Spins, Galois representations and a question of Ramakrishna

Peter Koymans Institute for Theoretical Studies

ETH zürich

Cornell Number Theory Seminar

Online, 15 March 2024

Let E be the elliptic curve $E: y^2 = x^3 - x$, and define

$$a_p(E) = p + 1 - |E(\mathbb{F}_p)|.$$

Let E be the elliptic curve $E : y^2 = x^3 - x$, and define

$$a_p(E) = p + 1 - |E(\mathbb{F}_p)|.$$

Are there infinitely many primes $p \equiv 1 \mod 12$ such that $a_p(E)$ is a cubic residue modulo p?

Let E be the elliptic curve $E : y^2 = x^3 - x$, and define

$$a_p(E) = p + 1 - |E(\mathbb{F}_p)|.$$

Are there infinitely many primes $p \equiv 1 \mod 12$ such that $a_p(E)$ is a cubic residue modulo p?

If $p \equiv 2 \mod 3$, then all elements of \mathbb{F}_p are cubes, because

$$|\mathbb{F}_p^*| = p - 1 \not\equiv 0 \mod 3.$$

Let E be the elliptic curve $E : y^2 = x^3 - x$, and define

$$a_p(E) = p + 1 - |E(\mathbb{F}_p)|.$$

Are there infinitely many primes $p \equiv 1 \mod 12$ such that $a_p(E)$ is a cubic residue modulo p?

If $p \equiv 2 \mod 3$, then all elements of \mathbb{F}_p are cubes, because

$$|\mathbb{F}_p^*| = p - 1 \not\equiv 0 \mod 3.$$

If $p \equiv 3 \mod 4$ and p > 3, then E has supersingular reduction at p, so

$$a_p(E)=0,$$

which is a cube modulo *p*.

Let K be an imaginary quadratic field and let \mathcal{O} be an order in K. Let L be the ring class field of \mathcal{O} , and let E be an elliptic curve over L with $End_{\mathbb{C}}(E) = \mathcal{O}$.

Let K be an imaginary quadratic field and let \mathcal{O} be an order in K. Let L be the ring class field of \mathcal{O} , and let E be an elliptic curve over L with $End_{\mathbb{C}}(E) = \mathcal{O}$.

Let p be a prime that splits completely in L and \mathfrak{p} be a prime in K above p. Suppose E has good reduction at \mathfrak{p} . Then there is $\kappa \in \mathcal{O}$ such that $p = \kappa \overline{\kappa}$ and

$$a_p(E) = p + 1 - |E(\mathbb{F}_p)| = \kappa + \overline{\kappa}.$$

Let K be an imaginary quadratic field and let \mathcal{O} be an order in K. Let L be the ring class field of \mathcal{O} , and let E be an elliptic curve over L with $End_{\mathbb{C}}(E) = \mathcal{O}$.

Let p be a prime that splits completely in L and p be a prime in K above p. Suppose E has good reduction at p. Then there is $\kappa \in \mathcal{O}$ such that $p = \kappa \overline{\kappa}$ and

$$a_p(E) = p + 1 - |E(\mathbb{F}_p)| = \kappa + \overline{\kappa}.$$

In our situation, we have

$$E: y^2 = x^3 - x, \quad K = \mathbb{Q}(i), \quad \mathcal{O} = \mathbb{Z}[i], \quad L = \mathbb{Q}(i).$$

Let K be an imaginary quadratic field and let \mathcal{O} be an order in K. Let L be the ring class field of \mathcal{O} , and let E be an elliptic curve over L with $End_{\mathbb{C}}(E) = \mathcal{O}$.

Let p be a prime that splits completely in L and p be a prime in K above p. Suppose E has good reduction at p. Then there is $\kappa \in \mathcal{O}$ such that $p = \kappa \overline{\kappa}$ and

$$a_p(E) = p + 1 - |E(\mathbb{F}_p)| = \kappa + \overline{\kappa}.$$

In our situation, we have

$$E: y^2 = x^3 - x, \quad K = \mathbb{Q}(i), \quad \mathcal{O} = \mathbb{Z}[i], \quad L = \mathbb{Q}(i).$$

Since $\mathbb{Z}[i]$ is a PID, we can write $p = \pi \overline{\pi}$, and π is unique up to multiplying by a power of *i*. Then, for some choice of π , we have

$$a_p(E)=\pi+\overline{\pi}.$$

Since we have $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}[i]/\pi\mathbb{Z}[i]$, we have that $a_p(E) = \pi + \overline{\pi}$ is a cube modulo p if and only if it is a cube modulo π .

Since we have $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}[i]/\pi\mathbb{Z}[i]$, we have that $a_p(E) = \pi + \overline{\pi}$ is a cube modulo p if and only if it is a cube modulo π .

However, observe that $a_p(E) \equiv \overline{\pi} \mod \pi$. So the question is equivalent to $\overline{\pi}$ being a cube modulo π .

Since we have $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}[i]/\pi\mathbb{Z}[i]$, we have that $a_p(E) = \pi + \overline{\pi}$ is a cube modulo p if and only if it is a cube modulo π .

However, observe that $a_p(E) \equiv \overline{\pi} \mod \pi$. So the question is equivalent to $\overline{\pi}$ being a cube modulo π .

Lemma

If $p \equiv 1 \mod 12$, then $\overline{\pi}$ is a cube modulo π if and only if $\overline{i \cdot \pi}$ is a cube modulo π .

Since we have $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}[i]/\pi\mathbb{Z}[i]$, we have that $a_p(E) = \pi + \overline{\pi}$ is a cube modulo p if and only if it is a cube modulo π .

