}_{{p_{1} p_{2}, q_{1} q_{2}} / \mathbb{Q}(r) .} .
\end{aligned}
$$

However, in the Pell setting, the first Rédei matrix is symmetric.
That means we have to compute the Artin pairing between a and χ_{a}.
We also have to compute the Artin pairing between $d p_{i} q_{j}$ and χ_{a}.
The above reflection principle is useless in both cases.
We develop two new reflection principles. Unlike Smith's work, they make essential use of Hilbert reciprocity in multiquadratic fields.

Bonus slide: new reflection principles

For the Artin pairing with $d p_{i} q_{j}$ we have (following Smith's ideas)

$$
\begin{aligned}
& \operatorname{Art}_{2, d p_{1} q_{1}}\left(d p_{1} q_{1}, \chi_{a p_{1}}\right)+\operatorname{Art}_{2, d p_{1} q_{2}}\left(d p_{1} q_{2}, \chi_{a p_{1}}\right)+ \\
& \operatorname{Art}_{2, d p_{2} q_{1}}\left(d p_{2} q_{1}, \chi_{a p_{2}}\right)+\operatorname{Art}_{2, d p_{2} q_{2}}\left(d p_{2} q_{2}, \chi_{a p_{2}}\right)=\operatorname{Frob}_{K_{p_{1} p_{2}, q_{1} q_{2}} / \mathbb{Q}}(\infty) .
\end{aligned}
$$

Bonus slide: new reflection principles

For the Artin pairing with $d p_{i} q_{j}$ we have (following Smith's ideas)

$$
\begin{aligned}
& \operatorname{Art}_{2, d p_{1} q_{1}}\left(d p_{1} q_{1}, \chi_{a p_{1}}\right)+\operatorname{Art}_{2, d p_{1} q_{2}}\left(d p_{1} q_{2}, \chi_{a p_{1}}\right)+ \\
& \operatorname{Art}_{2, d p_{2} q_{1}}\left(d p_{2} q_{1}, \chi_{a p_{2}}\right)+\operatorname{Art}_{2, d p_{2} q_{2}}\left(d p_{2} q_{2}, \chi_{a p_{2}}\right)=\operatorname{Frob}_{K_{p_{1} p_{2}, q_{1} q_{2}} / \mathbb{Q}}(\infty) .
\end{aligned}
$$

Our reciprocity law shows that

$$
\operatorname{Frob}_{K_{p_{1} p_{2}, q_{1} q_{2}} / \mathbb{Q}}(\infty)=\operatorname{Frob}_{{p_{1} p_{2},-1}} / \mathbb{Q}\left(q_{1}\right)+\operatorname{Frob}_{K_{p_{1} p_{2},-1} / \mathbb{Q}}\left(q_{2}\right)
$$

Bonus slide: new reflection principles

For the Artin pairing with $d p_{i} q_{j}$ we have (following Smith's ideas)

$$
\begin{aligned}
& \operatorname{Art}_{2, d p_{1} q_{1}}\left(d p_{1} q_{1}, \chi_{a p_{1}}\right)+\operatorname{Art}_{2, d p_{1} q_{2}}\left(d p_{1} q_{2}, \chi_{a p_{1}}\right)+ \\
& \operatorname{Art}_{2, d p_{2} q_{1}}\left(d p_{2} q_{1}, \chi_{a p_{2}}\right)+\operatorname{Art}_{2, d p_{2} q_{2}}\left(d p_{2} q_{2}, \chi_{a p_{2}}\right)=\operatorname{Frob}_{K_{p_{1} p_{2}, q_{1} q_{2}} / \mathbb{Q}}(\infty) .
\end{aligned}
$$

Our reciprocity law shows that

$$
\operatorname{Frob}_{K_{p_{1} p_{2}, q_{1} q_{2}} / \mathbb{Q}}(\infty)=\operatorname{Frob}_{K_{p_{1} p_{2},-1} / \mathbb{Q}}\left(q_{1}\right)+\operatorname{Frob}_{K_{p_{1} p_{2},-1} / \mathbb{Q}}\left(q_{2}\right) .
$$

For the pairing between a and χ_{a} we also develop a new reflection principle.

Summary

- Stevenhagen gave a conjecture for the density of $d \in \mathcal{D}$ for which the negative Pell equation is soluble.

Summary

- Stevenhagen gave a conjecture for the density of $d \in \mathcal{D}$ for which the negative Pell equation is soluble.
- Carlo Pagano and I recently proved Stevenhagen's conjecture using techniques related to the Cohen-Lenstra-Gerth conjecture.

Summary

- Stevenhagen gave a conjecture for the density of $d \in \mathcal{D}$ for which the negative Pell equation is soluble.
- Carlo Pagano and I recently proved Stevenhagen's conjecture using techniques related to the Cohen-Lenstra-Gerth conjecture.
- The key innovations are two new reflection principles based on Hilbert reciprocity in multiquadratic fields.

Summary

- Stevenhagen gave a conjecture for the density of $d \in \mathcal{D}$ for which the negative Pell equation is soluble.
- Carlo Pagano and I recently proved Stevenhagen's conjecture using techniques related to the Cohen-Lenstra-Gerth conjecture.
- The key innovations are two new reflection principles based on Hilbert reciprocity in multiquadratic fields.

Thank you for your attention!

