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Fermat’s last theorem

Pierre de
Fermat

The most well-known Diophantine equation is

X n + Y n = Z n.

Fermat handled the case n = 4, Euler treated n = 3 and
Dirichlet covered n = 5.

For odd n, Lamé (1847) factored the equation

Z n = X n + Y n = (X + Y )(X + ζnY ) · · · (X + ζn−1
n Y )

with ζn satisfying ζnn = 1.

These factors are essentially coprime. So by unique
factorization each X + ζ inY must be an n-th power. But
X + ζ inY = αn leads to a contradiction with some effort.

We have proven Fermat’s last theorem!
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Unfortunately, not quite ...

Ernst Kummer

Consider the ring

Z[ζn] = {a0 + a1ζn + a2ζ
2
n + · · ·+ an−1ζ

n−1
n }.

We can formally add such expressions, and also multiply
them using ζnn = 1.

This ring has many similar properties as the usual integers
Z, except that it may lack unique factorization.

The first prime number p for which Z[ζp] does not have
unique factorization is p = 23.

Kummer was able to rescue Lamé’s proof by introducing
ideals and studying the factorization properties of Z[ζp].

He was able to prove Fermat’s last theorem if p does not
divide the “class number”.

The class number measures unique factorization.
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ideals and studying the factorization properties of Z[ζp].

He was able to prove Fermat’s last theorem if p does not
divide the “class number”.

The class number measures unique factorization.

4 / 25



Unfortunately, not quite ...

Ernst Kummer

Consider the ring

Z[ζn] = {a0 + a1ζn + a2ζ
2
n + · · ·+ an−1ζ

n−1
n }.

We can formally add such expressions, and also multiply
them using ζnn = 1.

This ring has many similar properties as the usual integers
Z, except that it may lack unique factorization.

The first prime number p for which Z[ζp] does not have
unique factorization is p = 23.

Kummer was able to rescue Lamé’s proof by introducing
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Example of failure of unique factorization

Definition

Let R be a commutative domain. An element π ∈ R is called irreducible
if all divisors d of π satisfy d = u or d = πu for some unit u.

Example

The irreducible elements of Z are exactly ±p with p a prime.

Example

Consider the ring Z[
√
−6] = {a+ b

√
−6 : a, b ∈ Z}. Then we have the

factorization
6 = −

√
−6 ·

√
−6 = 2 · 3.

These are genuinely different factorizations, since one can check that 2, 3
and

√
−6 are all irreducible.

The root cause of this problem is that the ideals

I = (2,
√
−6) ⊋ 2Z[

√
−6], J = (3,

√
−6) ⊋ 2Z[

√
−6]

of Z[
√
−6] are not principal. If it were, we could use it to further factor

2, 3 and
√
−6.
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Class groups

Definition

Let R be a commutative domain. Let I , J ⊆ R be ideals. We write I ∼ J
if there exist α, β ∈ R − {0} such that

I · (α) = J · (β).

The class group Cl(R) of R is the set of equivalence classes under ∼.

For nice rings R (Dedekind domains), this is a commutative group.
Furthermore, R is an UFD if and only if Cl(R) is trivial.

Example

We have Cl(Z) = {0} and Cl(Z[
√
−6]) ∼= Z/2Z.

This definition also plays a key role in other areas of mathematics (Picard
group, Jacobian etc.).
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Why is the class group so important?

David Hilbert

Teiji Takagi

Number theorists are really interested in describing
extensions (i.e. covers) of their favorite number ring (like
Z, Z[ζn] or Z[

√
−6]).

The crowning achievement of early 20th century number
theory (Hilbert, Takagi) was class field theory. It describes
all abelian extensions of R in terms of Cl(R).

One of the main programs right now is the Langlands
program, which aims to generalize class field theory to
non-abelian extensions.

Although Wiles’ proof does not rely on factoring in any
way, class field theory is essential to his whole approach!
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Statistical questions

Statistical questions about class groups are exceptionally difficult.

Gauss already asked if there are infinitely many squarefree integers d
such that Cl(Z[

√
d ]) = {0}, i.e. Z[

√
d ] is an UFD. Completely open!

If one numerically enumerates d such that 9 exactly divides
|Cl(Z[

√
−d ])|, then one sees that the group Z/3Z⊕ Z/3Z is 8 times less

likely than Z/9Z. Why?