However, observe that $a_p(E) \equiv \overline{\pi} \mod \pi$. So the question is equivalent to $\overline{\pi}$ being a cube modulo π .

Lemma

If $p \equiv 1 \mod 12$, then $\overline{\pi}$ is a cube modulo π if and only if $\overline{i \cdot \pi}$ is a cube modulo π .

Proof.

Since $p \equiv 1 \mod 12$, we know that there is a primitive 12-th root of unity ζ_{12} in \mathbb{F}_p . Thus $i = \zeta_4$ is a cube in \mathbb{F}_p .

Since we have $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}[i]/\pi\mathbb{Z}[i]$, we have that $a_p(E) = \pi + \overline{\pi}$ is a cube modulo p if and only if it is a cube modulo π .

However, observe that $a_p(E) \equiv \overline{\pi} \mod \pi$. So the question is equivalent to $\overline{\pi}$ being a cube modulo π .

Lemma

If $p \equiv 1 \mod 12$, then $\overline{\pi}$ is a cube modulo π if and only if $\overline{i \cdot \pi}$ is a cube modulo π .

Proof.

Since $p \equiv 1 \mod 12$, we know that there is a primitive 12-th root of unity ζ_{12} in \mathbb{F}_p . Thus $i = \zeta_4$ is a cube in \mathbb{F}_p .

Corollary

Let $p \equiv 1 \mod 12$. Then $a_p(E)$ is a cube modulo p if and only if $(\overline{\pi}/\pi)_3 = 1$, where π is any element of $\mathbb{Z}[i]$ satisfying $\pi\overline{\pi} = p$.

Let K be a number field with $\zeta_3 \in K$. For $\alpha \in O_K$ and $\mathfrak{p} \nmid 3O_K$ a prime, we define $(\alpha/\mathfrak{p})_{K,3}$ as the unique element in $\{1, \zeta_3, \zeta_3^2, 0\}$ with

$$\left(\frac{\alpha}{\mathfrak{p}}\right)_{K,3} \equiv \alpha^{\frac{N_{K/\mathbb{Q}}(\mathfrak{p})-1}{3}} \bmod \mathfrak{p}.$$

Let K be a number field with $\zeta_3 \in K$. For $\alpha \in O_K$ and $\mathfrak{p} \nmid 3O_K$ a prime, we define $(\alpha/\mathfrak{p})_{K,3}$ as the unique element in $\{1, \zeta_3, \zeta_3^2, 0\}$ with

$$\left(\frac{\alpha}{\mathfrak{p}}\right)_{K,3} \equiv \alpha^{\frac{N_{K/\mathbb{Q}}(\mathfrak{p})-1}{3}} \bmod \mathfrak{p}.$$

We multiplicatively extend this to all ideals coprime to 3.

Let K be a number field with $\zeta_3 \in K$. For $\alpha \in O_K$ and $\mathfrak{p} \nmid 3O_K$ a prime, we define $(\alpha/\mathfrak{p})_{K,3}$ as the unique element in $\{1, \zeta_3, \zeta_3^2, 0\}$ with

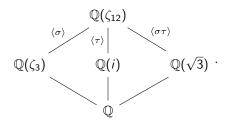
$$\left(\frac{\alpha}{\mathfrak{p}}\right)_{K,3} \equiv \alpha^{\frac{N_{K/\mathbb{Q}}(\mathfrak{p})-1}{3}} \bmod \mathfrak{p}.$$

We multiplicatively extend this to all ideals coprime to 3.

This residue symbol has the same usual properties as the quadratic residue symbol, i.e. periodicity and reciprocity.

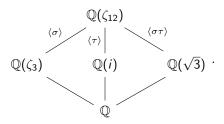
The symbol encoding $a_p(E)$

Consider the field diagram



The symbol encoding $a_p(E)$

Consider the field diagram



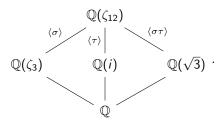
For an ideal \mathfrak{a} of $\mathbb{Z}[\zeta_{12}]$, we define the symbol $[\mathfrak{a}]$

$$[\mathfrak{a}] := \begin{cases} \left(\frac{\sigma(\alpha)\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3} & \text{if } \gcd(\mathfrak{a},(3)) = 1\\ 0 & \text{otherwise,} \end{cases}$$

where α is any generator of $\mathfrak{a}.$

The symbol encoding $a_p(E)$

Consider the field diagram



For an ideal \mathfrak{a} of $\mathbb{Z}[\zeta_{12}]$, we define the symbol $[\mathfrak{a}]$

$$[\mathfrak{a}] := \begin{cases} \left(\frac{\sigma(\alpha)\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3} & \text{if } \gcd(\mathfrak{a},(3)) = 1\\ 0 & \text{otherwise,} \end{cases}$$

where α is any generator of \mathfrak{a} . The symbol is well-defined, and satisfies

$$\sum_{\rho \in \mathsf{Gal}(\mathbb{Q}(\zeta_{12})/\mathbb{Q})} [\rho(\mathfrak{p})] = \begin{cases} -2 & \text{if } a_{\rho}(E) \text{ is not a cube modulo } p \\ 4 & \text{if } a_{\rho}(E) \text{ is a cube modulo } p \end{cases}$$

for \mathfrak{p} a split prime of degree 1 (i.e. $p = \mathfrak{p} \cap \mathbb{Z}$ satisfies $p \equiv 1 \mod 12$).

