Spins, Galois representations and a question of Ramakrishna

Peter Koymans

Institute for Theoretical Studies

EHHzürich

Cornell Number Theory Seminar
Online, 15 March 2024

A question about $a_{p}(E)$

Question (Ramakrishna, 2003)
Let E be the elliptic curve $E: y^{2}=x^{3}-x$, and define

$$
a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right| .
$$

A question about $a_{p}(E)$

Question (Ramakrishna, 2003)

Let E be the elliptic curve $E: y^{2}=x^{3}-x$, and define

$$
a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right| .
$$

Are there infinitely many primes $p \equiv 1 \bmod 12$ such that $a_{p}(E)$ is a cubic residue modulo p ?

A question about $a_{p}(E)$

Question (Ramakrishna, 2003)

Let E be the elliptic curve $E: y^{2}=x^{3}-x$, and define

$$
a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right| .
$$

Are there infinitely many primes $p \equiv 1 \bmod 12$ such that $a_{p}(E)$ is a cubic residue modulo p ?

If $p \equiv 2 \bmod 3$, then all elements of \mathbb{F}_{p} are cubes, because

$$
\left|\mathbb{F}_{p}^{*}\right|=p-1 \not \equiv 0 \bmod 3 .
$$

A question about $a_{p}(E)$

Question (Ramakrishna, 2003)

Let E be the elliptic curve $E: y^{2}=x^{3}-x$, and define

$$
a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right| .
$$

Are there infinitely many primes $p \equiv 1 \bmod 12$ such that $a_{p}(E)$ is a cubic residue modulo p ?

If $p \equiv 2 \bmod 3$, then all elements of \mathbb{F}_{p} are cubes, because

$$
\left|\mathbb{F}_{p}^{*}\right|=p-1 \not \equiv 0 \bmod 3 .
$$

If $p \equiv 3 \bmod 4$ and $p>3$, then E has supersingular reduction at p, so

$$
a_{p}(E)=0,
$$

which is a cube modulo p.

Rephrasing the question

Theorem (Cox, Theorem 14.16)
Let K be an imaginary quadratic field and let \mathcal{O} be an order in K. Let L be the ring class field of \mathcal{O}, and let E be an elliptic curve over L with $\operatorname{End}_{\mathbb{C}}(E)=\mathcal{O}$.

Rephrasing the question

Theorem (Cox, Theorem 14.16)

Let K be an imaginary quadratic field and let \mathcal{O} be an order in K. Let L be the ring class field of \mathcal{O}, and let E be an elliptic curve over L with $\operatorname{End}_{\mathbb{C}}(E)=\mathcal{O}$.

Let p be a prime that splits completely in L and \mathfrak{p} be a prime in K above p. Suppose E has good reduction at \mathfrak{p}. Then there is $\kappa \in \mathcal{O}$ such that $p=\kappa \bar{\kappa}$ and

$$
a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|=\kappa+\bar{\kappa} .
$$

Rephrasing the question

Theorem (Cox, Theorem 14.16)

Let K be an imaginary quadratic field and let \mathcal{O} be an order in K. Let L be the ring class field of \mathcal{O}, and let E be an elliptic curve over L with $\operatorname{End}_{\mathbb{C}}(E)=\mathcal{O}$.

Let p be a prime that splits completely in L and \mathfrak{p} be a prime in K above p. Suppose E has good reduction at \mathfrak{p}. Then there is $\kappa \in \mathcal{O}$ such that $p=\kappa \bar{\kappa}$ and

$$
a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|=\kappa+\bar{\kappa} .
$$

In our situation, we have

$$
E: y^{2}=x^{3}-x, \quad K=\mathbb{Q}(i), \quad \mathcal{O}=\mathbb{Z}[i], \quad L=\mathbb{Q}(i) .
$$

Rephrasing the question

Theorem (Cox, Theorem 14.16)

Let K be an imaginary quadratic field and let \mathcal{O} be an order in K. Let L be the ring class field of \mathcal{O}, and let E be an elliptic curve over L with $\operatorname{End}_{\mathbb{C}}(E)=\mathcal{O}$.

Let p be a prime that splits completely in L and \mathfrak{p} be a prime in K above p. Suppose E has good reduction at \mathfrak{p}. Then there is $\kappa \in \mathcal{O}$ such that $p=\kappa \bar{\kappa}$ and

$$
a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|=\kappa+\bar{\kappa} .
$$

In our situation, we have

$$
E: y^{2}=x^{3}-x, \quad K=\mathbb{Q}(i), \quad \mathcal{O}=\mathbb{Z}[i], \quad L=\mathbb{Q}(i) .
$$

Since $\mathbb{Z}[i]$ is a PID, we can write $p=\pi \bar{\pi}$, and π is unique up to multiplying by a power of i. Then, for some choice of π, we have

$$
a_{p}(E)=\pi+\bar{\pi}
$$

A criterion for $a_{p}(E)$ being a cube modulo p

Since we have $\mathbb{Z} / p \mathbb{Z} \cong \mathbb{Z}[i] / \pi \mathbb{Z}[i]$, we have that $a_{p}(E)=\pi+\bar{\pi}$ is a cube modulo p if and only if it is a cube modulo π.

A criterion for $a_{p}(E)$ being a cube modulo p

Since we have $\mathbb{Z} / p \mathbb{Z} \cong \mathbb{Z}[i] / \pi \mathbb{Z}[i]$, we have that $a_{p}(E)=\pi+\bar{\pi}$ is a cube modulo p if and only if it is a cube modulo π.

However, observe that $a_{p}(E) \equiv \bar{\pi} \bmod \pi$. So the question is equivalent to $\bar{\pi}$ being a cube modulo π.

