
void function(input size)
{
    base case
    .. .. ...
    function(smaller input size) //recursive call
    .. .. ...
}

int main()
{
    ... .. ...
    function(input size)
    ... .. ...
}

Rekursion
-> smaller subproblems must eventually reach
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code examples : power function
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two
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and sometimes smart to differentiate
between several base cases andI several recursive calls
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