Our main results

Theorem (K.–Uttenthal)

There exists C > 0 such that for all $X \ge 100$

$$\left| \sum_{\substack{N_{\mathbb{Q}(\zeta_{12})/\mathbb{Q}}(\mathfrak{p}) \leq X\\ \mathfrak{p} \text{ prime}}} [\mathfrak{p}] \right| \leq C X^{\frac{3199}{3200}}.$$

Our main results

Theorem (K.–Uttenthal)

There exists C > 0 such that for all $X \ge 100$

$$\left| \sum_{\substack{N_{\mathbb{Q}(\zeta_{12})/\mathbb{Q}}(\mathfrak{p}) \leq X\\ \mathfrak{p} \text{ prime}}} [\mathfrak{p}] \right| \leq C X^{\frac{3199}{3200}}.$$

Corollary (K.–Uttenthal)

We have

$$\frac{\#\{p \equiv 1 \text{ mod } 12 : a_p(E) \text{ is a cube modulo } p\}}{\#\{p \equiv 1 \text{ mod } 12\}} = \frac{1}{3} + O\left(\frac{\log X}{X^{1/3200}}\right).$$

Our main results

Theorem (K.–Uttenthal)

There exists C > 0 such that for all $X \ge 100$

$$\left| \sum_{\substack{N_{\mathbb{Q}(\zeta_{12})/\mathbb{Q}}(\mathfrak{p}) \leq X\\ \mathfrak{p} \text{ prime}}} [\mathfrak{p}] \right| \leq C X^{\frac{3199}{3200}}.$$

Corollary (K.–Uttenthal)

We have

$$\frac{\#\{p \equiv 1 \text{ mod } 12 : a_p(E) \text{ is a cube modulo } p\}}{\#\{p \equiv 1 \text{ mod } 12\}} = \frac{1}{3} + O\left(\frac{\log X}{X^{1/3200}}\right).$$

In fact, one can prove a similar result for any imaginary quadratic field, which has applications to a conjecture of Weston.

Definition

Let K/\mathbb{Q} be a totally real Galois field and assume that all totally positive units (i.e. positive in every real embedding) are squares.

Definition

Let K/\mathbb{Q} be a totally real Galois field and assume that all totally positive units (i.e. positive in every real embedding) are squares.

Given $\sigma \in Gal(K/\mathbb{Q})$ and a principal prime \mathfrak{p} of K admitting a totally positive generator, FIMR define

$$\operatorname{spin}(\sigma,\mathfrak{p})=\left(rac{\sigma(\pi)}{\mathfrak{p}}
ight)_{K,2},$$

where $(\cdot/\cdot)_{K,2}$ is the quadratic residue symbol in K and where π is any totally positive generator of \mathfrak{p} .

Definition

Let K/\mathbb{Q} be a totally real Galois field and assume that all totally positive units (i.e. positive in every real embedding) are squares.

Given $\sigma \in Gal(K/\mathbb{Q})$ and a principal prime \mathfrak{p} of K admitting a totally positive generator, FIMR define

$$\operatorname{spin}(\sigma,\mathfrak{p}) = \left(rac{\sigma(\pi)}{\mathfrak{p}}
ight)_{K,2},$$

where $(\cdot/\cdot)_{K,2}$ is the quadratic residue symbol in K and where π is any totally positive generator of \mathfrak{p} . This is well-defined, as changing the generator π of \mathfrak{p} changes π by the square of a unit.

Theorem (FIMR)

Assume that K/\mathbb{Q} is cyclic of degree n and that σ is a generator of $Gal(K/\mathbb{Q})$. If $n \ge 4$, assume a short character sum conjecture. There exists $\delta > 0$ such that for all $X \ge 100$

$$\left|\sum_{N_{\mathcal{K}/\mathbb{Q}}(\mathfrak{p})\leq X} \operatorname{spin}(\sigma,\mathfrak{p})\right| \ll X^{1-\delta}.$$

Here the sum is over prime ideals \mathfrak{p} admitting a totally positive generator.

Theorem (FIMR)

Assume that K/\mathbb{Q} is cyclic of degree n and that σ is a generator of $Gal(K/\mathbb{Q})$. If $n \ge 4$, assume a short character sum conjecture. There exists $\delta > 0$ such that for all $X \ge 100$

$$\sum_{N_{K/\mathbb{Q}}(\mathfrak{p})\leq X} \operatorname{spin}(\sigma,\mathfrak{p}) \Bigg| \ll X^{1-\delta}.$$

Here the sum is over prime ideals \mathfrak{p} admitting a totally positive generator.

We adapt their arguments to cubic residue symbols and the field $\mathcal{K} = \mathbb{Q}(\zeta_{12})$, which is neither cyclic nor totally real, and has degree ≥ 4 .

Theorem (FIMR)

Assume that K/\mathbb{Q} is cyclic of degree n and that σ is a generator of $Gal(K/\mathbb{Q})$. If $n \ge 4$, assume a short character sum conjecture. There exists $\delta > 0$ such that for all $X \ge 100$

$$\sum_{N_{K/\mathbb{Q}}(\mathfrak{p})\leq X} \operatorname{spin}(\sigma,\mathfrak{p}) \Bigg| \ll X^{1-\delta}.$$

Here the sum is over prime ideals \mathfrak{p} admitting a totally positive generator.

We adapt their arguments to cubic residue symbols and the field $\mathcal{K} = \mathbb{Q}(\zeta_{12})$, which is neither cyclic nor totally real, and has degree ≥ 4 .

Our main analytic achievement is in making their techniques unconditional in this case.

