Malle's conjecture for nonic Heisenberg extensions, pre-talk

Peter Koymans Max Planck Institute for Mathematics

San Diego Number Theory Seminar

1 April 2021

The statement of Malle's conjecture;

- The statement of Malle's conjecture;
- The structure of the Heisenberg group;

- The statement of Malle's conjecture;
- The structure of the Heisenberg group;
- Central extensions and some basic Galois cohomology.

Then $\operatorname{Gal}(L/\mathbb{Q})$ acts on the *n* embeddings $K \to \overline{\mathbb{Q}}$. After labelling the embeddings, we get a homomorphism from $\operatorname{Gal}(L/\mathbb{Q})$ to S_n .

Then $\operatorname{Gal}(L/\mathbb{Q})$ acts on the *n* embeddings $K \to \overline{\mathbb{Q}}$. After labelling the embeddings, we get a homomorphism from $\operatorname{Gal}(L/\mathbb{Q})$ to S_n .

By abuse of notation, define $Gal(K/\mathbb{Q}) \subseteq S_n$ to be the image of this homomorphism, which is a transitive subgroup of S_n .

Then $\operatorname{Gal}(L/\mathbb{Q})$ acts on the *n* embeddings $K \to \overline{\mathbb{Q}}$. After labelling the embeddings, we get a homomorphism from $\operatorname{Gal}(L/\mathbb{Q})$ to S_n .

By abuse of notation, define $Gal(K/\mathbb{Q}) \subseteq S_n$ to be the image of this homomorphism, which is a transitive subgroup of S_n .

This subgroup is only well-defined up to conjugation: relabelling the embeddings gives a conjugate subgroup.

Statement of Malle's conjecture

For a transitive subgroup $G \subseteq S_n$, consider the counting function

 $\mathit{N}(\mathit{G}, X) := \#\{\mathit{K}/\mathbb{Q} : [\mathit{K} : \mathbb{Q}] = \mathit{n}, \mathsf{Gal}(\mathit{K}/\mathbb{Q}) \cong_{\mathsf{perm. gr.}} \mathit{G}, \Delta_{\mathit{K}/\mathbb{Q}} \leq X\},\$

where $\Delta_{K/\mathbb{Q}}$ denotes the discriminant and K is taken inside a fixed algebraic closure $\overline{\mathbb{Q}}$.

Statement of Malle's conjecture

For a transitive subgroup $G \subseteq S_n$, consider the counting function

 $\mathit{N}(\mathit{G}, X) := \#\{\mathit{K}/\mathbb{Q} : [\mathit{K} : \mathbb{Q}] = \mathit{n}, \mathsf{Gal}(\mathit{K}/\mathbb{Q}) \cong_{\mathsf{perm. gr.}} \mathit{G}, \Delta_{\mathit{K}/\mathbb{Q}} \leq X\},$

where $\Delta_{K/\mathbb{Q}}$ denotes the discriminant and K is taken inside a fixed algebraic closure $\overline{\mathbb{Q}}$.

Here the isomorphism is as *permutation groups*. Equivalently, G and $Gal(K/\mathbb{Q})$ are conjugate subgroups of S_n .

Statement of Malle's conjecture

For a transitive subgroup $G \subseteq S_n$, consider the counting function

 $\mathit{N}(\mathit{G}, X) := \#\{\mathit{K}/\mathbb{Q} : [\mathit{K} : \mathbb{Q}] = \mathit{n}, \mathsf{Gal}(\mathit{K}/\mathbb{Q}) \cong_{\mathsf{perm. gr.}} \mathit{G}, \Delta_{\mathit{K}/\mathbb{Q}} \leq X\},\$

where $\Delta_{K/\mathbb{Q}}$ denotes the discriminant and K is taken inside a fixed algebraic closure $\overline{\mathbb{Q}}$.

Here the isomorphism is as *permutation groups*. Equivalently, G and $Gal(K/\mathbb{Q})$ are conjugate subgroups of S_n .

Conjecture 1 (Malle's conjecture)

There exists a constant c(G) > 0 such that

$$N(G,X) \sim c(G)X^{a(G)}(\log X)^{b(G)-1}.$$

Malle gave explicit values for the constants a(G) and b(G).