Conjecture (Cohen–Lenstra, 1984)

Let p be an odd prime. Let A be a finite abelian group such that all
elements have order pk for some k. Then

lim
X→∞

|{0 < d < X sqf. : Cl(Z[
√
−d ])[p∞] ∼= A}|

|{0 < d < X : sqf.}|
=

∏∞
i=1

(
1− 1

pi

)
|Aut(A)|
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Randomness

The weight 1/|Aut(A)| may seem strange at first, but is very natural.

It essentially predicts that the class group is a random abelian group.

Example (Random graphs)

Consider n labelled vertices. Among the set of all possible graphs with n
labelled vertices, how many are isomorphic to a given graph G? This is

n!

|Aut(G)|
.

Indeed, let Sn act on the set of n labelled vertices. Then the orbit of G is
the set of graphs isomorphic to G, while the stabilizer is Aut(G). Now
use the orbit–stabilizer theorem.

One can do a similar story for “random abelian groups” (i.e. random
multiplication tables), and this produces c/Aut(A) for c a constant.
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Pell’s equation

Pell’s equation is

x2 − dy2 = ±1 to be solved in x , y ∈ Z.

Studied by Archimedes, Pythagoras, Bhaskara II, Brahmagupta, Fermat,
Brouncker, Wallis, Euler, Lagrange, Legendre, Gauss, Dirichlet ...

Pythagoras proved that
√
2 is irrational, i.e. x2 − 2y2 = 0 has no

solutions in x , y ∈ Z.

The Pell equation is instead the “next best thing”, namely
x2 − 2y2 = ±1. It provides the best rational approximations to

√
2.

Solution x , y Ratio x/y Expansion of
√
2

x = 1, y = 1 1 1.4142135...
x = 3, y = 2 1.5 1.4142135...
x = 7, y = 5 1.4 1.4142135...
x = 17, y = 12 1.4166666... 1.4142135...
x = 41, y = 29 1.4137931... 1.4142135...
x = 99, y = 70 1.4142857... 1.4142135...
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The riddle of Archimedes

Archimedes gave a two-part riddle. In the first part he asks to solve a
linear system of seven equations in eight unknowns (to be solved in
integer variables). The smallest solution vector has roughly seven digits
in every entry.

If one can solve this system, Archimedes says “thou wouldst not be called
unskilled or ignorant of numbers, but not yet shalt thou be numbered
among the wise.”

He then asks to solve

x2 − 609 · 7766y2 = 1.

If one can solve this further equation, Archimedes says “thou shalt depart
crowned with glory and knowing that thou hast been adjudged perfect in
this species of wisdom.”

The smallest solution after x2 = 1, y2 = 0 takes 50 pages to write down
(≈ 7.76× 10206544).
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The positive Pell equation

Dirichlet proved that one can always non-trivially solve

x2 − dy2 = 1

in integers x , y (i.e. x2 = 1 and y2 = 0 being the trivial solution).

Archimedes seems to have already been aware of this, and the Indian
mathematicians even provided an algorithm for solving this equation.

Example (Fermat’s challenge to Brouncker and Wallis)

The smallest non-trivial solution to x2 − 61y2 = 1 is

x = 1766319049, y = 226153980.
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The negative Pell equation

The negative Pell equation x2 − dy2 = −1 is more elusive.

To solve this equation, one certainly needs to be able to solve it modulo
p for all primes p. But if p divides d , we get

x2 ≡ −1 mod p.

This implies that p ≡ 1 mod 4 or p = 2. Define D to be the set of
squarefree d for which p | d implies p ≡ 1 mod 4 or p = 2.

Nagell (1930s) conjectured

lim
X→∞

#{d ≤ X : d ∈ D, x2 − dy2 = −1 sol.}
#{d ≤ X : d ∈ D}

exists and lies in (0, 1). The smallest d ∈ D for which the negative Pell
equation is not soluble is d = 34.

Stevenhagen (1995) predicted a precise value for the limit.
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Proof of Stevenhagen’s conjecture

200 400 600 800 1000
X

50
100
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#{1 <= d <= X : x^2 - dy^2 = -1 sol.}

Frequency of negative Pell solubility

Theorem (K.–Pagano, 2022)

Stevenhagen’s conjecture is true.
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Translating to class groups

Consider the ring Z[
√
d ]. There is an automorphism σ : Z[

√
d ] → Z[

√
d ]

given by x + y
√
d 7→ x − y

√
d . Let N(α) = ασ(α). Note that

x2 − dy2 = ±1 ⇔ N(x + y
√
d) = ±1.