 2-Selmer ranks of elliptic curves in quadratic twist families indexed by primes (FIMR),

- 2-Selmer ranks of elliptic curves in quadratic twist families indexed by primes (FIMR),
- ▶ 16-rank of the class group of $\mathbb{Q}(\sqrt{-2p})$ and $\mathbb{Q}(\sqrt{-p})$ (Milovic, K.-Milovic, K.),

- 2-Selmer ranks of elliptic curves in quadratic twist families indexed by primes (FIMR),
- ▶ 16-rank of the class group of $\mathbb{Q}(\sqrt{-2p})$ and $\mathbb{Q}(\sqrt{-p})$ (Milovic, K.-Milovic, K.),
- Ramakrishna's question, Weston's conjecture and Weston–Zaurova conjecture (Weston–Zaurova),

- 2-Selmer ranks of elliptic curves in quadratic twist families indexed by primes (FIMR),
- ▶ 16-rank of the class group of $\mathbb{Q}(\sqrt{-2p})$ and $\mathbb{Q}(\sqrt{-p})$ (Milovic, K.-Milovic, K.),
- Ramakrishna's question, Weston's conjecture and Weston–Zaurova conjecture (Weston–Zaurova),
- residue field degrees of primes p in the ray class field of K of conductor p,

- 2-Selmer ranks of elliptic curves in quadratic twist families indexed by primes (FIMR),
- ▶ 16-rank of the class group of $\mathbb{Q}(\sqrt{-2p})$ and $\mathbb{Q}(\sqrt{-p})$ (Milovic, K.-Milovic, K.),
- Ramakrishna's question, Weston's conjecture and Weston–Zaurova conjecture (Weston–Zaurova),
- residue field degrees of primes p in the ray class field of K of conductor p,
- lifting problems of Galois representations.

Proving oscillation of spins: Vinogradov's sieve

Vinogradov's sieve is the only sieve at the moment that is able to catch primes. We will discuss it for simplicity over $\mathbb{Z}.$

Vinogradov's sieve is the only sieve at the moment that is able to catch primes. We will discuss it for simplicity over \mathbb{Z} .

Let a_p be a sequence indexed by primes. We wish to estimate $\sum_{p < \chi} a_p$.

Vinogradov's sieve is the only sieve at the moment that is able to catch primes. We will discuss it for simplicity over \mathbb{Z} .

Let a_p be a sequence indexed by primes. We wish to estimate $\sum_{p < \chi} a_p$.

Theorem (Vinogradov's sieve)

Let y_n be a sequence indexed by positive integers such that $y_p = a_p$ for all primes p. Assume that we have good estimates for

$$\sum_{\substack{n \leq X \\ n \equiv 0 \mod q}} y_n \qquad (\text{sums of type I, linear sums})$$

uniformly in q,

Vinogradov's sieve is the only sieve at the moment that is able to catch primes. We will discuss it for simplicity over $\mathbb{Z}.$

Let a_p be a sequence indexed by primes. We wish to estimate $\sum_{p < X} a_p$.

Theorem (Vinogradov's sieve)

Let y_n be a sequence indexed by positive integers such that $y_p = a_p$ for all primes p. Assume that we have good estimates for

$$\sum_{\substack{n \leq X \\ \equiv 0 \mod q}} y_n \qquad (\text{sums of type I, linear sums})$$

uniformly in q, and

n

$$\sum_{n \le X} \sum_{m \le Y} \alpha_n \beta_m y_{nm}$$
 (sums of type II, bilinear sums)

for all $\alpha_n, \beta_m \in \mathbb{C}$ bounded by 1.

Vinogradov's sieve is the only sieve at the moment that is able to catch primes. We will discuss it for simplicity over $\mathbb{Z}.$

Let a_p be a sequence indexed by primes. We wish to estimate $\sum_{p < X} a_p$.

Theorem (Vinogradov's sieve)

Let y_n be a sequence indexed by positive integers such that $y_p = a_p$ for all primes p. Assume that we have good estimates for

$$\sum_{\substack{n \leq X \\ \equiv 0 \mod q}} y_n \qquad (\text{sums of type I, linear sums})$$

uniformly in q, and

n

 $\sum_{n \le X} \sum_{m \le Y} \alpha_n \beta_m y_{nm}$ (sums of type II, bilinear sums)

for all $\alpha_n, \beta_m \in \mathbb{C}$ bounded by 1.

Then we get an estimate for $\sum_{p < X} a_p$.

Note that the first goal of Vinogradov's sequence is to extend the original sequence a_p to a new sequence y_n that matches a_p on the primes.

Note that the first goal of Vinogradov's sequence is to extend the original sequence a_p to a new sequence y_n that matches a_p on the primes.

There are natural candidates for this both in our problem, namely the symbol [a], and also in FIMR, namely

$$\operatorname{spin}(\sigma,\mathfrak{a}) = \left(\frac{\sigma(\alpha)}{\mathfrak{a}}\right)_{K,2},$$

where α is a totally positive generator of \mathfrak{a} .

Let $\alpha_n, \beta_m \in \mathbb{C}$ be bounded by 1. The bilinear sums

$$\sum_{\mathit{N}_{\mathit{K}/\mathbb{Q}}(\mathfrak{n})\leq \mathit{X}}\sum_{\mathit{N}_{\mathit{K}/\mathbb{Q}}(\mathfrak{m})\leq \mathit{Y}}\alpha_{\mathfrak{n}}\beta_{\mathfrak{m}}\mathsf{spin}(\sigma,\mathfrak{n}\mathfrak{m})$$

are relatively easy.