How to compute a(G) and b(G)

Define for $\sigma \in G \subseteq S_n$

$$\operatorname{ind}(\sigma) := n - |\{\operatorname{orbits of } \sigma\}|$$

How to compute a(G) and b(G)

Define for $\sigma \in G \subseteq S_n$

$$\operatorname{ind}(\sigma) := n - |\{\operatorname{orbits of } \sigma\}|$$

and define

$$a(G)^{-1} := \min_{\sigma \in G \setminus {\mathrm{id}}} \mathrm{ind}(\sigma).$$

Interpretation: any prime p dividing the discriminant of a G-extension occurs with exponent at least $a(G)^{-1}$.

Define for $\sigma \in G \subseteq S_n$

$$\operatorname{ind}(\sigma) := n - |\{\operatorname{orbits of } \sigma\}|$$

and define

$$a(G)^{-1} := \min_{\sigma \in G \setminus {\mathrm{id}}} \mathrm{ind}(\sigma).$$

Interpretation: any prime p dividing the discriminant of a G-extension occurs with exponent at least $a(G)^{-1}$.

Furthermore, Malle proposed

$$b(G) := \# \{ C \in \text{Conj}(G) : \text{ind}(C) = a(G)^{-1} \} / \sim,$$

where two conjugacy classes *C* and *C'* are equivalent if they are in the same orbit under a certain action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on Conj(G).

The Heisenberg group

Let ℓ be an odd prime number. The Heisenberg group Heis_{ℓ} is the multiplicative group of upper triangular matrices with ones on the diagonal and entries in \mathbb{F}_{ℓ} :

$$egin{pmatrix} 1 & * & * \ 0 & 1 & * \ 0 & 0 & 1 \end{pmatrix}$$
 .

The Heisenberg group

Let ℓ be an odd prime number. The Heisenberg group Heis_{ℓ} is the multiplicative group of upper triangular matrices with ones on the diagonal and entries in \mathbb{F}_{ℓ} :

$$egin{pmatrix} 1 & * & * \ 0 & 1 & * \ 0 & 0 & 1 \end{pmatrix}.$$

For $\ell = 2$ we get D_4 , which behaves slightly different than odd ℓ .

The Heisenberg group

Let ℓ be an odd prime number. The Heisenberg group Heis_{ℓ} is the multiplicative group of upper triangular matrices with ones on the diagonal and entries in \mathbb{F}_{ℓ} :

$$\begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

For $\ell = 2$ we get D_4 , which behaves slightly different than odd ℓ .

Theorem 1 (Basic facts about $Heis_{\ell}$)

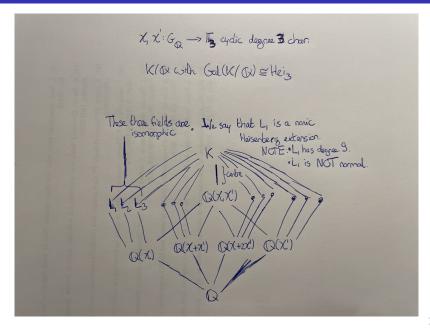
Let ℓ be an odd prime. We have the following

- ► every element of Heis_ℓ has order ℓ;
- the centre $Z(\text{Heis}_{\ell})$ of Heis_{ℓ} is of size ℓ ;
- there is an exact sequence

$$1 \to \mathbb{F}_{\ell} \to \mathsf{Heis}_{\ell} \to \mathbb{F}_{\ell}^2 \to 1$$

with the image of \mathbb{F}_{ℓ} landing in $Z(\text{Heis}_{\ell})$.

Subfield diagram of Heis₃



The Malle constant for Heis₃

What transitive subgroups of S_9 are isomorphic to Heis₃?

Note that such a subgroup has a transitive action on 9 elements, and recall that if G acts transitively on a set X, this action is isomorphic to G acting on G/H for some subgroup H.

Note that such a subgroup has a transitive action on 9 elements, and recall that if G acts transitively on a set X, this action is isomorphic to G acting on G/H for some subgroup H.