A criterion for $a_{p}(E)$ being a cube modulo p

Since we have $\mathbb{Z} / p \mathbb{Z} \cong \mathbb{Z}[i] / \pi \mathbb{Z}[i]$, we have that $a_{p}(E)=\pi+\bar{\pi}$ is a cube modulo p if and only if it is a cube modulo π.

However, observe that $a_{p}(E) \equiv \bar{\pi} \bmod \pi$. So the question is equivalent to $\bar{\pi}$ being a cube modulo π.

Lemma

If $p \equiv 1 \bmod 12$, then $\bar{\pi}$ is a cube modulo π if and only if $\overline{i \cdot \pi}$ is a cube modulo π.

A criterion for $a_{p}(E)$ being a cube modulo p

Since we have $\mathbb{Z} / p \mathbb{Z} \cong \mathbb{Z}[i] / \pi \mathbb{Z}[i]$, we have that $a_{p}(E)=\pi+\bar{\pi}$ is a cube modulo p if and only if it is a cube modulo π.

However, observe that $a_{p}(E) \equiv \bar{\pi} \bmod \pi$. So the question is equivalent to $\bar{\pi}$ being a cube modulo π.

Lemma

If $p \equiv 1 \bmod 12$, then $\bar{\pi}$ is a cube modulo π if and only if $\overline{i \cdot \pi}$ is a cube modulo π.

Proof.

Since $p \equiv 1 \bmod 12$, we know that there is a primitive 12 -th root of unity ζ_{12} in \mathbb{F}_{p}. Thus $i=\zeta_{4}$ is a cube in \mathbb{F}_{p}.

A criterion for $a_{p}(E)$ being a cube modulo p

Since we have $\mathbb{Z} / p \mathbb{Z} \cong \mathbb{Z}[i] / \pi \mathbb{Z}[i]$, we have that $a_{p}(E)=\pi+\bar{\pi}$ is a cube modulo p if and only if it is a cube modulo π.

However, observe that $a_{p}(E) \equiv \bar{\pi} \bmod \pi$. So the question is equivalent to $\bar{\pi}$ being a cube modulo π.

Lemma

If $p \equiv 1 \bmod 12$, then $\bar{\pi}$ is a cube modulo π if and only if $\overline{i \cdot \pi}$ is a cube modulo π.

Proof.

Since $p \equiv 1 \bmod 12$, we know that there is a primitive 12 -th root of unity ζ_{12} in \mathbb{F}_{p}. Thus $i=\zeta_{4}$ is a cube in \mathbb{F}_{p}.

Corollary

Let $p \equiv 1 \bmod 12$. Then $a_{p}(E)$ is a cube modulo p if and only if $(\bar{\pi} / \pi)_{3}=1$, where π is any element of $\mathbb{Z}[i]$ satisfying $\pi \bar{\pi}=p$.

Cubic residue symbols

Let K be a number field with $\zeta_{3} \in K$. For $\alpha \in O_{K}$ and $\mathfrak{p} \nmid 3 O_{K}$ a prime, we define $(\alpha / \mathfrak{p})_{K, 3}$ as the unique element in $\left\{1, \zeta_{3}, \zeta_{3}^{2}, 0\right\}$ with

$$
\left(\frac{\alpha}{\mathfrak{p}}\right)_{K, 3} \equiv \alpha^{\frac{N_{K / \mathbb{C}}(\mathfrak{p})-1}{3}} \bmod \mathfrak{p} .
$$

Cubic residue symbols

Let K be a number field with $\zeta_{3} \in K$. For $\alpha \in O_{K}$ and $\mathfrak{p} \nmid 3 O_{K}$ a prime, we define $(\alpha / \mathfrak{p})_{K, 3}$ as the unique element in $\left\{1, \zeta_{3}, \zeta_{3}^{2}, 0\right\}$ with

$$
\left(\frac{\alpha}{\mathfrak{p}}\right)_{K, 3} \equiv \alpha^{\frac{N_{K / Q}(\mathfrak{p})-1}{3}} \bmod \mathfrak{p} .
$$

We multiplicatively extend this to all ideals coprime to 3 .

Cubic residue symbols

Let K be a number field with $\zeta_{3} \in K$. For $\alpha \in O_{K}$ and $\mathfrak{p} \nmid 3 O_{K}$ a prime, we define $(\alpha / \mathfrak{p})_{K, 3}$ as the unique element in $\left\{1, \zeta_{3}, \zeta_{3}^{2}, 0\right\}$ with

$$
\left(\frac{\alpha}{\mathfrak{p}}\right)_{K, 3} \equiv \alpha^{\frac{N_{K / \mathbb{C}}(\mathfrak{p})-1}{3}} \bmod \mathfrak{p}
$$

We multiplicatively extend this to all ideals coprime to 3 .
This residue symbol has the same usual properties as the quadratic residue symbol, i.e. periodicity and reciprocity.

The symbol encoding $a_{p}(E)$

Consider the field diagram

The symbol encoding $a_{p}(E)$

Consider the field diagram

For an ideal \mathfrak{a} of $\mathbb{Z}\left[\zeta_{12}\right]$, we define the symbol $[\mathfrak{a}]$

$$
[\mathfrak{a}]:= \begin{cases}\left(\frac{\sigma(\alpha) \sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3} & \text { if } \operatorname{gcd}(\mathfrak{a},(3))=1 \\ 0 & \text { otherwise }\end{cases}
$$

where α is any generator of \mathfrak{a}.