Let $\alpha_n, \beta_m \in \mathbb{C}$ be bounded by 1. The bilinear sums

$$\sum_{\mathit{N}_{\mathit{K}/\mathbb{Q}}(\mathfrak{n})\leq \mathit{X}}\sum_{\mathit{N}_{\mathit{K}/\mathbb{Q}}(\mathfrak{m})\leq \mathit{Y}}\alpha_{\mathfrak{n}}\beta_{\mathfrak{m}}\mathsf{spin}(\sigma,\mathfrak{n}\mathfrak{m})$$

are relatively easy.

Indeed, the key point is the "twisted multiplicativity" of spin $spin(\sigma, \mathfrak{nm}) = spin(\sigma, \mathfrak{n})spin(\sigma, \mathfrak{m})t(\mathfrak{n}, \mathfrak{m}).$

Let $\alpha_n, \beta_m \in \mathbb{C}$ be bounded by 1. The bilinear sums

$$\sum_{\mathit{N}_{\mathit{K}/\mathbb{Q}}(\mathfrak{n})\leq \mathit{X}}\sum_{\mathit{N}_{\mathit{K}/\mathbb{Q}}(\mathfrak{m})\leq \mathit{Y}}\alpha_{\mathfrak{n}}\beta_{\mathfrak{m}}\mathsf{spin}(\sigma,\mathfrak{n}\mathfrak{m})$$

are relatively easy.

Indeed, the key point is the "twisted multiplicativity" of spin

 $spin(\sigma, \mathfrak{nm}) = spin(\sigma, \mathfrak{n})spin(\sigma, \mathfrak{m})t(\mathfrak{n}, \mathfrak{m}).$

The twist factor t(n, m) can be computed explicitly and roughly looks like the Legendre symbol

$$\left(\frac{\eta}{\mu}\right)_{K,2}$$
 $\mathfrak{n} = (\eta), \mathfrak{m} = (\mu).$

Let $\alpha_n, \beta_m \in \mathbb{C}$ be bounded by 1. The bilinear sums

$$\sum_{\mathit{N}_{\mathit{K}/\mathbb{Q}}(\mathfrak{n})\leq \mathit{X}}\sum_{\mathit{N}_{\mathit{K}/\mathbb{Q}}(\mathfrak{m})\leq \mathit{Y}}\alpha_{\mathfrak{n}}\beta_{\mathfrak{m}}\mathsf{spin}(\sigma,\mathfrak{n}\mathfrak{m})$$

are relatively easy.

Indeed, the key point is the "twisted multiplicativity" of spin

 $spin(\sigma, \mathfrak{nm}) = spin(\sigma, \mathfrak{n})spin(\sigma, \mathfrak{m})t(\mathfrak{n}, \mathfrak{m}).$

The twist factor t(n, m) can be computed explicitly and roughly looks like the Legendre symbol

$$\left(\frac{\eta}{\mu}\right)_{K,2}$$
 $\mathfrak{n} = (\eta), \mathfrak{m} = (\mu).$

Absorbing spin(σ , \mathfrak{n}) and spin(σ , \mathfrak{m}) in the coefficients $\alpha_{\mathfrak{n}}$ and $\beta_{\mathfrak{m}}$, it suffices to estimate

$$\sum_{N_{K/\mathbb{Q}}(\mathfrak{n})\leq X, \mathfrak{n}=(\eta)}\sum_{N_{K/\mathbb{Q}}(\mathfrak{m})\leq Y, \mathfrak{m}=(\mu)}\alpha_{\mathfrak{n}}\beta_{\mathfrak{m}}\left(\frac{\eta}{\mu}\right)_{K,2}$$

٠

Let $\alpha_n, \beta_m \in \mathbb{C}$ be bounded by 1. The bilinear sums

$$\sum_{\mathit{N}_{\mathit{K}/\mathbb{Q}}(\mathfrak{n})\leq \mathit{X}}\sum_{\mathit{N}_{\mathit{K}/\mathbb{Q}}(\mathfrak{m})\leq \mathit{Y}}\alpha_{\mathfrak{n}}\beta_{\mathfrak{m}}\mathsf{spin}(\sigma,\mathfrak{n}\mathfrak{m})$$

are relatively easy.

Indeed, the key point is the "twisted multiplicativity" of spin

 $spin(\sigma, \mathfrak{nm}) = spin(\sigma, \mathfrak{n})spin(\sigma, \mathfrak{m})t(\mathfrak{n}, \mathfrak{m}).$

The twist factor t(n, m) can be computed explicitly and roughly looks like the Legendre symbol

$$\left(\frac{\eta}{\mu}\right)_{K,2}$$
 $\mathfrak{n} = (\eta), \mathfrak{m} = (\mu).$

Absorbing spin(σ , \mathfrak{n}) and spin(σ , \mathfrak{m}) in the coefficients $\alpha_{\mathfrak{n}}$ and $\beta_{\mathfrak{m}}$, it suffices to estimate

$$\sum_{\mathsf{N}_{\mathsf{K}/\mathbb{Q}}(\mathfrak{n})\leq\mathsf{X},\mathfrak{n}=(\eta)}\sum_{\mathsf{N}_{\mathsf{K}/\mathbb{Q}}(\mathfrak{m})\leq\mathsf{Y},\mathfrak{m}=(\mu)}\alpha_{\mathfrak{n}}\beta_{\mathfrak{m}}\left(\frac{\eta}{\mu}\right)_{\mathsf{K},2}$$

This can be handled using large sieve techniques.

.

