
void function(input size)
{
 base case

 function(smaller input size) //recursive call

}

int main()
{

 function(input size)

}

Rekursion
-> smaller subproblems must eventually reach

-> must be defined and reached ! the base case

-> code must cover all smaller subproblems

* -> base case cannot have recorsive calls

i
.e

.

defined in a non-recursive manner .

-> recursive call should call with smaller

input size and should make progress
toward base case

-> in each call : think how
you

can use

the solution of smaller subproblems to
solve the current input size

->

youre
can have several different calls

dep on some condition/constraint
or the inpot e .

g. I odd ->

I even ->

code examples : power function

-> this shows nicely ,
that it is possible

two
non-recursive calls

and sometimes smart to differentiate
between several base cases andI several recursive calls

.

recursiveY talls

↳and Conquer"
e . g . problem of size n

divide problem
I B into smaller

subproblems
[↳ ↳ -

B E E S
conquer the smaller subproblems & solve problem for

small size

- -
combine the
results from
- the smaller

problems to

getres

(pS(5) :
u

= 5 couteturent partial = 5 + 10 = 15
cort55= = 0 ?

10↳ PS(4) En cout4 return it patio = 4 + 6

cout 4
Y = = 0 ? no&

return it partial = 3 + 3 = G

Upsi
freton

It partur = 2 + 1 = 3

cout's

(out 2upssl

at partial
Cort 2

↳ psCil*scoute return
I which is I to i

.
e .

cort 1 A

return (partial=)o4
,-xs(0) :

n == 0

ps(5) 0 = = 0 ? Yes - BASED

CASE