The symbol encoding $a_{p}(E)$

Consider the field diagram

For an ideal \mathfrak{a} of $\mathbb{Z}\left[\zeta_{12}\right]$, we define the symbol [\mathfrak{a}]

$$
[\mathfrak{a}]:= \begin{cases}\left(\frac{\sigma(\alpha) \sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3} & \text { if } \operatorname{gcd}(\mathfrak{a},(3))=1 \\ 0 & \text { otherwise }\end{cases}
$$

where α is any generator of \mathfrak{a}. The symbol is well-defined, and satisfies

$$
\sum_{\rho \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{12}\right) / \mathbb{Q}\right)}[\rho(\mathfrak{p})]= \begin{cases}-2 & \text { if } a_{p}(E) \text { is not a cube modulo } p \\ 4 & \text { if } a_{p}(E) \text { is a cube modulo } p\end{cases}
$$

for \mathfrak{p} a split prime of degree 1 (i.e. $p=\mathfrak{p} \cap \mathbb{Z}$ satisfies $p \equiv 1 \bmod 12$).

Our main results

Theorem (K.-Uttenthal)

There exists $C>0$ such that for all $X \geq 100$

$$
\left|\sum_{\substack{N_{\mathrm{Q}\left(\mathrm{~S}_{12}\right) / \mathrm{O}}^{\mathfrak{p} \text { prime }} \mathfrak{(p)} \leq X}}[\mathfrak{p}]\right| \leq C X^{\frac{3199}{320}} .
$$

Our main results

Theorem (K.-Uttenthal)

There exists $C>0$ such that for all $X \geq 100$

$$
\left|\sum_{\substack{N_{\mathrm{Q}\left(\mathrm{~S}_{12}\right) /(\mathfrak{p}}^{\mathfrak{p} \text { prime }} \mathfrak{p}}}[\mathfrak{p}]\right| \leq C X^{\frac{3199}{3200}} .
$$

Corollary (K.-Uttenthal)

We have

$$
\frac{\#\left\{p \equiv 1 \bmod 12: a_{p}(E) \text { is a cube modulo } p\right\}}{\#\{p \equiv 1 \bmod 12\}}=\frac{1}{3}+O\left(\frac{\log X}{X^{1 / 3200}}\right) .
$$

Our main results

Theorem (K.-Uttenthal)

There exists $C>0$ such that for all $X \geq 100$

$$
\left|\sum_{\substack{N_{Q\left(G_{12}\right) /(\mathfrak{p}}^{\mathfrak{p} \text { prime }}}}[\mathfrak{p}]\right| \leq C X^{\frac{3109}{3200}} .
$$

Corollary (K.-Uttenthal)

We have

$$
\frac{\#\left\{p \equiv 1 \bmod 12: a_{p}(E) \text { is a cube modulo } p\right\}}{\#\{p \equiv 1 \bmod 12\}}=\frac{1}{3}+O\left(\frac{\log X}{X^{1 / 3200}}\right) .
$$

In fact, one can prove a similar result for any imaginary quadratic field, which has applications to a conjecture of Weston.

Spin of prime ideals

Definition

Let K / \mathbb{Q} be a totally real Galois field and assume that all totally positive units (i.e. positive in every real embedding) are squares.

Spin of prime ideals

Definition

Let K / \mathbb{Q} be a totally real Galois field and assume that all totally positive units (i.e. positive in every real embedding) are squares.

Given $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ and a principal prime \mathfrak{p} of K admitting a totally positive generator, FIMR define

$$
\operatorname{spin}(\sigma, \mathfrak{p})=\left(\frac{\sigma(\pi)}{\mathfrak{p}}\right)_{K, 2},
$$

where $(\cdot / \cdot)_{K, 2}$ is the quadratic residue symbol in K and where π is any totally positive generator of \mathfrak{p}.

Spin of prime ideals

Definition

Let K / \mathbb{Q} be a totally real Galois field and assume that all totally positive units (i.e. positive in every real embedding) are squares.

Given $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ and a principal prime \mathfrak{p} of K admitting a totally positive generator, FIMR define

$$
\operatorname{spin}(\sigma, \mathfrak{p})=\left(\frac{\sigma(\pi)}{\mathfrak{p}}\right)_{K, 2},
$$

where $(\cdot / \cdot)_{K, 2}$ is the quadratic residue symbol in K and where π is any totally positive generator of \mathfrak{p}. This is well-defined, as changing the generator π of \mathfrak{p} changes π by the square of a unit.

The main result of FIMR

Theorem (FIMR)

Assume that K / \mathbb{Q} is cyclic of degree n and that σ is a generator of $\operatorname{Gal}(K / \mathbb{Q})$. If $n \geq 4$, assume a short character sum conjecture. There exists $\delta>0$ such that for all $X \geq 100$

$$
\left|\sum_{N_{\kappa} / \mathbb{Q}(\mathfrak{p}) \leq X} \operatorname{spin}(\sigma, \mathfrak{p})\right| \ll X^{1-\delta} .
$$

Here the sum is over prime ideals \mathfrak{p} admitting a totally positive generator.

The main result of FIMR

Theorem (FIMR)

Assume that K / \mathbb{Q} is cyclic of degree n and that σ is a generator of $\operatorname{Gal}(K / \mathbb{Q})$. If $n \geq 4$, assume a short character sum conjecture. There exists $\delta>0$ such that for all $X \geq 100$

$$
\left|\sum_{N_{K} / \mathbb{Q}(\mathfrak{p}) \leq X} \operatorname{spin}(\sigma, \mathfrak{p})\right| \ll X^{1-\delta} .
$$

Here the sum is over prime ideals \mathfrak{p} admitting a totally positive generator.
We adapt their arguments to cubic residue symbols and the field $K=\mathbb{Q}\left(\zeta_{12}\right)$, which is neither cyclic nor totally real, and has degree ≥ 4.