The essential difficulty lies in the estimation of sums of type I. These are

$$\sum_{\substack{N_{K/\mathbb{Q}}(\mathfrak{a}) \leq X\\ \mathfrak{a}=(\alpha), \alpha \text{ tot. pos.}}} \left(\frac{\sigma(\alpha)}{\alpha}\right)_{K,2}$$

where we have taken q = 1 for simplicity.

The essential difficulty lies in the estimation of sums of type I. These are

$$\sum_{\substack{N_{K/\mathbb{Q}}(\mathfrak{a}) \leq X\\ \mathfrak{a}=(\alpha), \alpha \text{ tot. pos.}}} \left(\frac{\sigma(\alpha)}{\alpha}\right)_{K,2},$$

where we have taken q = 1 for simplicity.

The insight of FIMR is to approach this as follows: we split

$$O_{\mathcal{K}} = \mathbb{Z} \oplus \mathbb{M},$$

so $\alpha = \mathbf{a} + \beta$ with $\mathbf{a} \in \mathbb{Z}$, $\beta \in \mathbb{M}$.

The essential difficulty lies in the estimation of sums of type I. These are

$$\sum_{\substack{N_{K/\mathbb{Q}}(\mathfrak{a}) \leq X\\ \mathfrak{a}=(\alpha), \alpha \text{ tot. pos.}}} \left(\frac{\sigma(\alpha)}{\alpha}\right)_{K,2},$$

where we have taken q = 1 for simplicity.

The insight of FIMR is to approach this as follows: we split

$$O_{\mathcal{K}} = \mathbb{Z} \oplus \mathbb{M},$$

so $\alpha = \mathbf{a} + \beta$ with $\mathbf{a} \in \mathbb{Z}$, $\beta \in \mathbb{M}$.

Then we have $\sigma(\alpha) = a + \sigma(\beta)$, hence

$$\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K,2} = \left(\frac{\mathbf{a} + \sigma(\beta)}{\mathbf{a} + \beta}\right)_{K,2} = \left(\frac{\sigma(\beta) - \beta}{\mathbf{a} + \beta}\right)_{K,2} \approx \left(\frac{\mathbf{a} + \beta}{\sigma(\beta) - \beta}\right)_{K,2}$$

Recall that $\mathcal{O}_{\mathcal{K}} = \mathbb{Z} \oplus \mathbb{M}$, $\alpha = a + \beta$ and

$$\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K,2} = \left(\frac{\mathbf{a}+\beta}{\sigma(\beta)-\beta}\right)_{K,2}.$$

Recall that $O_K = \mathbb{Z} \oplus \mathbb{M}$, $\alpha = a + \beta$ and

$$\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K,2} = \left(\frac{\mathbf{a}+\beta}{\sigma(\beta)-\beta}\right)_{K,2}.$$

Therefore we need to estimate

$$\sum_{\beta \in \mathbb{M}} \sum_{\substack{\mathbf{a} \in \mathbb{Z} \\ N_{K/\mathbb{Q}}(\mathbf{a}+\beta) \leq X}} \left(\frac{\mathbf{a}+\beta}{\sigma(\beta)-\beta} \right)_{K,2}$$

٠

Recall that $\mathcal{O}_{\mathcal{K}} = \mathbb{Z} \oplus \mathbb{M}$, $\alpha = \mathbf{a} + \beta$ and

$$\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K,2} = \left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K,2}$$

Therefore we need to estimate

$$\sum_{\beta \in \mathbb{M}} \sum_{\substack{\mathbf{a} \in \mathbb{Z} \\ N_{K/\mathbb{Q}}(\mathbf{a}+\beta) \leq X}} \left(\frac{\mathbf{a}+\beta}{\sigma(\beta)-\beta} \right)_{K,2}$$

We now fix β , then *a* runs over a sum of typical length $X^{1/n}$, while the conductor is $N_{K/\mathbb{Q}}(\sigma(\beta) - \beta)$ typically of size X. So our sum is "short". Here is where the short character sum conjecture comes in.

Recall that $O_{\mathcal{K}} = \mathbb{Z} \oplus \mathbb{M}$, $\alpha = a + \beta$ and

$$\left(\frac{\sigma(\alpha)}{\alpha}\right)_{K,2} = \left(\frac{\mathbf{a}+\beta}{\sigma(\beta)-\beta}\right)_{K,2}$$

Therefore we need to estimate

$$\sum_{\beta \in \mathbb{M}} \sum_{\substack{\mathbf{a} \in \mathbb{Z} \\ N_{K/\mathbb{Q}}(\mathbf{a}+\beta) \leq X}} \left(\frac{\mathbf{a}+\beta}{\sigma(\beta)-\beta} \right)_{K,2}$$

We now fix β , then a runs over a sum of typical length $X^{1/n}$, while the conductor is $N_{K/\mathbb{Q}}(\sigma(\beta) - \beta)$ typically of size X. So our sum is "short". Here is where the short character sum conjecture comes in.

Technical warning: to make this precise, note that every ideal \mathfrak{a} has infinitely many generators. So to avoid our sums running over infinitely many terms, we need to construct a fundamental domain and pick for each ideal \mathfrak{a} the unique generator from the fundamental domain.

The character $\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K,2}$ does not oscillate if $\sigma(\beta) - \beta$ is a square.

The character $\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K,2}$ does not oscillate if $\sigma(\beta) - \beta$ is a square.

In fact, because of the way the short character sum conjecture works, we need to show that $\sigma(\beta) - \beta$ has not too large squarefull part if $\beta \in \mathbb{M}$.

The character $\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K,2}$ does not oscillate if $\sigma(\beta) - \beta$ is a square.

In fact, because of the way the short character sum conjecture works, we need to show that $\sigma(\beta) - \beta$ has not too large squarefull part if $\beta \in \mathbb{M}$.