There are 12 subgroups H of Heis₃ of order 3, so that $\#(\text{Heis}_3/H) = 9$.

Note that such a subgroup has a transitive action on 9 elements, and recall that if G acts transitively on a set X, this action is isomorphic to G acting on G/H for some subgroup H.

There are 12 subgroups H of Heis₃ of order 3, so that $\#(\text{Heis}_3/H) = 9$.

Fortunately, Heis₃ is a very symmetric group so all 12 subgroups H of order 3 lead to the same conjugacy class of subgroups in S_9 . Concretely, generators are

(1,2,9)(3,4,5)(6,7,8), (3,4,5)(6,8,7), (1,4,7)(2,5,8)(3,6,9),so $a(\text{Heis}_3) = 4, b(\text{Heis}_3) = 1.$

Note that such a subgroup has a transitive action on 9 elements, and recall that if G acts transitively on a set X, this action is isomorphic to G acting on G/H for some subgroup H.

There are 12 subgroups H of Heis₃ of order 3, so that $\#(\text{Heis}_3/H) = 9$.

Fortunately, Heis₃ is a very symmetric group so all 12 subgroups H of order 3 lead to the same conjugacy class of subgroups in S_9 . Concretely, generators are

(1,2,9)(3,4,5)(6,7,8), (3,4,5)(6,8,7), (1,4,7)(2,5,8)(3,6,9),

so $a(\text{Heis}_3) = 4$, $b(\text{Heis}_3) = 1$. Hence, conjecturally, there is c > 0 with

 $N(\text{Heis}_3, X) \sim c X^{1/4}.$

Suppose that we are given two linearly independent characters $\chi, \chi' : \mathcal{G}_{\mathbb{Q}} \to \mathbb{F}_3.$

Suppose that we are given two linearly independent characters $\chi, \chi' : \mathcal{G}_{\mathbb{Q}} \to \mathbb{F}_3.$

We will develop some general tools to answer the following question:

Suppose that we are given two linearly independent characters $\chi, \chi' : \mathcal{G}_{\mathbb{Q}} \to \mathbb{F}_3.$

We will develop some general tools to answer the following question:

when does there exist a normal, degree 27 extension K/\mathbb{Q} containing $\mathbb{Q}(\chi)$ and $\mathbb{Q}(\chi')$ such that $Gal(K/\mathbb{Q}) \cong Heis_3$?

Recall that we had an exact sequence

$$1 \to \mathbb{F}_\ell \to \mathsf{Heis}_\ell \to \mathbb{F}_\ell^2 \to 1$$

with the image of \mathbb{F}_{ℓ} landing in $Z(\text{Heis}_{\ell})$.

Recall that we had an exact sequence

$$1 \to \mathbb{F}_\ell \to \mathsf{Heis}_\ell \to \mathbb{F}_\ell^2 \to 1$$

with the image of \mathbb{F}_{ℓ} landing in $Z(\text{Heis}_{\ell})$.

More general, a central extension of G by A is an exact sequence

$$1 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$$

with A abelian and $A \subseteq Z(E)$.

Recall that we had an exact sequence

$$1 \to \mathbb{F}_\ell \to \mathsf{Heis}_\ell \to \mathbb{F}_\ell^2 \to 1$$

with the image of \mathbb{F}_{ℓ} landing in $Z(\text{Heis}_{\ell})$.

More general, a central extension of G by A is an exact sequence

$$1 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$$

with A abelian and $A \subseteq Z(E)$.

Isomorphism classes of central extensions are in correspondence with elements of the second cohomology group $H^2(G, A)$, where G acts trivially on A.

Recall that we had an exact sequence

$$1 \to \mathbb{F}_\ell \to \mathsf{Heis}_\ell \to \mathbb{F}_\ell^2 \to 1$$

with the image of \mathbb{F}_{ℓ} landing in $Z(\text{Heis}_{\ell})$.

More general, a central extension of G by A is an exact sequence

$$1 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$$

with A abelian and $A \subseteq Z(E)$.

Isomorphism classes of central extensions are in correspondence with elements of the second cohomology group $H^2(G, A)$, where G acts trivially on A.