The norm map is multiplicative, i.e. N(αβ) = N(α)N(β), thus sends
units to units. The only units of Z are ±1.

Conversely, if the norm is a unit, then the element itself is a unit. Thus
negative Pell is soluble if and only if there is a unit of negative norm.

Negative Pell equation can thus be solved if and only if there is a unit of
norm −1.
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Translating to class groups II

Recall that the negative Pell equation is soluble if and only if there is a
unit of norm −1.

This is equivalent to the ideal (
√
d) admitting a totally positive

generator, i.e. (
√
d) = (α) with α > 0 and σ(α) > 0.

Rephrase this as an equality between the narrow class group (ideals
modulo principal ideals with a totally positive generator) and the ordinary
class group (ideals modulo principal ideals).

Obtain the statistics of the joint distribution of the 2-Sylow subgroup of
the narrow class group and ordinary class group (in the style of
Cohen–Lenstra).

We only need to consider the 2-Sylow since (
√
d) has order 2 in the

narrow class group. This is the only part of the class group that is
well-understood by a recent breakthrough of A. Smith.
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Future work

I am working on applying the techniques from Stevenhagen’s conjecture
to obtain statistics for other Diophantine equations.

One question is: how many integers |n| ≤ X are such that

x3 + y3 = n

has a solution in rational integers x , y?

Note: it is not hard to show that there are ≤ CX 2/3 integers n for which
there is a solution x , y ∈ Z, for some absolute constant C > 0.

Example

For n = 6 one can use the factorization x3 + y3 = (x + y)(x2 − xy + y2)
to show that there are no integer solutions. However, we have

6 =

(
17

21

)3

+

(
37

21

)3

.
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Results

Alpöge–Bhargava–Shnidman showed that at least 2/21 of integers are
sums of cubes and at least 1/6 are not sums of cubes.

Together with A. Smith I am working on improving these bounds
(conjecturally, the limit should be 1/2).

Key tool: obtain distribution of Selmer group of x3 + y3 = n. This is the
analogue of the class group for elliptic curves.
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Chowla’s conjecture

Sarvadaman
Chowla

Kannan
Soundararajan

Conjecture (Generalized Riemann hypothesis)

All non-trivial zeroes of L(s, χ) lie on s = 1/2 + it.

Conjecture (Chowla’s conjecture)

We have L( 12 , χ) ̸= 0 for all primitive Dirichlet characters
χ.

Important results towards Chowla’s conjecture are due to
Soundararajan and Özlük–Snyder.

There has also been great interest in the function field
case of this conjecture.

22 / 25



Chowla’s conjecture

Sarvadaman
Chowla

Kannan
Soundararajan

Conjecture (Generalized Riemann hypothesis)

All non-trivial zeroes of L(s, χ) lie on s = 1/2 + it.

Conjecture (Chowla’s conjecture)

We have L( 12 , χ) ̸= 0 for all primitive Dirichlet characters
χ.

Important results towards Chowla’s conjecture are due to
Soundararajan and Özlük–Snyder.
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Function fields

Theorem (W. Li (2018))

Let q be an odd prime power. There are infinitely many monic,
squarefree polynomials D ∈ Fq[t] such that L( 12 , χD) = 0.

However, 100% non-vanishing is still expected. This is currently not
known for any single family of L-functions.

The Özlük–Snyder result is known unconditionally over function fields
(Bui–Florea).

Many other families have also been studied but no 100% non-vanishing
result is known.

Theorem (K.–Pagano–Shusterman)

We have L( 12 , χD) ̸= 0 for 100% of the monic squarefree polynomials D.
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Proof sketch

By a result of Grothendieck we have L( 12 , χD) ̸= 0 if and only if there
exists an embedding

Q2/Z2 ↪→ Jac(CD)(Fq)[2
∞][Frob2q − q],

where CD is the curve y2 = D.

The Jacobian can be viewed as a function field analogue of the class
group.

A suitable adaptation of our methods for Stevenhagen’s conjecture allow
one to obtain the distribution of this Jacobian, from which the theorem
follows.
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Questions?

Thank you for your attention!
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