This gets increasingly difficult as \mathbb{M} has smaller rank compared to $O_{\mathcal{K}}$. In FIMR, the \mathbb{Z} -rank of \mathbb{M} is n-1 exactly because $\operatorname{Gal}(\mathcal{K}/\mathbb{Q})$ is cyclic of degree n and σ is a generator.

The character $\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K,2}$ does not oscillate if $\sigma(\beta) - \beta$ is a square.

In fact, because of the way the short character sum conjecture works, we need to show that $\sigma(\beta) - \beta$ has not too large squarefull part if $\beta \in \mathbb{M}$.

This gets increasingly difficult as \mathbb{M} has smaller rank compared to $O_{\mathcal{K}}$. In FIMR, the \mathbb{Z} -rank of \mathbb{M} is n-1 exactly because $\operatorname{Gal}(\mathcal{K}/\mathbb{Q})$ is cyclic of degree n and σ is a generator.

This difficulty was overcome by K.-Milovic, who also obtained the joint distribution of spins

 $\prod_{\sigma \in S} \mathsf{spin}(\sigma, \mathfrak{p}),$

for any subset S of $Gal(K/\mathbb{Q})$ satisfying $\sigma \in S \Rightarrow \sigma^{-1} \notin S$.

The character $\left(\frac{a+\beta}{\sigma(\beta)-\beta}\right)_{K,2}$ does not oscillate if $\sigma(\beta) - \beta$ is a square.

In fact, because of the way the short character sum conjecture works, we need to show that $\sigma(\beta) - \beta$ has not too large squarefull part if $\beta \in \mathbb{M}$.

This gets increasingly difficult as \mathbb{M} has smaller rank compared to $O_{\mathcal{K}}$. In FIMR, the \mathbb{Z} -rank of \mathbb{M} is n-1 exactly because $\operatorname{Gal}(\mathcal{K}/\mathbb{Q})$ is cyclic of degree n and σ is a generator.

This difficulty was overcome by K.-Milovic, who also obtained the joint distribution of spins

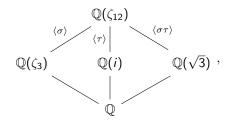
 $\prod_{\sigma \in S} \mathsf{spin}(\sigma, \mathfrak{p}),$

for any subset S of $Gal(K/\mathbb{Q})$ satisfying $\sigma \in S \Rightarrow \sigma^{-1} \notin S$. This assumption is important because

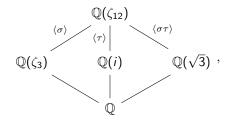
$$\mathsf{spin}(\sigma,\mathfrak{p}) = \left(rac{\sigma(\pi)}{\pi}
ight), \qquad \mathsf{spin}(\sigma^{-1},\mathfrak{p}) = \left(rac{\sigma^{-1}(\pi)}{\pi}
ight)$$

are related by quadratic reciprocity. This was further studied by McMeekin, and Chan–McMeekin–Milovic.

Recall the field diagram



Recall the field diagram



so our aim is to estimate the type I sums

1

$$\sum_{\substack{\alpha \in \mathbb{Z}[\zeta_{12}] \\ \mathbb{V}_{\mathbb{Q}(\zeta_{12})/\mathbb{Q}}(\alpha) \leq X}} \left(\frac{\sigma(\alpha)\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3}$$

٠

$$\left(\frac{\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3}$$

is "almost" identically equal to 1, while the other symbol can be "lowered" to $\mathbb{Q}(\zeta_3)$.

$$\left(\frac{\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3}$$

is "almost" identically equal to 1, while the other symbol can be "lowered" to $\mathbb{Q}(\zeta_3)$.

So the modulus of the character becomes $X^{1/2}$ instead of $X \cdot X = X^2$, while the sum over $a \in \mathbb{Z}$ is still of length $X^{1/4}$.

$$\left(\frac{\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3}$$

is "almost" identically equal to 1, while the other symbol can be "lowered" to $\mathbb{Q}(\zeta_3)$.

So the modulus of the character becomes $X^{1/2}$ instead of $X \cdot X = X^2$, while the sum over $a \in \mathbb{Z}$ is still of length $X^{1/4}$.

Thus we can apply Burgess inequality in this range to get our savings.

$$\left(\frac{\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3}$$

is "almost" identically equal to 1, while the other symbol can be "lowered" to $\mathbb{Q}(\zeta_3)$.

So the modulus of the character becomes $X^{1/2}$ instead of $X \cdot X = X^2$, while the sum over $a \in \mathbb{Z}$ is still of length $X^{1/4}$.

Thus we can apply Burgess inequality in this range to get our savings.

Let us now show how this "field lowering" mechanism happens.

We get from the FIMR method, writing $\alpha = \mathbf{a} + \beta$

$$\left(\frac{\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3} \approx \left(\frac{\mathbf{a}+\beta}{\sigma\tau(\beta)-\beta}\right)_{\mathbb{Q}(\zeta_{12}),3}.$$

We get from the FIMR method, writing $\alpha = \mathbf{a} + \beta$

$$\left(\frac{\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3} \approx \left(\frac{\mathbf{a}+\beta}{\sigma\tau(\beta)-\beta}\right)_{\mathbb{Q}(\zeta_{12}),3}$$

The ideal $(\sigma \tau(\beta) - \beta)\mathbb{Z}[\zeta_{12}]$ is fixed by $\sigma \tau$.