Theorem 2 (Heis $_{\ell}$ as a central extension)

Let $\chi_1, \chi_2 : \mathbb{F}_{\ell}^2 \to \mathbb{F}_{\ell}$ be the natural projections. Then the Heisenberg extensions (i.e. those with $E \cong \text{Heis}_{\ell}$) correspond to the non-trivial multiples of $(v, w) \mapsto \chi_1(v) \cdot \chi_2(w)$ inside $H^2(\mathbb{F}_{\ell}^2, \mathbb{F}_{\ell})$.

Let G be a group, N a normal subgroup and let A be a G-module. There is a long exact sequence

$$0 \to H^{1}(G/N, A^{N}) \xrightarrow{\text{inf}} H^{1}(G, A) \xrightarrow{\text{res}} H^{1}(N, A)^{G/N} \xrightarrow{\text{trans}} H^{2}(G/N, A^{N}) \xrightarrow{\text{inf}} H^{2}(G, A),$$

Let G be a group, N a normal subgroup and let A be a G-module. There is a long exact sequence

$$0 \to H^{1}(G/N, A^{N}) \xrightarrow{\inf} H^{1}(G, A) \xrightarrow{\text{res}} H^{1}(N, A)^{G/N} \xrightarrow{\text{trans}} H^{2}(G/N, A^{N}) \xrightarrow{\inf} H^{2}(G, A),$$

where A^N denotes the fixed points, and G/N acts on $H^1(N, A)$ by sending a 1-cocycle $f : N \to A$ to $(g * f)(n) = g \cdot f(g^{-1}ng)$.

Applying the inflation-restriction exact sequence, I

We apply this with $G = G_{\mathbb{Q}}$, N the normal subgroup of $G_{\mathbb{Q}}$ corresponding to the bicyclic extension $M := \mathbb{Q}(\chi, \chi')$ and $A = \mathbb{F}_{\ell}$ with trivial action.

Applying the inflation-restriction exact sequence, I

We apply this with $G = G_{\mathbb{Q}}$, N the normal subgroup of $G_{\mathbb{Q}}$ corresponding to the bicyclic extension $M := \mathbb{Q}(\chi, \chi')$ and $A = \mathbb{F}_{\ell}$ with trivial action.

In this case we have

$$\begin{aligned} H^1(N,A)^{G/N} &= \operatorname{Hom}(G_M,\mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \\ &= \{\rho: G_M \to \mathbb{F}_{\ell}: \rho(\sigma\tau\sigma^{-1}) = \rho(\tau) \text{ for } \tau \in G_M, \sigma \in G_{\mathbb{Q}}\}. \end{aligned}$$

We apply this with $G = G_{\mathbb{Q}}$, N the normal subgroup of $G_{\mathbb{Q}}$ corresponding to the bicyclic extension $M := \mathbb{Q}(\chi, \chi')$ and $A = \mathbb{F}_{\ell}$ with trivial action.

In this case we have

$$\begin{aligned} H^1(N,A)^{G/N} &= \operatorname{Hom}(G_M,\mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \\ &= \{\rho: G_M \to \mathbb{F}_{\ell}: \rho(\sigma\tau\sigma^{-1}) = \rho(\tau) \text{ for } \tau \in G_M, \sigma \in G_{\mathbb{Q}}\}. \end{aligned}$$

To $\rho \in Hom(\mathcal{G}_M, \mathbb{F}_\ell)^{Gal(M/\mathbb{Q})}$ we attach the central extension

$$1 \to \operatorname{Gal}(M(\rho)/M) \to \operatorname{Gal}(M(\rho)/\mathbb{Q}) \to \operatorname{Gal}(M/\mathbb{Q}) \to 1,$$

since $M(\rho)$ is a Galois extension over \mathbb{Q} .

We apply this with $G = G_{\mathbb{Q}}$, N the normal subgroup of $G_{\mathbb{Q}}$ corresponding to the bicyclic extension $M := \mathbb{Q}(\chi, \chi')$ and $A = \mathbb{F}_{\ell}$ with trivial action.