The main result of FIMR

Theorem (FIMR)

Assume that K / \mathbb{Q} is cyclic of degree n and that σ is a generator of $\operatorname{Gal}(K / \mathbb{Q})$. If $n \geq 4$, assume a short character sum conjecture. There exists $\delta>0$ such that for all $X \geq 100$

$$
\left|\sum_{N_{K} / \mathbb{Q}(\mathfrak{p}) \leq X} \operatorname{spin}(\sigma, \mathfrak{p})\right| \ll X^{1-\delta} .
$$

Here the sum is over prime ideals \mathfrak{p} admitting a totally positive generator.
We adapt their arguments to cubic residue symbols and the field $K=\mathbb{Q}\left(\zeta_{12}\right)$, which is neither cyclic nor totally real, and has degree ≥ 4.

Our main analytic achievement is in making their techniques unconditional in this case.

Applications of spins

Spins have found numerous applications since their inception. They measure the splitting of π in $K(\sqrt{\sigma(\pi)})$. Applications include

Applications of spins

Spins have found numerous applications since their inception. They measure the splitting of π in $K(\sqrt{\sigma(\pi)})$. Applications include

- 2-Selmer ranks of elliptic curves in quadratic twist families indexed by primes (FIMR),

Applications of spins

Spins have found numerous applications since their inception. They measure the splitting of π in $K(\sqrt{\sigma(\pi)})$. Applications include

- 2-Selmer ranks of elliptic curves in quadratic twist families indexed by primes (FIMR),
- 16 -rank of the class group of $\mathbb{Q}(\sqrt{-2 p})$ and $\mathbb{Q}(\sqrt{-p})$ (Milovic, K.-Milovic, K.),

Applications of spins

Spins have found numerous applications since their inception. They measure the splitting of π in $K(\sqrt{\sigma(\pi)})$. Applications include

- 2-Selmer ranks of elliptic curves in quadratic twist families indexed by primes (FIMR),
- 16 -rank of the class group of $\mathbb{Q}(\sqrt{-2 p})$ and $\mathbb{Q}(\sqrt{-p})$ (Milovic, K.-Milovic, K.),
- Ramakrishna's question, Weston's conjecture and Weston-Zaurova conjecture (Weston-Zaurova),

Applications of spins

Spins have found numerous applications since their inception. They measure the splitting of π in $K(\sqrt{\sigma(\pi)})$. Applications include

- 2-Selmer ranks of elliptic curves in quadratic twist families indexed by primes (FIMR),
- 16 -rank of the class group of $\mathbb{Q}(\sqrt{-2 p})$ and $\mathbb{Q}(\sqrt{-p})$ (Milovic, K.-Milovic, K.),
- Ramakrishna's question, Weston's conjecture and Weston-Zaurova conjecture (Weston-Zaurova),
- residue field degrees of primes \mathfrak{p} in the ray class field of K of conductor p,

Applications of spins

Spins have found numerous applications since their inception. They measure the splitting of π in $K(\sqrt{\sigma(\pi)})$. Applications include

- 2-Selmer ranks of elliptic curves in quadratic twist families indexed by primes (FIMR),
- 16 -rank of the class group of $\mathbb{Q}(\sqrt{-2 p})$ and $\mathbb{Q}(\sqrt{-p})$ (Milovic, K.-Milovic, K.),
- Ramakrishna's question, Weston's conjecture and Weston-Zaurova conjecture (Weston-Zaurova),
- residue field degrees of primes \mathfrak{p} in the ray class field of K of conductor p,
- lifting problems of Galois representations.

Proving oscillation of spins: Vinogradov's sieve

Vinogradov's sieve is the only sieve at the moment that is able to catch primes. We will discuss it for simplicity over \mathbb{Z}.

Proving oscillation of spins: Vinogradov's sieve

Vinogradov's sieve is the only sieve at the moment that is able to catch primes. We will discuss it for simplicity over \mathbb{Z}.

Let a_{p} be a sequence indexed by primes. We wish to estimate $\sum_{p \leq x} a_{p}$.

Proving oscillation of spins: Vinogradov's sieve

Vinogradov's sieve is the only sieve at the moment that is able to catch primes. We will discuss it for simplicity over \mathbb{Z}.

Let a_{p} be a sequence indexed by primes. We wish to estimate $\sum_{p \leq x} a_{p}$.

Theorem (Vinogradov's sieve)

Let y_{n} be a sequence indexed by positive integers such that $y_{p}=a_{p}$ for all primes p. Assume that we have good estimates for

$$
\sum_{\substack{n \leq x \\ n=0 \bmod q}} y_{n} \quad \text { (sums of type I, linear sums) }
$$

uniformly in q,

Proving oscillation of spins: Vinogradov's sieve

Vinogradov's sieve is the only sieve at the moment that is able to catch primes. We will discuss it for simplicity over \mathbb{Z}.

Let a_{p} be a sequence indexed by primes. We wish to estimate $\sum_{p \leq x} a_{p}$.

Theorem (Vinogradov's sieve)

Let y_{n} be a sequence indexed by positive integers such that $y_{p}=a_{p}$ for all primes p. Assume that we have good estimates for

$$
\sum_{\substack{n \leq x \\ n \equiv 0 \leq \bmod q}} y_{n} \quad \text { (sums of type I, linear sums) }
$$

uniformly in q, and

$$
\sum_{n \leq X} \sum_{m \leq Y} \alpha_{n} \beta_{m} y_{n m} \quad \text { (sums of type II, bilinear sums) }
$$

for all $\alpha_{n}, \beta_{m} \in \mathbb{C}$ bounded by 1 .

Proving oscillation of spins: Vinogradov's sieve

Vinogradov's sieve is the only sieve at the moment that is able to catch primes. We will discuss it for simplicity over \mathbb{Z}.

Let a_{p} be a sequence indexed by primes. We wish to estimate $\sum_{p \leq x} a_{p}$.