We get from the FIMR method, writing $\alpha={\it a}+\beta$

$$\left(\frac{\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3} \approx \left(\frac{\mathbf{a}+\beta}{\sigma\tau(\beta)-\beta}\right)_{\mathbb{Q}(\zeta_{12}),3}.$$

The ideal $(\sigma\tau(\beta) - \beta)\mathbb{Z}[\zeta_{12}]$ is fixed by $\sigma\tau$.

This implies that, if $\sigma \tau(\beta) - \beta$ is coprime to the ramified primes in $\mathbb{Z}[\zeta_{12}]$, it is the extension of some ideal \mathfrak{c} from $\mathbb{Q}(\sqrt{3})$.

We get from the FIMR method, writing $\alpha = \mathbf{a} + \beta$

$$\left(\frac{\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3} \approx \left(\frac{\mathsf{a}+\beta}{\sigma\tau(\beta)-\beta}\right)_{\mathbb{Q}(\zeta_{12}),3}$$

The ideal $(\sigma\tau(\beta) - \beta)\mathbb{Z}[\zeta_{12}]$ is fixed by $\sigma\tau$.

This implies that, if $\sigma \tau(\beta) - \beta$ is coprime to the ramified primes in $\mathbb{Z}[\zeta_{12}]$, it is the extension of some ideal \mathfrak{c} from $\mathbb{Q}(\sqrt{3})$.

Furthermore, $a + \beta$ is fixed by $\sigma \tau$ modulo $\sigma \tau(\beta) - \beta$. Thus there is some $\gamma \in \mathbb{Z}[\sqrt{3}]$ such that

$$a + \beta \equiv \gamma \mod \sigma \tau(\beta) - \beta.$$

We get from the FIMR method, writing $\alpha = \mathbf{a} + \beta$

$$\left(\frac{\sigma\tau(\alpha)}{\alpha}\right)_{\mathbb{Q}(\zeta_{12}),3} \approx \left(\frac{\mathsf{a}+\beta}{\sigma\tau(\beta)-\beta}\right)_{\mathbb{Q}(\zeta_{12}),3}$$

The ideal $(\sigma\tau(\beta) - \beta)\mathbb{Z}[\zeta_{12}]$ is fixed by $\sigma\tau$.

This implies that, if $\sigma \tau(\beta) - \beta$ is coprime to the ramified primes in $\mathbb{Z}[\zeta_{12}]$, it is the extension of some ideal \mathfrak{c} from $\mathbb{Q}(\sqrt{3})$.

Furthermore, $a + \beta$ is fixed by $\sigma \tau$ modulo $\sigma \tau(\beta) - \beta$. Thus there is some $\gamma \in \mathbb{Z}[\sqrt{3}]$ such that

$$a + \beta \equiv \gamma \mod \sigma \tau(\beta) - \beta.$$

We rewrite

$$\left(\frac{\mathbf{a}+\boldsymbol{\beta}}{\boldsymbol{\sigma\tau}(\boldsymbol{\beta})-\boldsymbol{\beta}}\right)_{\mathbb{Q}(\zeta_{12}),3} = \left(\frac{\mathbf{a}+\boldsymbol{\beta}}{\mathfrak{c}\mathbb{Z}[\zeta_{12}]}\right)_{\mathbb{Q}(\zeta_{12}),3} = \left(\frac{\boldsymbol{\gamma}}{\mathfrak{c}\mathbb{Z}[\zeta_{12}]}\right)_{\mathbb{Q}(\zeta_{12}),3}$$

٠

The field lowering lemmas

Lemma (Field lowering for split primes)

Let K be a number field and let \mathfrak{p} be a prime of K coprime to 3. Assume that L is a quadratic extension of K such that L contains ζ_3 and \mathfrak{p} splits in L. Write σ for the non-trivial element of Gal(L/K). Then for $\alpha \in O_K$

$$\left(\frac{\alpha}{\mathfrak{p}O_L}\right)_{L,3} = \begin{cases} \left(\frac{\alpha}{\mathfrak{p}O_K}\right)_{K,3}^2 & \text{if } \sigma \text{ fixes } \zeta_3\\ \mathbf{1}_{\mathfrak{p} \nmid \alpha} & \text{if } \sigma \text{ does not fix } \zeta_3. \end{cases}$$

The field lowering lemmas

Lemma (Field lowering for split primes)

Let K be a number field and let \mathfrak{p} be a prime of K coprime to 3. Assume that L is a quadratic extension of K such that L contains ζ_3 and \mathfrak{p} splits in L. Write σ for the non-trivial element of Gal(L/K). Then for $\alpha \in O_K$

$$\left(\frac{\alpha}{\mathfrak{p}O_L}\right)_{L,3} = \begin{cases} \left(\frac{\alpha}{\mathfrak{p}O_K}\right)_{K,3}^2 & \text{if } \sigma \text{ fixes } \zeta_3\\ \mathbf{1}_{\mathfrak{p} \nmid \alpha} & \text{if } \sigma \text{ does not fix } \zeta_3. \end{cases}$$

Lemma (Field lowering for inert primes)

Let K be a number field and let \mathfrak{p} be a prime of K coprime to 3. Assume that L is a quadratic extension of K such that L contains ζ_3 and assume that \mathfrak{p} stays inert in L. Further assume that \mathfrak{p} has degree 1 in K and let p be the prime of \mathbb{Q} lying below \mathfrak{p} . Then we have for all $\alpha \in O_K$

$$\left(\frac{\alpha}{\mathfrak{p}O_L}\right)_{L,3} = \left(\frac{\alpha}{\mathfrak{p}O_K}\right)_{K,3}^{p+1}$$

Thank you for your attention!