In this case we have

$$\begin{aligned} H^1(N,A)^{G/N} &= \operatorname{Hom}(G_M,\mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \\ &= \{\rho: G_M \to \mathbb{F}_{\ell}: \rho(\sigma\tau\sigma^{-1}) = \rho(\tau) \text{ for } \tau \in G_M, \sigma \in G_{\mathbb{Q}}\}. \end{aligned}$$

To $\rho \in \operatorname{Hom}(\mathcal{G}_M, \mathbb{F}_\ell)^{\operatorname{Gal}(M/\mathbb{Q})}$ we attach the central extension

$$1
ightarrow \operatorname{\mathsf{Gal}}(M(
ho)/M)
ightarrow \operatorname{\mathsf{Gal}}(M(
ho)/\mathbb{Q})
ightarrow \operatorname{\mathsf{Gal}}(M/\mathbb{Q})
ightarrow 1,$$

since $M(\rho)$ is a Galois extension over \mathbb{Q} .

Using ρ to identify $\operatorname{Gal}(M(\rho)/M) \cong \mathbb{F}_{\ell}$, we naturally get a class in $H^2(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell})$. This is the map trans.

Recall that

$$\begin{split} 0 &\to \operatorname{Hom}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\inf} \operatorname{Hom}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \\ &\xrightarrow{\operatorname{res}} \operatorname{Hom}(G_{M}, \mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \xrightarrow{\operatorname{trans}} H^{2}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\inf} H^{2}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}). \end{split}$$

Recall that

$$\begin{array}{c} 0 \to \operatorname{Hom}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} \operatorname{Hom}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \\ \xrightarrow{\operatorname{res}} \operatorname{Hom}(G_{M}, \mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \xrightarrow{\operatorname{trans}} H^{2}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} H^{2}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}). \end{array}$$

We do not want all elements $\rho \in \text{Hom}(G_M, \mathbb{F}_{\ell})^{\text{Gal}(M/\mathbb{Q})}$, but only those corresponding to Heisenberg extensions.

Recall that

$$\begin{array}{c} 0 \to \operatorname{Hom}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} \operatorname{Hom}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \\ \xrightarrow{\operatorname{res}} \operatorname{Hom}(G_{M}, \mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \xrightarrow{\operatorname{trans}} H^{2}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} H^{2}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}). \end{array}$$

We do not want all elements $\rho \in \text{Hom}(G_M, \mathbb{F}_{\ell})^{\text{Gal}(M/\mathbb{Q})}$, but only those corresponding to Heisenberg extensions.

These are precisely those ρ that map to a non-trivial multiple of the 2-cocycle $\theta_{\chi,\chi'}$ given by $(v,w) \mapsto \chi(v) \cdot \chi'(w)$.

Recall that

$$\begin{array}{c} 0 \to \operatorname{Hom}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} \operatorname{Hom}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \\ \xrightarrow{\operatorname{res}} \operatorname{Hom}(G_{M}, \mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \xrightarrow{\operatorname{trans}} H^{2}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} H^{2}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}). \end{array}$$

We do not want all elements $\rho \in \text{Hom}(G_M, \mathbb{F}_{\ell})^{\text{Gal}(M/\mathbb{Q})}$, but only those corresponding to Heisenberg extensions.

These are precisely those ρ that map to a non-trivial multiple of the 2-cocycle $\theta_{\chi,\chi'}$ given by $(v,w) \mapsto \chi(v) \cdot \chi'(w)$.

The first terms of the exact sequence are not too interesting: if we twist ρ by $\tilde{\chi} : G_{\mathbb{Q}} \to \mathbb{F}_{\ell}$ (i.e. consider $\rho + \tilde{\chi}$), we get another invariant character that maps to the same element in $H^2(\text{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell})$.

Recall that

$$\begin{array}{c} 0 \to \operatorname{Hom}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\inf} \operatorname{Hom}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \\ \xrightarrow{\operatorname{res}} \operatorname{Hom}(G_{M}, \mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \xrightarrow{\operatorname{trans}} H^{2}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\inf} H^{2}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}). \end{array}$$

We do not want all elements $\rho \in \text{Hom}(G_M, \mathbb{F}_{\ell})^{\text{Gal}(M/\mathbb{Q})}$, but only those corresponding to Heisenberg extensions.