Theorem (Vinogradov's sieve)

Let y_{n} be a sequence indexed by positive integers such that $y_{p}=a_{p}$ for all primes p. Assume that we have good estimates for

$$
\sum_{\substack{n \leq x \\ n \equiv 0 \leq \bmod q}} y_{n} \quad \text { (sums of type I, linear sums) }
$$

uniformly in q, and

$$
\sum_{n \leq X} \sum_{m \leq Y} \alpha_{n} \beta_{m} y_{n m} \quad \text { (sums of type II, bilinear sums) }
$$

for all $\alpha_{n}, \beta_{m} \in \mathbb{C}$ bounded by 1 .
Then we get an estimate for $\sum_{p \leq x} a_{p}$.

Extending the sequence

Note that the first goal of Vinogradov's sequence is to extend the original sequence a_{p} to a new sequence y_{n} that matches a_{p} on the primes.

Extending the sequence

Note that the first goal of Vinogradov's sequence is to extend the original sequence a_{p} to a new sequence y_{n} that matches a_{p} on the primes.

There are natural candidates for this both in our problem, namely the symbol [a], and also in FIMR, namely

$$
\operatorname{spin}(\sigma, \mathfrak{a})=\left(\frac{\sigma(\alpha)}{\mathfrak{a}}\right)_{K, 2},
$$

where α is a totally positive generator of \mathfrak{a}.

Sums of type II

Let $\alpha_{\mathfrak{n}}, \beta_{\mathfrak{m}} \in \mathbb{C}$ be bounded by 1 . The bilinear sums

$$
\sum_{N_{K / \mathbb{Q}}(\mathfrak{n}) \leq X} \sum_{N_{K / \mathbb{Q}}(\mathfrak{m}) \leq Y} \alpha_{\mathfrak{n}} \beta_{\mathfrak{m}} \operatorname{spin}(\sigma, \mathfrak{n m})
$$

are relatively easy.

Sums of type II

Let $\alpha_{\mathfrak{n}}, \beta_{\mathfrak{m}} \in \mathbb{C}$ be bounded by 1 . The bilinear sums

$$
\sum_{N_{K / \mathbb{Q}}(\mathfrak{n}) \leq X} \sum_{N_{K / \mathbb{Q}}(\mathfrak{m}) \leq Y} \alpha_{\mathfrak{n}} \beta_{\mathfrak{m}} \operatorname{spin}(\sigma, \mathfrak{n m})
$$

are relatively easy.
Indeed, the key point is the "twisted multiplicativity" of spin

$$
\operatorname{spin}(\sigma, \mathfrak{n m})=\operatorname{spin}(\sigma, \mathfrak{n}) \operatorname{spin}(\sigma, \mathfrak{m}) t(\mathfrak{n}, \mathfrak{m})
$$

Sums of type II

Let $\alpha_{\mathfrak{n}}, \beta_{\mathfrak{m}} \in \mathbb{C}$ be bounded by 1 . The bilinear sums

$$
\sum_{N_{K / \mathbb{Q}}(\mathfrak{n}) \leq X} \sum_{N_{K / \mathbb{Q}}(\mathfrak{m}) \leq Y} \alpha_{\mathfrak{n}} \beta_{\mathfrak{m}} \sin (\sigma, \mathfrak{n m})
$$

are relatively easy.
Indeed, the key point is the "twisted multiplicativity" of spin

$$
\operatorname{spin}(\sigma, \mathfrak{n m})=\operatorname{spin}(\sigma, \mathfrak{n}) \operatorname{spin}(\sigma, \mathfrak{m}) t(\mathfrak{n}, \mathfrak{m}) .
$$

The twist factor $t(\mathfrak{n}, \mathfrak{m})$ can be computed explicitly and roughly looks like the Legendre symbol

$$
\left(\frac{\eta}{\mu}\right)_{K, 2} \quad \mathfrak{n}=(\eta), \mathfrak{m}=(\mu)
$$

Sums of type II

Let $\alpha_{\mathfrak{n}}, \beta_{\mathfrak{m}} \in \mathbb{C}$ be bounded by 1 . The bilinear sums

$$
\sum_{N_{K / \mathbb{Q}}(\mathfrak{n}) \leq X} \sum_{N_{K / \mathbb{Q}}(\mathfrak{m}) \leq Y} \alpha_{\mathfrak{n}} \beta_{\mathfrak{m}} \operatorname{spin}(\sigma, \mathfrak{n m})
$$

are relatively easy.
Indeed, the key point is the "twisted multiplicativity" of spin

$$
\operatorname{spin}(\sigma, \mathfrak{n m})=\operatorname{spin}(\sigma, \mathfrak{n}) \operatorname{spin}(\sigma, \mathfrak{m}) t(\mathfrak{n}, \mathfrak{m})
$$

The twist factor $t(\mathfrak{n}, \mathfrak{m})$ can be computed explicitly and roughly looks like the Legendre symbol

$$
\left(\frac{\eta}{\mu}\right)_{K, 2} \quad \mathfrak{n}=(\eta), \mathfrak{m}=(\mu)
$$

Absorbing $\operatorname{spin}(\sigma, \mathfrak{n})$ and $\operatorname{spin}(\sigma, \mathfrak{m})$ in the coefficients $\alpha_{\mathfrak{n}}$ and $\beta_{\mathfrak{m}}$, it suffices to estimate

$$
\sum_{N_{K / \mathbb{Q}}(\mathfrak{n}) \leq X, \mathfrak{n}=(\eta)} \sum_{N_{K / \mathbb{Q}}(\mathfrak{m}) \leq Y, \mathfrak{m}=(\mu)} \alpha_{\mathfrak{n}} \beta_{\mathfrak{m}}\left(\frac{\eta}{\mu}\right)_{K, 2}
$$

Sums of type II

Let $\alpha_{\mathfrak{n}}, \beta_{\mathfrak{m}} \in \mathbb{C}$ be bounded by 1 . The bilinear sums

$$
\sum_{N_{K / \mathbb{Q}}(\mathfrak{n}) \leq X} \sum_{N_{K / \mathbb{Q}}(\mathfrak{m}) \leq Y} \alpha_{\mathfrak{n}} \beta_{\mathfrak{m}} \operatorname{spin}(\sigma, \mathfrak{n m})
$$

are relatively easy.
Indeed, the key point is the "twisted multiplicativity" of spin

$$
\operatorname{spin}(\sigma, \mathfrak{n m})=\operatorname{spin}(\sigma, \mathfrak{n}) \operatorname{spin}(\sigma, \mathfrak{m}) t(\mathfrak{n}, \mathfrak{m})
$$

The twist factor $t(\mathfrak{n}, \mathfrak{m})$ can be computed explicitly and roughly looks like the Legendre symbol

$$
\left(\frac{\eta}{\mu}\right)_{k, 2} \quad \mathfrak{n}=(\eta), \mathfrak{m}=(\mu)
$$

Absorbing $\operatorname{spin}(\sigma, \mathfrak{n})$ and $\operatorname{spin}(\sigma, \mathfrak{m})$ in the coefficients $\alpha_{\mathfrak{n}}$ and $\beta_{\mathfrak{m}}$, it suffices to estimate

$$
\sum_{N_{K / \mathbb{Q}}(\mathfrak{n}) \leq X, \mathfrak{n}=(\eta)} \sum_{N_{K / \mathbb{Q}}(\mathfrak{m}) \leq Y, \mathfrak{m}=(\mu)} \alpha_{\mathfrak{n}} \beta_{\mathfrak{m}}\left(\frac{\eta}{\mu}\right)_{K, 2} .
$$

This can be handled using large sieve techniques.

Sums of type I

The essential difficulty lies in the estimation of sums of type I. These are

$$
\sum_{\substack{N_{K / \mathbb{Q}}(\mathfrak{a}) \leq X \\ \mathfrak{a}=(\alpha), \alpha \text { tot. pos. }}}\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K, 2}
$$

where we have taken $q=1$ for simplicity.

Sums of type I

The essential difficulty lies in the estimation of sums of type I. These are

$$
\sum_{\substack{N_{\kappa / \otimes}(\mathfrak{a}) \leq X \\ \mathfrak{a}=(\alpha), \alpha \text { tot. pos. }}}\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K, 2},
$$

where we have taken $q=1$ for simplicity.
The insight of FIMR is to approach this as follows: we split

$$
O_{K}=\mathbb{Z} \oplus \mathbb{M}
$$

so $\alpha=a+\beta$ with $a \in \mathbb{Z}, \beta \in \mathbb{M}$.

Sums of type I

The essential difficulty lies in the estimation of sums of type I. These are

$$
\sum_{\substack{N_{K / \mathbb{Q}}(\mathfrak{a}) \leq X \\ \mathfrak{a}=(\alpha), \alpha \text { tot. pos. }}}\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K, 2}
$$

where we have taken $q=1$ for simplicity.
The insight of FIMR is to approach this as follows: we split

$$
O_{K}=\mathbb{Z} \oplus \mathbb{M},
$$

so $\alpha=a+\beta$ with $a \in \mathbb{Z}, \beta \in \mathbb{M}$.
Then we have $\sigma(\alpha)=a+\sigma(\beta)$, hence

$$
\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K, 2}=\left(\frac{a+\sigma(\beta)}{a+\beta}\right)_{K, 2}=\left(\frac{\sigma(\beta)-\beta}{a+\beta}\right)_{K, 2} \approx\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2}
$$

Sums of type I, continued

Recall that $O_{K}=\mathbb{Z} \oplus \mathbb{M}, \alpha=a+\beta$ and

$$
\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K, 2}=\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2} .
$$

Sums of type I, continued

Recall that $O_{K}=\mathbb{Z} \oplus \mathbb{M}, \alpha=a+\beta$ and

$$
\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K, 2}=\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2} .
$$

Therefore we need to estimate

$$
\sum_{\beta \in \mathbb{M}} \sum_{\substack{a \in \mathbb{Z} \\ N_{K / \mathbb{Q}}(a+\beta) \leq x}}\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2}
$$

Sums of type I, continued

Recall that $O_{K}=\mathbb{Z} \oplus \mathbb{M}, \alpha=a+\beta$ and

$$
\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K, 2}=\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2}
$$

Therefore we need to estimate

$$
\sum_{\beta \in \mathbb{M}} \sum_{\substack{a \in \mathbb{Z} \\ N_{K / \mathbb{Q}}(a+\beta) \leq X}}\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2}
$$

We now fix β, then a runs over a sum of typical length $X^{1 / n}$, while the conductor is $N_{K / \mathbb{Q}}(\sigma(\beta)-\beta)$ typically of size X. So our sum is "short". Here is where the short character sum conjecture comes in.

Sums of type I, continued

Recall that $O_{K}=\mathbb{Z} \oplus \mathbb{M}, \alpha=a+\beta$ and

$$
\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K, 2}=\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2}
$$

Therefore we need to estimate

$$
\sum_{\beta \in \mathbb{M}} \sum_{\substack{a \in \mathbb{Z} \\ N_{K / \mathbb{Q}}(a+\beta) \leq X}}\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2}
$$

We now fix β, then a runs over a sum of typical length $X^{1 / n}$, while the conductor is $N_{K / \mathbb{Q}}(\sigma(\beta)-\beta)$ typically of size X. So our sum is "short". Here is where the short character sum conjecture comes in.

Technical warning: to make this precise, note that every ideal \mathfrak{a} has infinitely many generators. So to avoid our sums running over infinitely many terms, we need to construct a fundamental domain and pick for each ideal \mathfrak{a} the unique generator from the fundamental domain.