These are precisely those ρ that map to a non-trivial multiple of the 2-cocycle $\theta_{\chi,\chi'}$ given by $(v,w) \mapsto \chi(v) \cdot \chi'(w)$.

The first terms of the exact sequence are not too interesting: if we twist ρ by $\tilde{\chi} : G_{\mathbb{Q}} \to \mathbb{F}_{\ell}$ (i.e. consider $\rho + \tilde{\chi}$), we get another invariant character that maps to the same element in $H^2(\text{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell})$.

Furthermore, the characters χ and χ' are trivial when restricted to M.

But the end of the sequence

 $\begin{array}{l} 0 \to \operatorname{Hom}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} \operatorname{Hom}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \\ \xrightarrow{\operatorname{res}} \operatorname{Hom}(G_{M}, \mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \xrightarrow{\operatorname{trans}} H^{2}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} H^{2}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \end{array}$

is interesting!

But the end of the sequence

$$\begin{array}{c} 0 \to \operatorname{Hom}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} \operatorname{Hom}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \\ \xrightarrow{\operatorname{res}} \operatorname{Hom}(G_{M}, \mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \xrightarrow{\operatorname{trans}} H^{2}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} H^{2}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \end{array}$$

is interesting!

If we are given the 2-cocycle $\theta_{\chi,\chi'}$, when does it come from a character $\rho \in \operatorname{Hom}(G_M, \mathbb{F}_\ell)^{\operatorname{Gal}(M/\mathbb{Q})}$ (i.e. there exists a Heisenberg extensions containing M)?

But the end of the sequence

$$\begin{array}{c} 0 \to \operatorname{Hom}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} \operatorname{Hom}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \\ \xrightarrow{\operatorname{res}} \operatorname{Hom}(G_{M}, \mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \xrightarrow{\operatorname{trans}} H^{2}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} H^{2}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \end{array}$$

is interesting!

If we are given the 2-cocycle $\theta_{\chi,\chi'}$, when does it come from a character $\rho \in \text{Hom}(G_M, \mathbb{F}_{\ell})^{\text{Gal}(M/\mathbb{Q})}$ (i.e. there exists a Heisenberg extensions containing M)?

By exactness, these are precisely those $\theta_{\chi,\chi'}$ that vanish in $H^2(G_{\mathbb{Q}}, \mathbb{F}_{\ell})$ or equivalently in $H^2(G_{\mathbb{Q}_v}, \mathbb{F}_{\ell})$ for all places v of \mathbb{Q} by class field theory.

But the end of the sequence

$$\begin{array}{c} 0 \to \operatorname{Hom}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} \operatorname{Hom}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \\ \xrightarrow{\operatorname{res}} \operatorname{Hom}(G_{M}, \mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})} \xrightarrow{\operatorname{trans}} H^{2}(\operatorname{Gal}(M/\mathbb{Q}), \mathbb{F}_{\ell}) \xrightarrow{\operatorname{inf}} H^{2}(G_{\mathbb{Q}}, \mathbb{F}_{\ell}) \end{array}$$

is interesting!

If we are given the 2-cocycle $\theta_{\chi,\chi'}$, when does it come from a character $\rho \in \operatorname{Hom}(G_M, \mathbb{F}_{\ell})^{\operatorname{Gal}(M/\mathbb{Q})}$ (i.e. there exists a Heisenberg extensions containing M)?

By exactness, these are precisely those $\theta_{\chi,\chi'}$ that vanish in $H^2(G_{\mathbb{Q}}, \mathbb{F}_{\ell})$ or equivalently in $H^2(G_{\mathbb{Q}_v}, \mathbb{F}_{\ell})$ for all places v of \mathbb{Q} by class field theory.

Theorem 3 (Realizing Heis $_{\ell}$ as Galois group)

There exists a Heisenberg extension containing M if and only if all ramified primes (not equal to ℓ) of M have residue field degree 1.

Questions?

Questions?

Happy April Fools' Day!