Why does FIMR only allow cyclic Galois groups?

The character $\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2}$ does not oscillate if $\sigma(\beta)-\beta$ is a square.

Why does FIMR only allow cyclic Galois groups?

The character $\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2}$ does not oscillate if $\sigma(\beta)-\beta$ is a square.
In fact, because of the way the short character sum conjecture works, we need to show that $\sigma(\beta)-\beta$ has not too large squarefull part if $\beta \in \mathbb{M}$.

Why does FIMR only allow cyclic Galois groups?

The character $\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2}$ does not oscillate if $\sigma(\beta)-\beta$ is a square.
In fact, because of the way the short character sum conjecture works, we need to show that $\sigma(\beta)-\beta$ has not too large squarefull part if $\beta \in \mathbb{M}$.

This gets increasingly difficult as \mathbb{M} has smaller rank compared to O_{K}. In FIMR, the \mathbb{Z}-rank of \mathbb{M} is $n-1$ exactly because $\operatorname{Gal}(K / \mathbb{Q})$ is cyclic of degree n and σ is a generator.

Why does FIMR only allow cyclic Galois groups?

The character $\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2}$ does not oscillate if $\sigma(\beta)-\beta$ is a square.
In fact, because of the way the short character sum conjecture works, we need to show that $\sigma(\beta)-\beta$ has not too large squarefull part if $\beta \in \mathbb{M}$.

This gets increasingly difficult as \mathbb{M} has smaller rank compared to O_{K}. In FIMR, the \mathbb{Z}-rank of \mathbb{M} is $n-1$ exactly because $\operatorname{Gal}(K / \mathbb{Q})$ is cyclic of degree n and σ is a generator.

This difficulty was overcome by K.-Milovic, who also obtained the joint distribution of spins

$$
\prod_{\sigma \in S} \operatorname{spin}(\sigma, \mathfrak{p})
$$

for any subset S of $\operatorname{Gal}(K / \mathbb{Q})$ satisfying $\sigma \in S \Rightarrow \sigma^{-1} \notin S$.

Why does FIMR only allow cyclic Galois groups?

The character $\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K, 2}$ does not oscillate if $\sigma(\beta)-\beta$ is a square.
In fact, because of the way the short character sum conjecture works, we need to show that $\sigma(\beta)-\beta$ has not too large squarefull part if $\beta \in \mathbb{M}$.

This gets increasingly difficult as \mathbb{M} has smaller rank compared to O_{K}. In FIMR, the \mathbb{Z}-rank of \mathbb{M} is $n-1$ exactly because $\operatorname{Gal}(K / \mathbb{Q})$ is cyclic of degree n and σ is a generator.

This difficulty was overcome by K.-Milovic, who also obtained the joint distribution of spins

$$
\prod_{\sigma \in S} \operatorname{spin}(\sigma, \mathfrak{p})
$$

for any subset S of $\operatorname{Gal}(K / \mathbb{Q})$ satisfying $\sigma \in S \Rightarrow \sigma^{-1} \notin S$. This assumption is important because

$$
\operatorname{spin}(\sigma, \mathfrak{p})=\left(\frac{\sigma(\pi)}{\pi}\right), \quad \operatorname{spin}\left(\sigma^{-1}, \mathfrak{p}\right)=\left(\frac{\sigma^{-1}(\pi)}{\pi}\right)
$$

are related by quadratic reciprocity. This was further studied by McMeekin, and Chan-McMeekin-Milovic.

Back to our situation

Recall the field diagram

Back to our situation

Recall the field diagram

so our aim is to estimate the type I sums

$$
\sum_{\substack{\alpha \in \mathbb{Z}\left[\zeta_{12}\right] \\ N_{\mathbb{Q}\left(\zeta_{12}\right) / \mathbb{Q}(\alpha) \leq X}}}\left(\frac{\sigma(\alpha) \sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3} .
$$

Field lowering

It turns out that the symbol

$$
\left(\frac{\sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}
$$

is "almost" identically equal to 1 , while the other symbol can be "lowered" to $\mathbb{Q}\left(\zeta_{3}\right)$.

Field lowering

It turns out that the symbol

$$
\left(\frac{\sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}
$$

is "almost" identically equal to 1 , while the other symbol can be "lowered" to $\mathbb{Q}\left(\zeta_{3}\right)$.

So the modulus of the character becomes $X^{1 / 2}$ instead of $X \cdot X=X^{2}$, while the sum over $a \in \mathbb{Z}$ is still of length $X^{1 / 4}$.

Field lowering

It turns out that the symbol

$$
\left(\frac{\sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}
$$

is "almost" identically equal to 1 , while the other symbol can be "lowered" to $\mathbb{Q}\left(\zeta_{3}\right)$.

So the modulus of the character becomes $X^{1 / 2}$ instead of $X \cdot X=X^{2}$, while the sum over $a \in \mathbb{Z}$ is still of length $X^{1 / 4}$.

Thus we can apply Burgess inequality in this range to get our savings.

Field lowering

It turns out that the symbol

$$
\left(\frac{\sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}
$$

is "almost" identically equal to 1 , while the other symbol can be "lowered" to $\mathbb{Q}\left(\zeta_{3}\right)$.

So the modulus of the character becomes $X^{1 / 2}$ instead of $X \cdot X=X^{2}$, while the sum over $a \in \mathbb{Z}$ is still of length $X^{1 / 4}$.

Thus we can apply Burgess inequality in this range to get our savings.
Let us now show how this "field lowering" mechanism happens.

Field lowering in practice

We get from the FIMR method, writing $\alpha=a+\beta$

$$
\left(\frac{\sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3} \approx\left(\frac{a+\beta}{\sigma \tau(\beta)-\beta}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}
$$

Field lowering in practice

We get from the FIMR method, writing $\alpha=a+\beta$

$$
\left(\frac{\sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3} \approx\left(\frac{a+\beta}{\sigma \tau(\beta)-\beta}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}
$$

The ideal $(\sigma \tau(\beta)-\beta) \mathbb{Z}\left[\zeta_{12}\right]$ is fixed by $\sigma \tau$.

Field lowering in practice

We get from the FIMR method, writing $\alpha=a+\beta$

$$
\left(\frac{\sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3} \approx\left(\frac{a+\beta}{\sigma \tau(\beta)-\beta}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}
$$

The ideal $(\sigma \tau(\beta)-\beta) \mathbb{Z}\left[\zeta_{12}\right]$ is fixed by $\sigma \tau$.
This implies that, if $\sigma \tau(\beta)-\beta$ is coprime to the ramified primes in $\mathbb{Z}\left[\zeta_{12}\right]$, it is the extension of some ideal \mathfrak{c} from $\mathbb{Q}(\sqrt{3})$.

Field lowering in practice

We get from the FIMR method, writing $\alpha=a+\beta$

$$
\left(\frac{\sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3} \approx\left(\frac{a+\beta}{\sigma \tau(\beta)-\beta}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}
$$

The ideal $(\sigma \tau(\beta)-\beta) \mathbb{Z}\left[\zeta_{12}\right]$ is fixed by $\sigma \tau$.
This implies that, if $\sigma \tau(\beta)-\beta$ is coprime to the ramified primes in $\mathbb{Z}\left[\zeta_{12}\right]$, it is the extension of some ideal \mathfrak{c} from $\mathbb{Q}(\sqrt{3})$.

Furthermore, $a+\beta$ is fixed by $\sigma \tau$ modulo $\sigma \tau(\beta)-\beta$. Thus there is some $\gamma \in \mathbb{Z}[\sqrt{3}]$ such that

$$
a+\beta \equiv \gamma \bmod \sigma \tau(\beta)-\beta
$$

Field lowering in practice

We get from the FIMR method, writing $\alpha=a+\beta$

$$
\left(\frac{\sigma \tau(\alpha)}{\alpha}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3} \approx\left(\frac{a+\beta}{\sigma \tau(\beta)-\beta}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}
$$

The ideal $(\sigma \tau(\beta)-\beta) \mathbb{Z}\left[\zeta_{12}\right]$ is fixed by $\sigma \tau$.
This implies that, if $\sigma \tau(\beta)-\beta$ is coprime to the ramified primes in $\mathbb{Z}\left[\zeta_{12}\right]$, it is the extension of some ideal \mathfrak{c} from $\mathbb{Q}(\sqrt{3})$.

Furthermore, $a+\beta$ is fixed by $\sigma \tau$ modulo $\sigma \tau(\beta)-\beta$. Thus there is some $\gamma \in \mathbb{Z}[\sqrt{3}]$ such that

$$
a+\beta \equiv \gamma \bmod \sigma \tau(\beta)-\beta
$$

We rewrite

$$
\left(\frac{a+\beta}{\sigma \tau(\beta)-\beta}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}=\left(\frac{a+\beta}{\mathfrak{c} \mathbb{Z}\left[\zeta_{12}\right]}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}=\left(\frac{\gamma}{\mathfrak{c} \mathbb{Z}\left[\zeta_{12}\right]}\right)_{\mathbb{Q}\left(\zeta_{12}\right), 3}
$$

The field lowering lemmas

Lemma (Field lowering for split primes)

Let K be a number field and let \mathfrak{p} be a prime of K coprime to 3 . Assume that L is a quadratic extension of K such that L contains ζ_{3} and \mathfrak{p} splits in L. Write σ for the non-trivial element of $\operatorname{Gal}(L / K)$. Then for $\alpha \in O_{K}$

$$
\left(\frac{\alpha}{\mathfrak{p} O_{L}}\right)_{L, 3}= \begin{cases}\left(\frac{\alpha}{\mathfrak{p} O_{K}}\right)_{K, 3}^{2} & \text { if } \sigma \text { fixes } \zeta_{3} \\ \mathbf{1}_{\mathfrak{p} \nmid \alpha} & \text { if } \sigma \text { does not fix } \zeta_{3} .\end{cases}
$$

The field lowering lemmas

Lemma (Field lowering for split primes)

Let K be a number field and let \mathfrak{p} be a prime of K coprime to 3 . Assume that L is a quadratic extension of K such that L contains ζ_{3} and \mathfrak{p} splits in L. Write σ for the non-trivial element of $\operatorname{Gal}(L / K)$. Then for $\alpha \in O_{K}$

$$
\left(\frac{\alpha}{\mathfrak{p} O_{L}}\right)_{L, 3}= \begin{cases}\left(\frac{\alpha}{\mathfrak{p} O_{K}}\right)_{K, 3}^{2} & \text { if } \sigma \text { fixes } \zeta_{3} \\ \mathbf{1}_{\mathfrak{p} \nmid \alpha} & \text { if } \sigma \text { does not fix } \zeta_{3} .\end{cases}
$$

Lemma (Field lowering for inert primes)

Let K be a number field and let \mathfrak{p} be a prime of K coprime to 3 . Assume that L is a quadratic extension of K such that L contains ζ_{3} and assume that \mathfrak{p} stays inert in L. Further assume that \mathfrak{p} has degree 1 in K and let p be the prime of \mathbb{Q} lying below \mathfrak{p}. Then we have for all $\alpha \in O_{K}$

$$
\left(\frac{\alpha}{\mathfrak{p} O_{L}}\right)_{L, 3}=\left(\frac{\alpha}{\mathfrak{p} O_{K}}\right)_{K, 3}^{p+1} .
$$

Questions?

Thank you for your attention!

